
Continuous QoS-compliant Orchestration
in the Cloud-Edge Continuum⋆

Giuseppe Bisicchia1∗, Stefano Forti1, Ernesto Pimentel2, and Antonio Brogi1

1 Department of Computer Science, University of Pisa, Pisa, Italy
2 ITIS Software, University of Málaga, Málaga, Spain

* Corresponding author: giuseppe.bisicchia@phd.unipi.it

Abstract. The problem of managing multi-service applications on top of Cloud-
Edge networks in a QoS-aware manner has been thoroughly studied in recent
years from a decision-making perspective. However, only a few studies addressed
the problem of actively enforcing such decisions while orchestrating multi-service
applications and considering infrastructure and application variations. In this ar-
ticle, we propose a next-gen orchestrator prototype based on Docker to achieve
the continuous and QoS-compliant management of multiservice applications on
top of geographically distributed Cloud-Edge resources, in continuity with CI/CD
pipelines and infrastructure monitoring tools. Finally, we assess our proposal over
a geographically distributed testbed across Italy.

Keywords: Cloud-Edge continuum · Multiservice applications · Continuous rea-
soning · Continuous management · Application orchestration.

1 Introduction

To support the growth of the Internet of Things (IoT) devices, new infrastructural archi-
tectures have been proposed, relying on computing, storage and, networking resources
along the so-called Cloud-Edge continuum [34]. Most of them – e.g., Fog, Edge, Mist
computing [23,29] – are based on the idea of employing computational capabilities
closer to application end-users or, more generally, to data sources. Such a continuum is
characterised by its high dynamicity, device/connection heterogeneity, and availability
of resources [28].

In contrast with the Cloud paradigm, the Cloud-Edge continuum can better sup-
port the deployment of next-gen IoT applications, usually featuring strict run-time con-
straints on, for instance, required IoT devices, latencies, and bandwidth availability
(e.g., virtual reality, remote surgery, online gaming) [2]. Indeed, such applications are
developed in the form of (possibly) hundreds interacting microservices, each of them

⋆ Copyright © 2022 for this paper by its authors. Use permitted under Creative Commons Li-
cense Attribution 4.0 International (CC BY 4.0). Work partly supported by projects: Energy-
aware management of software applications in Cloud-IoT ecosystems (RIC2021PON_A18),
funded with ESF REACT-EU resources by the Italian Ministry of University and Research
through the PON Ricerca e Innovazione 2014–20; O. Carlini Scholarships 2020 funded by the
GARR Consortium; Including people in smart city applications (PID2021-125527NB-I00),
funded by the Spanish Ministry of Science and Innovation.

ar
X

iv
:2

31
0.

02
98

5v
1

 [
cs

.S
E

]
 4

 O
ct

 2
02

3

2 G. Bisicchia et al.

with its own peculiar requirements. As Cloud-Edge resources, also modern applica-
tions rapidly evolve over time, being continuously and collaboratively developed and
released through automated tools in the Continuous Integration/Continuous Deploy-
ment (CI/CD) pipelines [4].

In this context, much literature focused on determining the best QoS- and context-
aware placements3 of multiservice IoT applications to Cloud-Edge infrastructures, by
mainly exploiting search-based and mathematical programming solutions, e.g., [6],
[15], [25], and [21]. However, even if the compelling need for QoS-aware method-
ologies to place and manage application services onto Cloud-Edge infrastructure effi-
ciently is evident [30,33,9,32], most existing proposals only referred to simulated envi-
ronments due to the lack of orchestration platforms capable of monitoring the needed
QoS attributes, and to limited availability of Cloud-Edge testbeds [27]. Particularly, the
problem of designing platforms and methodologies for the orchestration and manage-
ment of multiservice applications in a Cloud-Edge setting is a challenging one, having
to deal with the scale and dynamicity of Cloud-Edge networks and of next-gen applica-
tions, but has only been marginally addressed.

In light of these needs, new solutions to support the QoS-aware orchestration and
management of next-gen multiservice distributed applications suited for Cloud-Edge
infrastructures could bring several benefits. To the best of our knowledge, none of the
most popular orchestrators for managing digital infrastructures and services (e.g., Docker
Swarm, Kubernetes) supports a continuous (i.e., incremental and differential) decision-
making process that implements a scalable, QoS- and context-aware orchestration of
microservices, ensuring suitable service placement and deployment on top of highly dy-
namic infrastructures, in continuity with the CI/CD pipeline and always (re-)considering
the current infrastructure conditions.

