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1. INTRODUCTION

The division problem consists of allocating an amount M of a perfectly
divisible good among a group of n agents. A rule maps preference profiles
into n shares of the amount M . Sprumont (1991) shows that, given M , if
agents have single-peaked preferences over their shares, then the “uniform”
allocation rule is the unique strategy-proof, efficient, and anonymous rule.
This is a nice example of a large literature that, by restricting the domain of
preferences, investigates the possibility of designing strategy-proof rules.2

Moreover, in this case, single-peakedness allows not only strategy-proof
rules, but also efficient ones.

In this paper we ask how much the set of single-peaked preferences can
be enlarged to still allow for rules that satisfy interesting properties. In
particular, we show that there is a unique maximal domain of preferences
that includes the set of single-peaked preferences for which there exists
at least one rule satisfying strategy-proofness, efficiency, and strong sym-
metry. Moreover, we characterize it as the set of feebly single-plateaued
preferences.

It turns out that this maximal domain depends crucially on both M and n.
Indeed, the egalitarian share M/n plays a fundamental role in its descrip-
tion, as a consequence of the strong symmetry requirement. In particular,
our domain includes only preferences whose set of best shares is an interval
and which are weakly monotonic on an interval �, defined by the relative
position of M/n and the set of best shares. Our set departs from the single-
peaked domain in two significant directions. First, shares outside � can be
ordered freely. Second, special intervals of indifference are allowed on �.
The set of these preferences, given M and n, is much larger than the single-
plateaued domain studied by Moulin (1984) and Berga (1998) in a public
good context, since single-plateaued preferences are strictly monotonic on
both sides of the plateau. We do not claim that the domain identified here
has economic relevance; rather, we understand our result as giving a precise
and definite answer to an interesting and economically relevant question.

Furthermore, the intersection of all of our maximal domains, when M
varies from 0 to ∞, coincides with the single-plateaued domain. This also
implies that when the rule depends not only on preferences but also on
the amount M to be allocated, the maximal domain coincides with the set
of single-plateaued preferences, as already shown by Ching and Serizawa
(1998). Notice that in their setting, M is treated as a variable of the problem
rather than one of its data. We want to emphasize, though, that despite

2See Sprumont (1995) and Barberà (1996) for two comprehensive surveys of this literature
as well as for two exhaustive bibliographies.
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their result, our analysis with a fixed amount M is meaningful, since in
many allocation problems to assume the contrary would be senseless.

A number of papers have also identified maximal domains of prefer-
ences allowing for strategy-proof social choice functions in voting environ-
ments. Barberà et al. (1991) show that the set of separable preferences is
the maximal domain that preserves strategy proofness of voting by commit-
tees without dummies and vetoers. Serizawa (1995), Barberà et al. (1999),
Berga and Serizawa (2000), and Berga (1997) improve on this result in sev-
eral directions by, for instance, looking at a more general voting model
and/or admitting larger classes of social choice functions.

Finally, it is worth mentioning that, in contrast to all the papers men-
tioned above, the rule that we exhibit when showing our maximality result
is not “tops only” in the sense that it does not depend exclusively on the n
sets of best shares. Efficiency forces the rule to be sensitive to intervals of
indifference away from the “top.”

The paper is organized as follows. Section 2 contains notation, defini-
tions, and the statement of our result. Section 3 proves this result. Section 4
concludes by deriving a weaker version of Ching and Serizawa’s (1998)
result as a corollary of our theorem and by relating our maximal domains
to the “option” sets associated with strategy-proof, efficient, and strongly
symmetric rules.

2. PRELIMINARIES, DEFINITIONS, AND THE THEOREM

Agents are indexed by the elements of a finite set N = �1� � � � � n�, where
n ≥ 2. They have to share the amount M ∈ �++ of a perfectly divisible
good. An allocation is a vector �x1� � � � � xn	 ∈ �n

+ such that
∑
xi = M . We

denote by Z the set of allocations. Each agent i ∈ N has a complete pre-
order Ri over 
0�M�, his preference relation. Let Pi be the strict preference
relation associated with Ri, and let Ii be the corresponding indifference
relation. We assume that preferences are continuous in the sense that for
each x ∈ 
0�M�, the sets �y ∈ 
0�M� � xRiy� and �y ∈ 
0�M� � yRix� are
closed. We denote by � the set of continuous preferences on 
0�M� and
by � a generic subset of �. Preference profiles are n-tuples of continuous
preferences on 
0�M�, denoted by R = �R1� � � � � Rn	 ∈ �n. When we want
to stress the role of agent i’s preference, we will represent a preference
profile by �Ri�R−i	.

A rule on � n ⊆ �n is a function � � � n −→ Z� that is,
∑
�i�R	 = M

for all R ∈ � n.
Rules require that each agent report a preference. A rule is strategy

proof if it is always in the best interest of an agent to reveal his preferences
truthfully. Formally, we have the following definition.



370 massó and neme

Definition 1. A rule on � n��, is strategy proof if for all �R1� � � � � Rn	 ∈
� n, all i ∈ N , and all R′

i ∈ � , we have �i�Ri�R−i	Ri�i�R′
i� R−i	.

Given a preference profile R ∈ � n, an allocation x ∈ Z is efficient if
there is no z ∈ Z such that for all i ∈ N� ziRixi, and for at least one j ∈ N ,
we have zjPjxj . Denote by E�R	 the set of efficient allocations.

A rule is efficient if it selects an efficient allocation. Formally, this is
stated as follows.

Definition 2. A rule on � n��, is efficient if for all R ∈ � n, we have
��R	 ∈ E�R	.

We are also interested in rules satisfying the following property.

