Summary
We show and justify how to calculate distances for intuitionistic fuzzy sets (A-IFSs, for short). We show a proper way of calculations not only from a mathematical point of view but also of an intuitive appeal making use of all the relevant information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atanassov K. (1983) Intuitionistic Fuzzy Sets. VII ITKR Session. Sofia (Deposed in Central Sci. Technol. Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian).
Atanassov K. (1986) Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20, 87–96.
Atanassov K. (1999) Intuitionistic Fuzzy Sets: Theory and Applications. Springer, Berlin Heidelberg New York.
Atanassov K., Taseva V., Szmidt E., Kacprzyk J. (2005) On the geometrical interpretations of the intuitionistic fuzzy sets. In: K. T. Atanassov, J. Kacprzyk, M. Krawczak, E. Szmidt (Eds.): Issues in the Representation and Processing of Uncertain and Imprecise Information. Series: Problems of the Contemporary Science. EXIT, Warszawa, pp. 11–24.
Deng-Feng Li (2005) Multiattribute decision making models and methods using intuitionistic fuzzy sets. Journal of Computer and System Sciences, 70, 73–85.
Narukawa Y. and Torra V. (in press) Non-monotonic fuzzy measure and intuitionistic fuzzy set. Accepted for MDAI’06.
Szmidt E. and Baldwin J. (2003) New similarity measure for intuitionistic fuzzy set theory and mass assignment theory. Notes on IFSs, 9(3), 60–76.
Szmidt E. and Baldwin J. (2004) Entropy for intuitionistic fuzzy set theory and mass assignment theory. Notes on IFSs, 10(3), 15–28.
Szmidt E. and Kacprzyk J. (1996) Intuitionistic fuzzy sets in group decision making. Notes on IFS, 2, 15–32.
Szmidt E. and Kacprzyk J. (1996) Remarks on some applications of intuitionistic fuzzy sets in decision making. Notes on IFS, 2(3), 22–31.
Szmidt E. and Kacprzyk J. (1998) Group Decision Making under Intuitionistic Fuzzy Preference Relations. IPMU’98, pp. 172–178.
Szmidt E. and Kacprzyk J. (1998) Applications of Intuitionistic Fuzzy Sets in Decision Making. EUSFLAT’99, pp. 150–158.
Szmidt E. and Kacprzyk J. (2000) Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114(3), 505–518.
Szmidt E. and Kacprzyk J. (2000) On Measures on Consensus Under Intuitionistic Fuzzy Relations. IPMU 2000, pp. 1454–1461.
Szmidt E. and Kacprzyk J. (2001) Distance from consensus under intuitionistic fuzzy preferences. Proc. EUROFUSE Workshop on Preference Modelling and Applications, Granada, pp. 73–78.
Szmidt E. and Kacprzyk J. (2001) Analysis of consensus under intuitionistic fuzzy preferences. International Conference in Fuzzy Logic and Technology. Leicester, UK, pp. 79–82.
Szmidt E. and Kacprzyk J. (2002) An intuitionistic fuzzy set based approach to intelligent data analysis (an application to medical diagnosis). In A. Abraham, L. Jain, J. Kacprzyk (Eds.): Recent Advances in Intelligent Paradigms and and Applications. Springer, Berlin Heidelberg New York, pp. 57–70.
Szmidt E. and Kacprzyk J. (2002) Analysis of Agreement in a Group of Experts via Distances Between Intuitionistic Fuzzy Preferences. IPMU 2002, pp. 1859–1865.
Szmidt E. and Kacprzyk J. (2002) An intuitionistic fuzzy set based approach to intelligent data analysis (an application to medical diagnosis). In A. Abraham, L. Jain, J. Kacprzyk (Eds.): Recent Advances in Intelligent Paradigms and Applications. Springer, Berlin Heidelberg New York, pp. 57–70.
Szmidt E. and Kacprzyk J. (2002) Evaluation of agreement in a group of experts via distances between intuitionistic fuzzy sets. Proc. IS’2002 – Int. IEEE Symposium: Intelligent Systems, Varna, Bulgaria, IEEE Catalog Number 02EX499, pp. 166–170.
Szmidt E. and Kacprzyk J. (2005) A new concept of a similarity measure for intuitionistic fuzzy sets and its use in group decision making. In V. Torra, Y. Narukawa, S. Miyamoto (Eds.): Modelling Decisions for AI. LNAI 3558, Springer, Berlin Heidelberg New York, pp. 272–282.
Szmidt E. and Kacprzyk J. (2007) A New Similarity Measure for Intuitionistic Fuzzy Sets: Straightforward Approaches may not work. Proc. FUZZ-IEEE 2007, pp. 1–6.
Szmidt E. and Kacprzyk J. (2007) Some Problems with Entropy Measures for the Atanassov Intuitionistic Fuzzy Sets. WILF, pp. 291–297.
Tan Ch. and Zhang Q. (2005) Fuzzy Multiple Attribute Topsis Decision Making Method Based on Intuitionistic Fuzzy Set Theory. Proc. IFSA 2005, pp. 1602–1605.
Tasseva V., Szmidt E. and Kacprzyk J. (2005) On one of the geometrical interpretations of the intuitionistic fuzzy sets. Notes on IFS, 11(3), 21–27.
Zadeh L.A. (1965) Fuzzy sets. Information and Control, 8, 338–353.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Szmidt, E., Kacprzyk, J. (2008). Dilemmas with Distances Between Intuitionistic Fuzzy Sets: Straightforward Approaches May Not Work. In: Chountas, P., Petrounias, I., Kacprzyk, J. (eds) Intelligent Techniques and Tools for Novel System Architectures. Studies in Computational Intelligence, vol 109. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77623-9_24
Download citation
DOI: https://doi.org/10.1007/978-3-540-77623-9_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77621-5
Online ISBN: 978-3-540-77623-9
eBook Packages: EngineeringEngineering (R0)