In this article, we design and develop a next-gen prototype orchestrator4, FogArm,
to achieve the continuous and QoS-compliant management of multiservice applications
on geographically distributed Cloud-Edge networks, in continuity with CI/CD pipelines
and infrastructure monitoring tools. We also assess the performance of our orchestrator
over a real-world, geographically distributed testbed.

As shown in Fig. 1, FogArm, strictly interacts with a monitoring tool (FogMon in
our case [12]), and with FogBrainX [11], a declarative continuous reasoning5 engine
to make informed service placement and migration decisions for next-gen multiservice
applications. FogBrainX, through continuous (i.e., incremental, differential) reasoning,
provably reduces the time needed to make management decisions when only part of run-
ning application deployment is affected by changes in the Cloud-Edge infrastructures

3 A placement maps each managed microservice to a node of the infrastructure, in such a way
all the application’s QoS requirements are satisfied.

4 Freely available at: https://github.com/di-unipi-socc/FogArm
5 By mainly considering the migration of services suffering due to such changes in the infras-

tructure or in the application, continuous reasoning, permits, on one hand, scaling to larger
sizes of the placement problem by incrementally solving smaller instances of such a problem,
thus acting as a booster for existing placement strategies and reducing the time needed to make
informed management decisions. On the other hand, it can reduce the number of management
operations needed to adapt the current deployment to the new infrastructure conditions, by
avoiding unnecessary service migrations.

Continuous QoS-compliant Orchestration in the Cloud-Edge Continuum 3

(e.g., crash of a node hosting a service, degraded network QoS) or when the application
itself changes (e.g., changed application requirements, addition or removal of applica-
tion services).

management
decisions

acting

FogArmcoding

testing

integrating Cloud-IoT
infrastructure

Agile software
development

managing

</>

X

Fig. 1. Bird’s-eye view of FogArm.

To the best of our knowledge, FogArm represents a first complete prototype of a
next-gen orchestrator for the continuous QoS-compliant management of multiservice
applications on top of geographically distributed Cloud-Edge infrastructures.

The rest of this article is organised as follows. Sect. 2 briefly presents the main
peculiarities of the tools exploited by FogArm, viz., FogMon (Sect. 2.1) and FogBrainX
(Sect. 2.2). Then, Sect. 3 discusses the architecture and behaviour of FogArm. Sect. 4
illustrates the assessment of FogArm over a real Cloud-Edge testbed. Finally, Sect.
5 briefly discuss related work and Sect. 6 concludes the article by highlighting some
possible directions for future work.

2 Background

In this section, we briefly present FogMon [5] (Sect. 2.1) and FogBrainX [11] (Sect. 2.2)
that are integrated into FogArm to equip it with monitoring and reasoning capabilities,
respectively.

2.1 FogMon: Lightweight Infrastructure Monitoring

FogMon is a TRL5 C++, distributed monitoring tool targeting Cloud-Edge computing
settings6. FogMon measures and statistically aggregates node capabilities (viz., CPU,
RAM and HDD) as well as connected and available IoT devices and link QoS (viz.,
latency and bandwidth). It leverages on a self-organising and self-restructuring peer-to-
peer topology, that can run on any TCP/IP network, based on a two-tier Leader-Follower
architecture and gossiping protocols [17] for communicating among peers.

6 Available at https://github.com/di-unipi-socc/FogMon.

4 G. Bisicchia et al.

Follower agents have the task of monitoring the capabilities on their associated
node. They are divided into groups, each group assigned to a specific Leader.

Leaders perform all the tasks of a Follower and periodically aggregate data gathered
by the Followers in their group. Furthermore, through gossiping, Leaders share among
them the aggregated data collected from their Followers. Moreover, periodically, Lead-
ers publish on a common endpoint a report containing all the gathered information both
from their Followers and the other Leaders. The most recent report received is published
as the current global report on the monitored infrastructure. The published reports and
the communication between peers exploit JSON messages.