Definition 3. A rule on � n��, is strongly symmetric if for all R ∈ � n

and all i� j ∈ N such that Ri = Rj , we have �i�R	 = �j�R	.3

We consider different subsets of preferences, all related to single-
peakedness. For the definitions, we need the following notation. Given a
preference Ri ∈ �, we denote the set of preferred shares according to Ri

as p�Ri	 = �x ∈ 
0�M� � xRiy for all y ∈ 
0�M��. Let p�Ri	 = minp�Ri	
and p̄�Ri	 = maxp�Ri	. Abusing notation, we also denote by p�Ri	 the
unique element of the set p�Ri	 whenever p�Ri	 = p̄�Ri	.

The first definition is the classical notion of single peakedness. It requires
that the preference Ri have a unique maximal element p�Ri	 and that on
each side the preference be monotonic and strict. Formally, this is stated
as follows.

Definition 4. A preference Ri ∈ � is single-peaked if p�Ri	 is a sin-
gleton and for all x� y ∈ 
0�M� we have xPiy whenever y < x < p�Ri	 or
p�Ri	 < x < y.

Let �s be the set of single-peaked preferences on 
0�M�. The following
rule on �s, the uniform allocation rule, has been extensively studied.

Definition 5. The uniform allocation rule on �n
s � U , is defined as

follows: For all R ∈ �n
s and all i ∈ N ,

Ui�R	 =
{

min�p�Ri	� λ�R	� if M ≤ ∑
p�Rj	

max�p�Ri	� λ�R	� if M ≥ ∑
p�Rj	,

where λ�R	 solves
∑
Uj�R	 =M .

3Ching (1994) calls this property equal treatment of equals. Ching and Serizawa (1998) use
the term symmetry when the condition �i�R	 = �j�R	 is replaced by �i�R	Ii�j�R	.
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Ching (1994) characterized the uniform allocation rule on �n
s as the

unique rule satisfying strategy proofness, efficiency, and symmetry.4

The second definition of preferences is a bit weaker, since it allows for
indifferences at the top.

Definition 6. A preference Ri ∈ � is single-plateaued if p�Ri	 =

p�Ri	� p̄�Ri	� and for all x� y ∈ 
0�M� we have xPiy whenever y < x <

p�Ri	 or p̄�Ri	 < x < y.5

Let �sp be the set of single-plateaued preferences. The following rule
on �n

sp constitutes a natural extension of the uniform allocation rule to the
domain of single-plateaued preferences.

Definition 7. The uniform allocation rule on �n
sp�ψ, is defined as fol-

lows: For all R ∈ �n
sp and all i ∈ N ,

ψi�R	 =


min�p�Ri	� λ�R	� if M ≤ ∑
j p�Rj	

min�p̄�Ri	� p�Ri	 + λ�R	� if
∑

j p�Rj	 ≤M ≤ ∑
j p̄�Rj	

max�p̄�Ri	� λ�R	� if
∑

j p̄�Rj	 ≤M ,

where λ�R	 solves
∑
ψj�R	 =M .

Finally, our third (and weakest) definition of preferences refers to the
following interval ��Ri	, which will play a fundamental role in the sequel:

��Ri	 =
[

min
{
M

n
�p�Ri	

}
�max

{
M

n
� p̄�Ri	

}]
�

Before we state the formal definition, it seems useful to give a verbal expla-
nation of the set of feebly single-plateaued preferences. A preference rela-
tion Ri ∈ � is feebly single-plateaued if its set of best shares is an interval
and the following additional properties are satisfied:

If ��Ri	 = 
M
n
� p̄�Ri	�, then the preference must be “increasing”

between M/n and its smallest best share p�Ri	, although it may have inter-
vals of indifference provided that these intervals are sufficiently large in
relation to M . Moreover, the egalitarian share M/n must be at least as
good as all smaller shares, but all orderings are possible among them.

4See Ching (1992), Schummer and Thomson (1997), Sprumont (1991), and Thomson
(1994), (1995), and (1997) for alternative characterizations of the uniform allocation rule.
Weymark (1999) shows that Sprumont’s characterization using efficiency, strategy proofness,
and anonymity still holds if continuity of the preferences is not required.

5See Moulin (1984) and Berga (1998) for characterizations of strategy-proof rules under
this domain restriction in a public good context.
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If ��Ri	 = 
p�Ri	� Mn �, then the preference must be “decreasing”
between its largest best share p̄�Ri	 and M/n, although it may have inter-
vals of indifference provided that these intervals are sufficiently small in
relation to M .6 Moreover, the egalitarian share M/n must be at least as
good as all larger shares, but also all orderings are possible among them.

Finally, if ��Ri	 = 
p�Ri	� p̄�Ri	�, then no additional requirement is
imposed. Formally, this set is defined as follows.

Definition 8. A preference Ri ∈ � is feebly single-plateaued if for all
x� y ∈ 
0�M�, the following hold:

(a) If 
x < y and M/n ≤ y ≤ p�Ri	�, then 
yRix, and if yIix, then
there exists 
x0� y0� ⊇ 
x� y� such that x0 + y0 > M and x′Iiy0 for all x′ ∈

x0� y0��.

(b) If 
x < y and p̄�Ri	 ≤ x ≤ M/n�, then 
xRiy, and if xIiy, then
there exists 
x0� y0� ⊇ 
x� y� such that x0 + y0 < M and x′Iiy0 for all x′ ∈

x0� y0��.

(c) If x ∈ 
p�Ri	� p̄�Ri	�, then xIip̄�Ri	.
We denote by �fsp the set of feebly single-plateaued preferences. Notice

that this preference restriction implies a “weak monotonicity” condition
on the corresponding intervals ��·	 and that the number of agents n also
appears in conditions (a) and (b). Theorem 1 states that the domain of fee-
bly single-plateaued preferences is the unique maximal domain admitting
strategy-proof, efficient, and strongly symmetric rules. Figure 1 illustrates
three possible types of feebly single-plateaued preferences depending on
whether M/n ≤ p�Ri	� p̄�Ri	 ≤M/n, or p�Ri	 ≤M/n ≤ p̄�Ri	.

Following Ching and Serizawa (1998), we can define, given a list of prop-
erties that a rule may satisfy, the concept of “a maximal domain of prefer-
ences for this list.”

Definition 9. A set �m of preferences is a maximal domain for a list
of properties if (1) �m ⊆ �, (2) there exists a rule on �n

m satisfying the
properties, and (3) there is no rule on �n satisfying the same properties
such that �m�� ⊆ �.

Theorem 1. The set of feebly single-plateaued preferences, �fsp, is the
unique maximal domain including �s for the properties of strategy proofness,
efficiency, and strong symmetry.

6See Example 1 at the end of Section 2 for an illustration of why efficiency imposes these
conditions on the intervals of indifference.
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FIG. 1.

Before proving Theorem 1, we illustrate the reason why efficiency and
strong symmetry together force the domain to contain only preferences
with intervals of indifference of a very special type away from the set of
best shares.

Example 1. Let M = 8 and N = �1� 2�. Let � be any efficient and
strongly symmetric rule. Consider the preference �R on [0, 8] defined by

y�Px for all 0 ≤ x < y ≤ 2 and all 5 ≤ x < y ≤ 8

and

y�Ix for all x� y ∈ 
2� 5��
Note that condition (a) of Definition 8 is not satisfied because 2Ī5 and
there is no an interval of indifference 
x0� y0� ⊇ 
2� 5� such that x0 + y0 > 8.
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Therefore, �R /∈ �fsp. A maximal domain of preferences cannot contain �R,
because by strong symmetry, ���R� �R	 = �4� 4	, but the existence of the
allocation (2, 6), which is such that 2�I4 and 6�P4, indicated that ���R� �R	 /∈
E��R� �R	, contradicting the efficiency of �. Consider now the preference R̂
on [0, 8] defined by

yP̂x for all 0 ≤ x < y ≤ 3 and all 6 ≤ x < y ≤ 8

and

yÎx for all x� y ∈ 
3� 6��
Note that condition (a) of Definition 8 is satisfied because the sum of the
extremes of the indifference interval 
3� 6� is larger than 8. Therefore, R̂ ∈
�fsp. In contrast, the allocation ��R̂� R̂	 = �4� 4	 belongs to E�R̂� R̂	.

To illustrate the role of condition (b) of Definition 8, consider the pref-
erence R̃ on 
0� 8� defined by

xP̃y for all 0 ≤ x < y ≤ 3 and all 6 ≤ x < y ≤ 8

and

xĨy for all x� y ∈ 
3� 6��
In this case R̃ /∈ �fsp� because now the sum of the extremes of the indif-
ference interval is larger than 8. By strong symmetry, ��R̃� R̃	 = �4� 4	, but
2P̃4 and 6Ĩ4, which indicates that ��R̃� R̃	 /∈ E�R̃� R̃	, contradicting the
efficiency of �. Finally, consider the preference R′ on 
0� 8� defined by

xP ′y for all 0 ≤ x < y ≤ 2 and all 5 ≤ x < y ≤ 8

and

xI ′y for all x� y ∈ 
2� 5��
Now condition (b) of Definition 8 is satisfied because the sum of the
extremes of the indifference interval 
2� 5� is smaller than 8. Therefore, R′ ∈
�fsp. In this case the allocation ��R′� R′	 = �4� 4	 belongs to E�R′� R′	.

3. PROOF OF THEOREM 1

Before proving Theorem 1, we state a consequence of Ching’s character-
ization (Ching, 1994) that we use repeatedly in this section.

Remark 1. Let � be any rule on � n �⊇�n
s 	 satisfying strategy proofness,

efficiency, and strong symmetry. If R ∈ �n
s , then ��R	 = U�R	; that is, �

coincides with the uniform allocation rule on the subset of single-peaked
preferences.
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FIG. 2.

Let �m be a subset of preferences satisfying the following condition:
�s ��m ⊆ �. Suppose that there exists a rule on �n

m��, satisfying strat-
egy proofness, efficiency, and strong symmetry. Assume �m is a maximal
domain in � satisfying these properties. To show that �m = �fsp we use
the following Lemmas, where R0� RM ∈ �s denotes the two single-peaked
preferences such that p�R0	 = 0 and p�RM	 =M .

Lemma 1. Let R0 ∈ �m and x� y ∈ 
0�M� be arbitrary.

Case 1: M/n ≤ x < y ≤ p̄�R0	� then yR0x.
Case 2: p�R0	 ≤ y < x ≤M/n; then yR0x.

Proof. Case 1: Suppose otherwise; that is, there exist R0 ∈ �m and
x̄� ȳ ∈ 
0�M� such that M/n ≤ x̄ < ȳ ≤ p̄�R0	 and x̄P0ȳ. We can also
find (see Fig. 2) x0� y0 ∈ 
0�M� such that

�a�1	 M/n ≤ x0 < y0 ≤ p̄�R0	�
�a�2	 x0I0y0�

�a�3	 x0R0x for all x ∈ 
M/n� x0�� and

�a�4	 x0P0x for all x ∈ �x0� y0	�
Notice that x0 is the smallest value below p̄�R0	 and above M/n at

which R0 starts decreasing to its right.7 Since R0 is continuous and
p̄�R0	R0x̄, the existence of such y0 follows. Obviously, x0 could be equal
to M/n� y0 could be equal to p̄�R0	, or both.

Note that for all z0 ∈ �x0� y0	, the following inequalities hold:
M − y0

n− 1
<
M − z0

n− 1
<
M − x0

n− 1
≤ M

n
� (3.1)

7We often abuse language by using utility representation terminology to refer to properties
of preference relations.
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Now fix z0 ∈ �x0� y0	 and let �R ∈ �s be such that p��R	 = M−z0
n−1

and �M−y0
n−1 	�P�M−x0

n−1 	. The existence of such a preference �R follows from
Eq. (3.1).