Leaders, also compute estimates of bandwidth and latency between Followers be-
longing to distinct groups. Indeed, Followers inside the same groups directly measure
the link performance among them, but to avoid network congestions due to the expo-
nential explosion of possible links between peers, QoS parameters between Followers
in different groups are only estimated and not directly measured. In detail, Followers
directly measure the network parameters only among Followers in the same group and
with their Leader. Furthermore, Leaders directly measure the link performance among
them. Thus, the QoS of a link between two Followers in a different group is estimated
by composing the measurements between each Follower and its Leader and between
the two Leaders.

Peers self-organise into an overlay peer-to-peer network constructed upon a prox-
imity criterion based on latency distances among nodes. Indeed, any new node joins as
a Follower and eventually selects its own Leader the one with the minimum measured
latency. Periodically, during its activity, or after a failure, a node performs this proce-
dure again to find the best suitable Leader. This approach is designed to face the high
dynamicity of the Cloud-Edge continuum and to continuously adapt to a changing en-
vironment. For the same reason, also the role of Leader and Follower are dynamically
assigned and can vary over time, restructuring the network topology by exploiting the k-
medoids algorithm [26]. Finally, the monitored data are also replicated by each Leader
that, together with the eventual consistency of such data achieved through gossiping,
make FogMon capable of resisting the failure of some Leaders.

FogMon shows a very low footprint in terms both of hardware and bandwidth re-
sources, performing its probing tasks with low overhead. Furthermore, the two-tier peer-
to-peer architecture avoids (e.g., due to node or link failures) a single point of failure as
well as increases the scalability. FogMon is also released as a Docker image, thus being
cross-platform on any Docker-compliant node.

2.2 Declarative Continuous Reasoning in the Cloud-Edge Continuum

FogBrainX [11] is a declarative continuous reasoning engine to make informed service
placement and migration decisions for next-gen multiservice applications in Cloud-
Edge settings. The idea behind the use of continuous reasoning is to mainly consider
the migration of services in need of attention while preserving as much as possible the
placement of the other services.

The continuous reasoning strategy employed by FogBrainX helps in reducing the
time needed to make management decisions while only a part of application deploy-
ment is affected by infrastructural changes (e.g., traffic congestion, node failures) or

Continuous QoS-compliant Orchestration in the Cloud-Edge Continuum 5

triggers by a CI/CD pipeline (e.g., new service, requirements updates). Through con-
tinuous reasoning, we can scale our approach to larger applications and infrastructures
by incrementally solving smaller instances of the placement problem and at the same
time, reducing the number of management operations (e.g., avoiding unnecessary mi-
grations).

FogBrainX reacts to changes in the infrastructure, in the application requirements
and service addition and removal. FogBrainX is designed as a booster for existing place-
ment strategies, being able to adapt to different approaches, improving their perfor-
mance and reducing the size of the considered problem.

When FogBrainX is triggered, it verifies if a placement for an application already
exists, if not, the default placement strategy (e.g., exhaustive search, heuristics) is ap-
plied to find a valid placement. Otherwise, the continuous reasoning methodology is
performed. In this last case, FogBrainX first determines all services that have been
added to the application from the latest commit and the services that have to be mi-
grated (due to infrastructural or requirements changes). Such services are given in input
to the default placement strategy to complete the partial placement of the services that
have not been migrated, finding a new valid placement.

FogBrainX has been successfully applied through simulations over a lifelike small
use case based on real data, and assessed at increasing infrastructure sizes and different
variations rates up to thousands of nodes. It showed a speed-up of 50 to 1000× in terms
of average inferences across different large-scale infrastructure sizes (i.e., from 320 to
1280 nodes).

3 Design & Implementation of FogArm

In this section, we illustrate the architecture and functionalities of FogArm, a next-
generation orchestrator prototype designed to perform continuous and QoS-compliant
management of multi-service applications on top of highly dynamic and geographically
distributed resources such as the Cloud-Edge continuum. Sect. 3.1 discusses the general
component-wise architecture of FogArm. Sect. 3.2 illustrates the run-time behaviour of
our orchestrator, highlighting the interactions of the components through three main
scenarios. Finally, Sect. 3.3 describes the actual implementation of FogArm and its
components.

3.1 Architecture of FogArm

FogArm enables:

– the integration with CI/CD pipelines and infrastructure monitoring tools (e.g., Fog-
Mon [5]),

– the execution of management decisions made by FogBrainX, and
– user interactions via a Web GUI and a Command Line Interface (CLI).