Let R̂ ∈ �s be any preference such that p�R̂	 = x0. By Remark 1,
��R̂� �R� � � � � �R	 = U�R̂� �R� � � � � �R	, and since

x0 + �n− 1	 · M − z0

n− 1
< M�

we have that �1�R̂� �R� � � � � �R	 = x0. By strategy proofness of �,

�1�R0� �R� � � � � �R	R0x0� (3.2)

Again, by Remark 1, �1�RM� �R� � � � � �R	 = z0, and by strategy proofness
of �� z0R

M�1�R0� �R� � � � � �R	, implying that

�1�R0� �R� � � � � �R	 ≤ z0� (3.3)

Finally, by Remark 1, �1�R0� �R� � � � � �R	 =M/n and by strategy proofness
of ��M/nR0�1�R0� �R� � � � � �R	, implying that

�1�R0� �R� � � � � �R	 ≥
M

n
� (3.4)

Then, by Eqs. (3.2), (3.3), and (3.4),

��R0� �R� � � � � �R	 =
(
x1�

M − x1

n− 1
� � � � �

M − x1

n− 1

)
� (3.5)

with M/n ≤ x1 ≤ x0 and x1I0x0. But the existence of the alloca-
tion �y0�

M−y0
n−1 � � � � �

M−y0
n−1 	 and Eq. (3.5) imply that ��R0� �R� � � � � �R	 /∈

E�R0� �R� � � � � �R	, contradicting the efficiency of �.

Case 2: The proof is omitted, since it follows an argument which is
symmetric to the one used to prove Case 1.

Lemma 2. Let R0 ∈ �m and x ∈ 
0�M� be arbitrary.

Case 1: x < M/n ≤ p̄�R0	; then M/nR0x.
Case 2: p�R0	 ≤M/n < x; then M/nR0x.

Proof. Case 1: Suppose otherwise; that is, there exist R0 ∈ �m and x0 <
M/n ≤ p̄�R0	 such that x0P0M/n. First, assume that M/n is a minimal
element on 
x0�M/n� relative to R0; that is,

yR0
M

n
for all y ∈

[
x0�

M

n

]
� (3.6)

Since � is strongly symmetric,

��R0� � � � � R0	 = �M/n� � � � �M/n	� (3.7)
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By Eq. (3.6) and Lemma 1, we have that for all ε ∈ �0�min�M
n
− x0,

p̄�R0	 − M
n
��, (

M

n
− ε

)
R0

M

n
and

(
M

n
+ ε

)
R0

M

n
�

Let ε̄ = min�M
n
− x0� p̄�R0	 − M

n
�. Then, either(

M

n
− ε̄

)
P0
M

n
or

(
M

n
+ ε̄

)
P0
M

n
�

depending on whether ε̄ is equal to M
n
− x0 or to p̄�R0	 − M

n
, respectively.

Then the allocation ��M
n
+ ε̄	� �M

n
− ε̄	�M/n� � � � �M/n	 and Eq. (3.7) imply

that � �R0� � � � � R0	 /∈ E�R0� � � � � R0	, contradicting the efficiency of �.
Second, assume that there exists y0 ∈ �x0�M/n	 such that M/nP0y0. Then

there exist x1� y1, and z1 such that

(a.1′) 0 ≤ x1 < z1 < y1 ≤M/n�

(a.2′) x1I0y1I0M/n�

(a.3′) x1P0x for all x ∈ �x1� y1	� and

(a.4′) y1I0x for all x ∈ 
y1�M/n��
Note that

M

n
≤ M − y1

n− 1
<
M − z1

n− 1
<
M − x1

n− 1
�

Now let �R ∈ �s be any single-peaked preference such that p��R	 = M−z1
n−1

and M−x1
n−1

�P M−y1
n−1 . By Remark 1, �1�RM� �R� � � � � �R	 = U1�RM� �R� � � � � �R	 =

M/n, the uniform allocation. By strategy proofness of �,

�1�R0� �R� � � � � �R	R0
M

n
� (3.8)

Again, by Remark 1, �1�R0� �R� � � � � �R	 = z1, and by strategy proofness
of �� z1R

0�1�R0� �R� � � � � �R	, implying that

�1�R0� �R� � � � � �R	 ≥ z1� (3.9)

Then, by Eqs. (3.8) and (3.9),

�1�R0� �R� � � � � �R	 ≥ y1� (3.10)

Finally, by Remark 1, �1�RM� �R� � � � � �R	 = M/n, and by strategy proof-
ness of ��M/nRM�1�R0� �R� � � � � �R	, implying that

�1�R0� �R� � � � � �R	 ≤
M

n
� (3.11)
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Then, by Eqs. (3.10) and (3.11),

��R0� �R� � � � � �R	 =
(
x2�

M − x2

n− 1
� � � � �

M − x2

n− 1

)
� (3.12)

with y1 ≤ x2 ≤ M/n and x2I0M/n (by construction). But then, since
M−x2
n−1 ≤ M−y1

n−1 �
�R ∈ �s, and all preference orderings are transitive, the

allocation �x1�
M−x1
n−1 � � � � �

M−x1
n−1 	 and (3.12) imply that ��R0� �R� � � � � �R	 /∈

E�R0� �R� � � � � �R	, contradicting the efficiency of �.

Case 2: The proof is omitted, since it follows an argument which is
symmetric to the one used to prove Case 1.

Lemma 3. Let R0 ∈ �m and x ∈ 
0�M� be arbitrary.

Case 1: x < M/n ≤ p̄�R0	 and xI0M/n; then M/nI0x
′ for all x′ ∈


x�M/n�.
Case 2: p�R0	 ≤ M/n < x and xI0M/n; then M/nI0x

′ for all x′ ∈

M/n� x�.