Fig. 2 sketches the overall architecture of FogArm, with the services that enable the
above features. Namely:

6 G. Bisicchia et al.

FogArm Core, which retrieves, in continuity with one or more CI/CD pipelines, the
information about the applications to be managed and the current state of the in-
frastructure, exploited by FogBrainX to determine management decisions. Fog-
Arm then transforms such decisions into executable actions and implements them
through Docker Swarm. It also offers a CLI through which users can interact by re-
questing the execution of actions and/or by monitoring the current state of the man-
aged resources and applications. FogArm Core needs two files for each managed
application, listed in Fig. 3. The standard docker-compose.yml file (Fig. 3a) con-
tains information to configure the application’s services and the requirements.yml
file (Fig. 3b) describes the software, hardware and IoT devices requirements for
each service reported in the docker-compose.yml file, as well as latency and band-
width to other services. These requirements are used to automatically generate a
suitable Prolog file exploited by FogBrainX as application specification.

Fig. 2. Architecture of FogArm.

FogWatcher, which is a daemon service that monitors whether updates have occurred
in the specification of managed applications or the status of the infrastructure. It
checks whether the desired and current application placements do not match so as
to trigger FogArm Core to enforce appropriate actions. Last, it checks user triggers
coming from the Web GUI (e.g., updates on services’ requirements). By, automat-
ically triggering FogArm Core, FogWatcher automatically guarantees the require-
ments of each application at run-time, without the need for human intervention.
Thus, FogWatcher allows closing the management loop of an application in an au-
tomated cycle starting from the CI/CD pipeline, passing through its deployment
and any necessary migrations in the presence of infrastructural or application re-
quirements changes.

Monitoring Tool, which takes care of retrieving the current state of all nodes and links
in the considered infrastructure. This information is converted into a series of Pro-

Continuous QoS-compliant Orchestration in the Cloud-Edge Continuum 7

version: "3.3"

services:
web:
image: localhost:5000/stackdemo
build: .
ports:
- "8000:8000"

redis:
image: redis:alpine

(a) docker-compose.yml

services:
redis:
hardware: 6
links:

web:
bandwidth: 20
latency: 150

web:
hardware: 3
links:

redis:
bandwidth: 50
latency: 500

(b) requirements.yml

Fig. 3. The application specification files.

log facts ready to be used by FogBrainX. During our experiments, we employed
the FogMon monitoring tool (Sect. 2.1). An adapter downloads the latest available
FogMon report and translates it into a set of Prolog facts monitored by FogWatcher.

Web GUI, which shows all updates on the status of the infrastructure, applications’
requirements, and their current and desired placement (Fig. 4). It allows users to
monitor the global or individual status of nodes and links, and to read and modify
application specifications. It also offers the possibility to observe on which node the
various services are currently placed and to manually request (and possibly actuate)
the new placement for a given application, or to undeploy an application.

FogArm operates autonomically by constantly monitoring the state of the infras-
tructure, the managed applications and their placements. It fully exploits the incremen-
tal approach of continuous reasoning by reducing management operations only to those
services in need of attention, as identified by FogBrainX. Furthermore, FogArm is ca-
pable of simultaneously orchestrating several different multi-service applications on
highly dynamic and geographically distributed infrastructures.

Note that the choice of the CI/CD pipelines and the monitoring tools are completely
orthogonal and transparent to FogArm. Indeed, FogWatcher periodically checks if the
information about the requirements of the applications and the state of the infrastructure
has changed compared to the previous iteration and triggers FogArm Core when needed,
independently from the entity (tool or human) that updates those state information.

FogArm leverages Docker Swarm at a low level to be able to focus on the innovative
aspects of the orchestration process, delegating the basic mechanisms (e.g., deployment
and allocation of resources) to a widely used and validated tool. We chose Docker
Swarm for two main reasons. On one hand, it relies on Docker containers to feature
flexibility and ease of use, since Docker containers are the de facto standard to deploy

8 G. Bisicchia et al.

(a) Application page.

(b) Node page.

Fig. 4. The WebGUI.

microservices. On the other hand, it offers all the low-level features needed for the
management of clusters and the deployment of services.