Proof. Case 1: Suppose otherwise; that is, there exist R0 ∈ �m and
x1 < M/n ≤ p̄�R0	 such that x1I0M/n and M/nP0z1 for at least one
z1 ∈ �x1�M/n	. Notice that by Lemma 2, we already know that M/nR0z1.
Without loss of generality we can assume that there exists y1 ∈ 
x1�M/n�
such that M/nI0y for all y ∈ 
y1�M/n��M/nP0y for all y ∈ �x1� y1	, and
z1 ∈ �x1� y1	. Note that

M

n
≤ M − y1

n− 1
<
M − z1

n− 1
<
M − x1

n− 1
�

Now let �R ∈ �s be any single-peaked preference such that p��R	 = M−z1
n−1

and M−x1
n−1

�P M−y1
n−1 .

By Remark 1, ��RM� �R� � � � � �R	 = U�RM� �R� � � � � �R	; therefore, �1�RM�
�R� � � � � �R	 =M/n. By strategy proofness of �,

�1�R0� �R� � � � � �R	R0
M

n
� (3.13)

Again, by Remark 1, �1�R0� �R� � � � � �R	 = z1, and by strategy proofness of
�� z1R

0�1�R0� �R� � � � � �R	, implying that

�1�R0� �R� � � � � �R	 ≥ z1� (3.14)

Then, by Eqs. (3.13) and (3.14),

�1�R0� �R� � � � � �R	 ≥ y1� (3.15)
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Finally, since �1�RM� �R� � � � � �R	 = M/n, by strategy proofness of �,
M/nRM�1�R0� �R� � � � � �R	, implying that

�1�R0� �R� � � � � �R	 ≤
M

n
� (3.16)

Then, by Eqs. (3.15) and (3.16),

��R0� �R� � � � � �R	 =
(
x2�

M − x2

n− 1
� � � � �

M − x2

n− 1

)
� (3.17)

with y1 ≤ x2 ≤ M/n and M−x2
n−1 ≤ M−y1

n−1 . Because M−x1
n−1

�P M−y1
n−1

�P M−x2
n−1

and x1I0x2, we have that the allocation �x1�
M−x1
n−1 � � � � �

M−x1
n−1 	 and Eq. (3.17)

imply that ��R0� �R� � � � � �R	 /∈ E�R0� �R� � � � � �R	, contradicting the effi-
ciency of �.

Case 2: The proof is omitted since it follows an argument which is sym-
metric to the one used to prove Case 1.

Lemma 4. Let R0 ∈ �m and x� y ∈ 
0�M� be arbitrary.

Case 1: M/n ≤ x < y ≤ p�R0	 and xI0y; then there exists an interval

x0� y0� ⊇ 
x� y� such that x0 + y0 > M and x′I0y0 for all x′ ∈ 
x0� y0�.

Case 2: p̄�R0	 ≤ x < y ≤ M/n and xI0y; then there exists an interval

x0� y0� ⊇ 
x� y� such that x0 + y0 < M and x′I0y0 for all x′ ∈ 
x0� y0�.

To prove Lemma 4, we need the following definition.

Definition 10. Given a preference R0 ∈ �, we say that the interval

x0� y0� is a maximal interval of indifference for R0 if x′I0x0 for all x′ ∈

x0� y0� and if 
x1� y1� ⊇ 
x0� y0� is such that xI0x0 for all x ∈ 
x1� y1�,
then 
x0� y0� = 
x1� y1�.

Proof. Case 1: Let R0 ∈ �m, and suppose that x and y are such that
M/n ≤ x < y ≤ p�R0	 and xI0y. By Lemmas 1, 2, and 3, there exists a
maximal interval of indifference for R0� 
x0� y0�, containing 
x� y�. Notice
that x′I0y0 for all x′ ∈ 
x0� y0� and M/n < y0.

To obtain a contradiction, assume that x0 + y0 ≤M . Let z0 ∈ �x0� y0	 be
any share such that M/n ≤ z0 and

�z0 − x0	 > �y0 − z0	�
Subcase 1.1: n ≥ 3, and there exists an integer n′ such that n ≥ n′ ≥ 3 and

�n′ − 1	z0 ≤M ≤ n′z0�

Notice that the latter condition is possible only if x0 + y0 ≤M .
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Let �R ∈ �s be such that

p��R	 =M − �n′ − 1	z0 = z1 and
M

n′
�Py1 =M − �n′ − 1	y0�

Notice that M/n′ ≤ z0 implies that z1 =M − �n′ − 1	z0 ≤M/n′. Therefore,

y1 =M − �n′ − 1	y0 < M − �n′ − 1	z0 = z1 ≤ M

n′
�

Define R0 = �R0� � � � � R0︸ ︷︷ ︸
�n′−1	−times

� R0� � � � � R0� �R	 ∈ �n
m. To show that ��R0	 =

�z0� � � � � z0︸ ︷︷ ︸
�n′−1	−times

� 0� � � � � 0� z1	, suppose first that

��R0	 = �t1� � � � � t1� t2� � � � � t2� t3	� (3.18)

with t2 > 0: Since

��R0� � � � � R0� R
0� � � � � R0� R0	 = �M/n′� � � � �M/n′� 0� � � � � 0�M/n′	�

(3.19)
we have that �n�R0	 = t3�RM/n′, which implies

M − �n′ − 1	y0 < t3 ≤ M

n′
� (3.20)

But the existence of the allocation �t ′1� � � � � t ′1� 0� � � � � 0� t3	 and Eq. (3.18)
imply that ��R0	 /∈ E�R0	. To see this, first note that 0P0t2. Moreover,
Eq. (3.20) implies M/n′ ≤ t ′1 ≤ y0. Therefore, since t1 < t ′1 ≤ y0, Lemmas 1
and 2 imply that t ′1R0t1, contradicting the efficiency of �.