Overall, FogArm translates FogBrainX’s decisions into actions on containers by
exploiting Docker’s constraints 7. Constraints, enable specifying that a given service
must necessarily be deployed to a specific node (by its hostname). Note that when
a constraint is specified (or modified), if the service is on the wrong node, Docker
automatically takes care of migrating from the node where the service is located to the
one requested in the constraint.

7 https://docs.docker.com/engine/reference/commandline/service_update/

Continuous QoS-compliant Orchestration in the Cloud-Edge Continuum 9

Thus, exploiting FogBrainX and Docker, FogArm performs a complete monitor-
analyse-plan-execute flow through the continuous monitoring of services’ requirements
and infrastructure status and, the interaction with Docker in Swarm mode, as depicted
in Fig. 1.

3.2 FogArm’s Behaviour

In this section, we discuss and highlight the behaviour of FogArm, in terms of the
interactions of its components, illustrating three main scenarios viz., changes from the
CI/CD pipeline, infrastructure changes and triggers from the Web GUI. These scenarios
are sketched in Fig. 5.

FogWatcher FogArm Core Docker

Compute
new
placement

Trigger
Docker to
enable
new
placement

</>

WebGUI

Remote
Repo

Developer

Fig. 5. FogArm’s UML interaction diagram.

Changes from the CI/CD pipeline One of the most common scenarios working with
FogArm is when a new commit is received through the CI/CD pipeline. In this case,
the remote application repository is updated with the new code and application require-
ments might change. Periodically, FogWatcher checks whether changes have occurred
in each managed repository. When a change is spotted, FogWatcher triggers FogArm
Core. FogArm Core collects the application requirements from the local repository (i.e.,
the docker-compose.yml and the requirements.yml files) and the latest infrastruc-
ture report. This information is translated into a set of Prolog facts that are given as
input to FogBrainX. Eventually, FogBrainX (possibly) outputs a new placement. Then
FogArm Core, computes the differences between the current placement and the new one
generated by FogBrainX. If the two differ, FogArm generates a set of Docker commands
to reconcile the actual placement with the desired one.

10 G. Bisicchia et al.

Infrastructure Changes Similarly, if a change occurred on the infrastructure resources,
FogMon publish it in the new report. Periodically, FogWatcher verifies whether some
changes have occurred in the infrastructure and triggers FogArm Core. The same pro-
cedure of the previous case is then performed, ending with the (possible) new sets of
docker commands to reconcile the current placement into the new one determined by
FogBrainX.

Triggers from the Web GUI Finally, the last main source of updates is the Web GUI.
Indeed users, besides monitoring the status of the infrastructure and the managed appli-
cation and services, can also change the docker-compose.yml and requirements.yml
files through the GUI. FogWatcher periodically checks if new updates are published by
the Web GUI. If so, first the updates are saved in the local repository and then Fog-
Watcher triggers FogArm Core as in the CI/CD pipeline scenario.

3.3 FogArm’s Implementation

In the following paragraphs, we briefly discuss the design and implementation of Fog-
Arm components. Sect. 3.3 details the technological aspects of the backend compo-
nents, while Sect. 3.3 illustrates the frontend.

BackEnd

FogArm Core is the central component of the whole FogArm architecture. It is imple-
mented in Python3 exploiting the argparse library to implement the CLI, the Docker
SDK for Python to interact with Docker and the PySwip library, which together with a
Prolog script, makes possible the interaction with FogBrainX. The main task of Fog-
Arm Core is to collect all the necessary information on the applications and the state of
the infrastructure, consult FogBrainX and actually apply its management decisions.

The main way to interact with FogArm Core, and more generally with FogArm, is
through its CLI. Through it, it is possible to add, remove and manage applications, as
well as interact with FogWatcher and consult the status of managed applications and
their placement.

More in detail, the main CLI commands of FogArm are:

add which deploys, for the first time, the application specified in the path argument, if
entered, otherwise in the current folder.

exec which performs a reasoning step, of one application if specified, otherwise for
all the applications, by verifying if the current placement is still valid and possibly
carrying out the necessary operations to add, remove or migrate the application’s
services.

rm which removes one or all applications from the infrastructure.
status For each application it displays the desired placement, the current one and

checks if the two match or not.
watcher which enables starting, stopping, or restarting FogWatcher and displaying if

it is running or not.