Now assume that

��R0	 = �t̂1� � � � � t̂1� 0� � � � � 0� t̂3	 (3.21)

and t̂3 �= z1 = M − �n′ − 1	z0. Because of Eq. (3.19), �n�R0	 = t̂3�RM/n′,
which implies

M − �n′ − 1	y0 < t̂3 ≤ M

n′
� (3.22)

But the existence of the allocation �z0� � � �� z0� 0� � � �� 0� z1	 and Eq. (3.21)
imply that ��R0	 /∈ E�R0	. To see this, first notice that z1�Pt̂3 since p��R	 =
z1 and z1 �= t̂3. Moreover, Eq. (3.22) implies M/n′ ≤ t̂1 ≤ y0. Therefore,
since t̂1 ≤ y0, we have that z0I0y0R0 t̂1. Hence, z0R0 t̂1, contradicting the
efficiency of �. Therefore,

��R0	 = �z0� � � �� z0︸ ︷︷ ︸
�n′−1	−times

� 0� � � �� 0� z1	� (3.23)
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To finish with Subcase 1.1, suppose first that y0 < M . Let ε > 0 be such
that �z0 −x0	 > ε > �y0 − z0	. Because �z0 − ε	 ∈ 
x0� z0� and �z0 + ε	 > y0,
and by Lemma 1, we have that �z0 − ε	I0z0 and �z0 + ε	P0z0, since 
x0� y0�
is a maximal interval of indifference for R0. Therefore, the existence of the
allocation

��z0 − ε	� �z0 + ε	� z0� � � �� z0︸ ︷︷ ︸
�n′−3	−times

� 0� � � �� 0� z1	

and Eq. (3.23) imply that ��R0	 /∈ E�R0	, contradicting the efficiency of �.
Now assume that the extreme case y0 = M holds. Then x0 = 0, because
our contradiction hypothesis says that x0 + y0 ≤ M . In this case R0 is such
that xI0y for all x� y ∈ 
0�M�. But then, Lemma 4 follows, since for any
x′0 ∈ �0�M/n	 we have that 
x′0� y0� ⊇ 
x� y�� x′0 + y0 > M , and x′I0y0 for all
x′ ∈ 
x′0� y0�.

Subcase 1.2: n ≥ 3 and z0 satisfies the following inequalities: z0 < M <
2z0. Using arguments similar to the ones used in Subcase 1.1, it is possible
to show that

��R0� R0� R
0� � � �� R0	 = �M/2�M/2� 0� � � �� 0	� (3.24)

Since x0 + y0 ≤ M and y0 > z0 >
M
2 , we have that 0 < y0 − M

2 ≤ M
2 −

x0, which implies that we can find an ε > 0 such that M
2 + ε > y0 and

M
2 − ε > x0. As before, we can assume that M

2 + ε ≤ M because if
y0 = M , the statement follows trivially as in Subcase 1.1. By Lemma 1,
�M2 − ε	I0M/2 and �M2 + ε	P0M/2 hold since 
x0� y0� is a maximal interval
of indifference for R0. Therefore, the existence of ε > 0 such that �M2 −
ε� M2 + ε� 0� � � �� 0	 ∈ Z and Eq. (3.24) imply that ��R0� R0� R

0� � � �� R0	 /∈
E�R0� R0� R

0� � � �� R0	, contradicting the efficiency of �.

Subcase 1.3: n = 2. Remember, we can suppose that M/n < y0 < M .
By strong symmetry,

��R0� R0	 = �M/2�M/2	� (3.25)
We can also find ε > 0 such that y0 < z0 + ε� x0 < z0 − ε� �z0 + ε	P0M/2,
and �z0 − ε	I0M/2. Therefore, the existence of ε > 0 such that �z0 − ε� z0 +
ε	 ∈ Z and Eq. (3.25) imply that ��R0� R0	 /∈ E�R0� R0	, contradicting the
efficiency of �.

Case 2: The proof is omitted, since it follows an argument which is
symmetric to the one used to prove Case 1.

Proof of Theorem 1. Let R0 ∈ �m be arbitrary. We have to show that
R0 is feebly single-plateaued. Consider the following cases.

Case A: Assume that M/n ≤ p�R0	. Then, ��R0	 = 
M/n� p̄�R0	�. To
show that property (a) of Definition 8 holds, suppose first that M/n ≤ x <
y ≤ p�R0	. Then, by Lemma 1(Case 1), yR0x. If yI0x, then, by Lemma 4
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(Case 1), there exists an interval 
x0� y0� ⊇ 
x� y� such that x0 + y0 > M
and x′I0y0 for all x′ ∈ 
x0� y0�. Assume now that x < M/n ≤ y ≤ p�R0	.
Then, by Lemma 2 (Case 1), M/nR0x. Moreover, by Lemma 1 (Case 1),
yR0M/n. Therefore, since R0 is transitive, yR0x. If yI0x, then, by Lemma 4
(Case 1), there exists an interval 
x0� y0� ⊇ 
x� y� such that x0 + y0 > M
and x′I0y0 for all x′ ∈ 
x0� y0�. To show that property (c) of Definition 8
holds, suppose that x ∈ �p�R0	� p̄�R0		. Then, M/n ≤ p�R0	 < x < p̄�R0	,
which implies, by Lemma 1 (Case 1), that xR0p�R0	, and hence xI0�P�R0	.

Case B: Assume that p�R0	 ≤ M/n ≤ p̄�R0	. Then, ��R0	 =

p�R0	� p̄�R0	�. To show that property (c) of Definition 8 holds, first assume
that p�R0	 = M/n, and let x be any share such that p�R0	 < x ≤ p̄�R0	.
By Lemma 1 (Case 1), xR0p�R0	, which implies that xI0p̄�R0	. Then
assume that p�R0	 < M/n ≤ p̄�R0	. By Lemma 2 (Case 1),

M

n
R0p�R0	� (3.26)

First, let x be any share such that p�R0	 < x < M/n ≤ p̄�R0	. By Lemma 1
(Case 2), xR0M/n and by Eq. (3.26), xI0p̄�R0	. Second, let x be any share
such that p�R0	 < M/n < x ≤ p̄�R0	. By Lemma 1 (Case 1), xR0M/n, and
by Eq. (3.26), xI0p̄�R0	.

Case C: Assume that p̄�R0	 ≤M/n. Then, ��R0	 = 
p�R0	�M/n�. The
proof that properties (b) and (c) of Definition 8 hold is symmetrical to that
of Case A, using Case 2 of Lemmas 1, 2 and 4.

The proof of Theorem 1 is completed by exhibiting a rule on the set
of feebly single-plateaued preferences, ��fsp	n, that satisfies the prop-
erties of strategy proofness, efficiency, and strong symmetry. We obtain
such a rule by extending the uniform allocation rule, ψ, on the domain of
single-plateaued preferences, �sp, to this larger domain.

The extended uniform rule on ��fsp	n��, is defined by the following
algorithm: Let R = �R1� � � �� Rn	 ∈ ��fsp	n be any profile of feebly single-
plateaued preferences.

Stage 0. Let �R = ��R1� � � �� �Rn	 ∈ �n
sp be any profile of single-plateaued

preferences such that 
p�Ri	� p̄�Ri	� = 
p��Ri	� p̄��Ri	� for all i ∈ N . Com-
pute ψ��R	 and let S0 be the set of agents receiving an amount in the inte-
rior of a maximal interval of indifference for Ri (the original preference),
denoted by 
x0

i � y
0
i �, such that 
x0

i � y
0
i � �= 
p�Ri	� p̄�Ri	�; that is,

S0 =
{
i ∈ N

∣∣∣∣ ψi��R	 ∈ �x0
i � y

0
i 	� where 
x0

i � y
0
i � is a maximal interval

of indifference for Ri and p�Ri	Pix for all x ∈ 
x0
i � y

0
i �

}
�
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If S0 = �, then define ��R	 = ψ��R	 and stop. If S0 �= �, then select any
profile R1 = �R1

1� � � �� R
1
n	 ∈ ��fsp	n such that R1

i = Ri for all i /∈ S0 and

R1
i =

{
Ri on 
0� y0

i � and y0
i P

1
i x for all x > y0

i if M ≤ ∑
p�Rj	

Ri on 
x0
i �M� and x0

i P
1
i x for all x < x0

i if
∑
p̄�Rj	 ≤M

for all i ∈ S0.8 Go to stage 1.
Now, for k ≥ 1, and given that the algorithm has not stopped yet at stage

k− 1, stage k is as follows.

Stage k. Given the preference profile Rk = �Rk
1 � � � �� R

k
n	 ∈ ��fsp	n, the

outcome of stage k − 1, let �Rk = ��Rk
1 � � � �� �Rk

n	 ∈ �n
sp be any profile of

single-plateaued preferences such that 
p�Rk
i 	� p̄�Rk

i 	� = 
p��Rk
i 	� p̄��Rk

i 	�
for all i ∈ N . Compute ψ��Rk	. If ψ��R	k = ψ��Rk−1	, then define ��R	 =
ψ��Rk	 and stop. Otherwise, let Sk be the set of agents receiving an amount
in the interior of a maximal interval of indifference for Rk

i , denoted by

xki � yki �, such that 
xki � yki � �= 
p�Rk

i 	� p̄�Rk
i 	�; that is,

Sk=
{
i∈N

∣∣∣∣ ψi��Rk	∈�xki �yki 	�where 
xki �yki � is a maximal interval
of indifference for Rk

i and p�Rk
i 	Pk

i x for all x∈
xki �yki �

}
�

If Sk = �, then define ��R	 = ψ��Rk	 and stop. If Sk �= �, then select
any profile Rk+1 = �Rk+1

1 � � � �� Rk+1
n 	 ∈ ��fsp	n such that Rk+1

i = Rk
i for all

i /∈ Sk and

Rk+1
i =

{
Rk
i on 
0� yki � and yki P

k+1
i x for all x > yki if M ≤ ∑

p�Rk
j 	

Rk
i on 
xki �M� and xki P

k+1
i x for all x < xki if

∑
p̄�Rk

j 	 ≤M

for all i ∈ Sk. Go to state k+ 1.
The algorithm stops after at most n stages. This is because the sets Sk

contain only players whose stage-k proposed shares are not maximal.
Hence, for all K ≥ 2,

SK ∩
( K−1⋃

k=0

Sk
)
= ��

Note that the rule � satisfies strategy proofness and strong symmetry. To
show that it satisfies efficiency, let R = �R1� � � �� Rn	 ∈ ��fsp	n be arbitrary
and consider the following cases:

Case 1:
∑
p�Rj	 ≤ M ≤ ∑

p̄�Rj	. Then, efficiency is clearly satis-
fied because ψi��R0	 ∈ 
p�Ri	� p̄�Ri	� for all i ∈ N implies that S0 = �,

8Notice that the efficiency of ψ implies that if M ≤ ∑
p�Rj	, then ψi�R	 ≤ p�Ri	 and thus

y0
i < p�Ri	. Symmetrically, if

∑
p̄�Rj	 ≤ M , then p̄�Ri	 ≤ ψi�R	 and thus x0

i > p̄�Ri	. The
same argument will also apply in all stages.
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and the process stops at stage 0 after setting ��R	 = ψ��R0	. Therefore,
p̄�Ri	Ii�i�R	 for all i ∈ N , which means that ��R	 ∈ E�R	.