Continuous QoS-compliant Orchestration in the Cloud-Edge Continuum 11

As for add and exec, the two commands perform rather similar functions, with
the only difference that in the case of add, being the first deployment, some additional
information is stored by the system for future use and in the case of exec it is possible
to specify the application whose reasoning process the user wants to execute also by its
name (or it is also possible to request the execution of all applications).

Once the application to orchestrate has been identified, by path or name, and after
any additional information has been saved, FogArm Core proceeds by verifying the
existence of docker-compose.yml and the possible existence of requirements.yml8.
Once the data have been retrieved, this information is used to generate a series of Prolog
facts representing the application specifications.

These facts together with the Prolog file containing the updated status of the infras-
tructure are passed to FogBrainX, which checks whether a deployment already exists.
If it exists, FogBrainX checks whether this is still valid, if not or if the deployment
does not exist, FogBrainX is asked to generate a new placement, possibly by applying
continuous reasoning.

Three lists are then generated from the computed deployment, comparing the place-
ment obtained with the previous one. The services to be deployed (together with the
relative chosen node, i.e., those services that are in the new placement but not in the old
one), those to be removed (i.e., those services that are in the old placement but not in
the new one) and those to be migrated from one node to another (i.e., those services that
are in both placements but are assigned to different nodes). If a previous deployment
does not yet exist, all services are considered to be added.

Once these three lists have been defined, FogArm Core takes care of actually exe-
cuting FogBrainX’s decisions by interacting with the Docker CLI.

As aforementioned, FogArm Core translates FogBrainX’s decisions into actions on
containers by exploiting Docker’s constraints. Through constraints, it is possible to
specify that a given service must necessarily be deployed in a specific node (specified
in our case by the node’s hostname). If, for instance, the service is deployed for the first
time, the constraint is simply added through a suitable instantiation of the command

docker service update --constraint-add node.hostname==NodeId AppId_ServiceId

where NodeId is the unique hostname of that node and AppId_ServiceId is composed
by the identifiers of the application (i.e., AppId) and of the service (i.e., ServiceId).

Otherwise, if the service was already deployed, but FogBrainX migrates the service
to another node, the previous constraint is first removed and then a new one is added
through the sequence of commands

docker service update --constraint-rm node.hostname==OldNodeId AppId_SId
docker service update --constraint-add node.hostname==NewNodeId AppId_SId

8 With requirements.yml it possible to “annotate" each service reported in the
docker-compose.yml file with quality and quantity requirements that the service needs to
be able to correctly perform its tasks. The conversion into a set of Prolog facts is then a simple
1-to-1 mapping.

12 G. Bisicchia et al.

where OldNodeId is the unique hostname of the node where the service is already
placed and NewNodeId is the unique hostname of the new node where to deploy the
service SId of the application AppId.

When a constraint is specified (or updated), if the service is on the wrong node,
Docker automatically takes care of migrating such service from the node where it is
located to the one specified by the constraint. Similarly, it is possible to request the
complete removal of a service through

docker service rm AppId_ServiceId

In this way, FogArm Core can manage the deployment and migrations of multi-service
applications. When the removal of an entire application is requested through rm, the
Docker CLI is once again exploited to remove all the services of a given application,
through

docker stack rm AppId

If instead, the status is requested, the current placement of all managed applications
is extracted and, application by application it is compared with the one determined by
FogBrainX.

Finally, through the watcher command it is possible to interact with FogWatcher
being able to start, stop, or restart it on request.

FogWatcher is developed in Python3 exploiting the timeloop library to implement peri-
odic checks. The main task of FogWatcher is to periodically monitor whether updates
have occurred in the infrastructure or the specifications of the applications managed,
triggering FogArm Core to perform the actions necessary to guarantee the desired QoS
for each service, without the need for human intervention.

FogWatcher periodically monitors, with independent and customisable periods9,
four possible sources that may require FogArm Core activation:

The CI/CD pipeline For each managed app, it is periodically checked whether the
docker-compose.yml or the requirements.yml files have changed. For each of the
files, a hash (exploiting the HASH256 function) of its content is computed. If the final
hash does not correspond to the previous one, then a change has happened and FogArm
Core is invoked to carry out a reasoning step through the exec command. In this way,
FogArm Core, by invoking FogBrainX, checks for the application whether the required
requirements are still satisfied after the specification change and, if not, carries out the
necessary operations to add, remove and migrate the services.