Case 2: M ≤ ∑
p�Rj	. Then, it is easy to show that �i�R	 ≤ p�Ri	 for

all i ∈ N . Let S be the subset of agents who are rationed; that is,

S = �i ∈ N � �i�R	 < p�Ri	��

If S = �, then
∑
p�Rj	 = M and �i�R	 = p�Ri	 for all i ∈ N , in which

case ��R	 ∈ E�R	. Therefore, suppose S �= � and assume that ��R	 /∈
E�R	; that is, there exist a feasible allocation r = �r1� � � �� rn	 ∈ Z and
j ∈ N such that

riRi�i�R	 for all i ∈ N

and

rjPj�j�R	� (3.27)

However, Eq. (3.27) and the definition of � imply that j ∈ S and �j�R	 <
rj . Denote by 
xj� yj� the maximal interval of indifference containing �j�R	.
By definition of �, for all i ∈ S,

�i�R	 = �j�R	�

Consider the preference profile �R ∈ ��fsp	n, where �Ri = Ri if i /∈ S and
�Ri = �Rj if i ∈ S. By definition of �,

���R	 = ��R	�

For all i /∈ S��i�R	 = p�Ri	 hold; hence ri ≥ �i��R	, implying that∑
i/∈S ri ≥ ∑

i/∈S �i��R	. Since �j��R	 < rj , there exists k ∈ N such that
�k��R	 > rk, because ���R	 ∈ Z. Then

�k��R	�Ikrk�

Because �k��R	 ∈ 
xj� yj�� rk ∈ 
xj� yj�. Therefore,

M ≥ ∑
i∈S
i �=j

ri + rj +
∑
i/∈S

�i��R	 >
∑
i∈S
i �=j

ri + yj ≥ xj + yj�

a contradiction with the fact that �R satisfies Definition 8.

Case 3: Assume that
∑
p̄�Rj	 ≤ M . Then, an argument symmetric to

the one used in Case (2) proves that ��R	 ∈ E�R	.
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4. CONCLUDING REMARKS

We close with two remarks. First, we show how to derive a slightly weaker
version of the result of Ching and Serizawa (1998) as an implication of our
Theorem 1. While we have considered M as exogenous data, they formulate
the division problem for all possible values of M by letting rules depend
not only on preferences profiles, but also on all possible amounts of the
good to be allocated. This distinction has important consequences for the
maximality problem, since their approach implies that preferences must
be defined over all positive shares, and consequently the same domain of
preferences must be maximal for all values of M , while we search for a
maximal domain of preferences (on 
0�M�) for each value M . To formulate
the division problem in their setting, assume now that every agent i ∈ N
has a continuous preference ordering over the interval �+, and denote by
��∞	 the set of all of these preference orderings.

A rule on � n ⊆ ��∞	n and �++ is a function �∞ � � n × �++ −→ �n
+

such that
∑
�∞
i �R�M	 =M for all �R�M	 ∈ � n × �++.

Consider the natural extensions of strategy proofness, efficiency, symme-
try, and strong symmetry to this new setting, where rules are defined on
� n and �++.9 Denote them by sp�∞	� eff �∞	� sy�∞	, and ssy�∞	.

The following definition adapts our concept of maximal domain of pref-
erences to their setting.

Definition 11. A set �m�∞	 of preferences is a maximal (infinite)
domain for a list of properties if (1) �m�∞	 ⊆ ��∞	, (2) there exists a
rule on �m�∞	n and �++ satisfying the properties, and (3) there is no
rule on ��∞	n and �++ satisfying the same properties and such that
�m�∞	���∞	 ⊆ ��∞	.

Ching and Serizawa (1998) prove that the set of single-plateaued
preferences is the unique maximal (infinite) domain including single-
peaked preferences for sp�∞	� eff �∞	, and sy�∞	. Theorem 2 identifies
the single-plateaued domain using the strong version of symmetry.10

Theorem 2. The set of single-plateaued preferences, �sp�∞	, is the
unique maximal (infinite) domain including single-peaked preferences for
sp�∞	� eff �∞	, and ssy�∞	.

Proof. Let �a�∞	 be a domain on which there is a rule �∞ on
�a�∞	n and �++ satisfying sp�∞	� eff �∞	, and ssy�∞	. Assume also

9This means that in Definitions 1, 2, and 3 we have to replace the expression “for all
R ∈ � n” with the expression “for all �R�M	 ∈ � n × �++.”

10It is an open question whether the maximal domain identified in Theorem 1 becomes
larger if we substitute strong symmetry for symmetry.
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that �s�∞	 ⊆ �a�∞	. Given M , denote by �fsp�M	 the set of feebly
single-plateaued preferences and by Z�M	 the set of allocations. Then,
for each M ∈ �++, the rule �M � �a�M	n −→ Z�M	 satisfies strat-
egy proofness, efficiency, and strong symmetry (where �a�M	 is the set
of preferences on 
0�M� obtained by restricting to 
0�M� all prefer-
ences in �a�∞	) after setting �M�R	 = �∞�R�M	. Then, by Theorem 1,
�a�M	 = �fsp�M	 for every M ∈ �++. Since this is true for every M , it
follows that �a�∞	 = ⋂

M>0 �fsp�M	. Finally, one sees immediately that
�sp�∞	 = ⋂

M>0 �fsp�M	. Hence �a�∞	 = �sp�∞	.
Second, the interval ��Ri	 is intimately related with “option” sets, where

given a rule � on � n and a preference Ri ∈ � , we define the set of options
left open to the other agents by i declaring Ri at � as

σ��Ri	 = �x ∈ 
0�M� � ∃R−i ∈ � n−1 such that �i�Ri�R−i	 = x��
This is not surprising, since option sets also play a fundamental role in
describing maximal domains in voting environments. The main two ideas
are the following. Given a preference Ri, alternatives at the left (right)
of the top plateau and outside the option set have to be worse than the
smallest (largest) alternative in the option set. Moreover, the preference Ri

has to be single-plateaued on the option set.
It is easy to show here that, given a preference Ri ∈ �fsp and a strategy-

proof, efficient, and strongly symmetric rule on ��fsp	n, the relationship
between ��Ri	 and σ��Ri	 is as follows. Suppose that Ri is such that M/n
does not belong to an indifference interval; then ��Ri	 = σ��Ri	. How-
ever, if M/n belongs to an indifference interval, then σ��Ri	 = ��Ri	 ∪

x0� y0�, where 
x0� y0� is the maximal interval of indifference for Ri that
contains M/n.
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