The infrastructure Furthermore, also the file containing the updated status of the in-
frastructure is monitored. FogWatcher takes care of calculating the hash of that file and
if the calculated hash does not correspond to the previous one, then for all the managed
applications it is required to carry out a reasoning step.

9 Check periods, as well as other parameters of FogArm’s components, can be customised
through a global configuration file, updatable on the fly.

Continuous QoS-compliant Orchestration in the Cloud-Edge Continuum 13

The current placement FogWatcher also periodically checks, for each application,
whether the desired placement and the current one correspond. If this is not the case,
then the deployment computed by FogBrainX is removed and FogArm Core is invoked.
Indeed, in a real system it may happen that after a node or a Docker error, or if there has
been a manual intervention on one or more services, the current placement no longer
corresponds to that requested by FogBrainX.

Live changes Finally, FogWatcher regularly queries the Web GUI to check if the user
has requested any operation, e.g., removal of an application, execution of a reasoning
step, update of the compose or requirements file, in which case the request is fulfilled
and eventually a reasoning step is carried out.

Integration with FogMon In our implementation, FogMon allows FogArm to be always
updated on the state of the infrastructure and to make informed management decisions
to comply with application requirements.

After installing a FogMon agent in each node of the infrastructure, such a tool peri-
odically reports the updated status of the infrastructure in the form of a JSON file. Such
monitoring data is made available through a REST API taken from [13].

Then FogArm takes care to periodically consult that endpoint and obtain the latest
available report. It checks whether the report obtained is different from the previous
one10 (by comparing the hash of the two reports). If so, the JSON report is mapped into
a set of Prolog facts and the input file is updated.

It will be the task of FogWatcher to note that an infrastructural change has happened
and to invoke FogArm Core to verify if service management operations are needed.

FrontEnd

The Web GUI It is the main interface with which the user can interact with FogArm. On
one hand, the Web GUI offers a higher-level control of applications than the CLI. On
the other hand, it enables to simply have an overall view of the entire system at a glance,
with the possibility of paying close attention to the characteristics and properties of a
single application or specific node and/or link.

The Web GUI is therefore designed to be primarily a monitoring interface with
which to observe the actual status and the evolution of the system and be able to pay
attention to detailed aspects, but which still offers the main functions for interacting
with FogArm and its managed applications.

The Web GUI is implemented through Node-RED11, a flow-based development tool
built on Node.js, and it is divided into two main pages, Application and Nodes. The
former focuses on the global status of applications and services, with the ability to

10 Note that, thanks to the sensitivity configurable parameter (i.e., threshold relative difference
on average and variance to send differential reports) of the FogMon agents, only variations
that exceed the threshold level are reported. Thus, small fluctuations will not result in changes
in the report. Hence, a change in the report implies the presence of at least one significant
infrastructural change, which therefore needs attention.

11 https://nodered.org/

14 G. Bisicchia et al.

analyse a single application. The latter allows users to observe the overall state of the
infrastructure and study a single node and/or a single link.

We illustrate in more detail such two views of the Web GUI:

Applications The Applications page (Fig. 4b), allows the users to monitor the overall
state of the managed applications as well as analyse in detail the state of a particu-
lar application and interact with it, also offering the possibility to view and update its
docker-compose.yml and requirements.yml files.

The page is divided into five panels.

Statistics It allows having some global statistics on the current state of managed ap-
plications. In detail, it displays the total number of applications and services currently
deployed as well as how the number of deployed services has varied over time.

Overview This panel displays which applications are currently deployed and the current
placement of each service belonging to those applications (i.e., on which node each
service is deployed). It also reports when the last update was received and allows one
to select a particular application to focus on.

docker-compose.yml & requirements.yml They show the last known state of the two
related files of the application selected in the previous panel and offer the possibility
to modify them live and send the changes to be implemented. Sending a change also
automatically activates the execution of a reasoning step. If, on the other hand, a change
has been applied but not yet sent, with a refresh button it is possible to return to the
unmodified version. Cancel instead deletes all the contents allowing to rewrite the file
from scratch.

Application’s Detail Shows various information about the application selected in the
Overview panel. In particular, it displays when the last update for that particular ap-
plication was received, the uptime and, for each service of that application, the desired
and actual placement. A LED allows checking at a glance whether the two placements
match (green light) or if they differ (red light). It is also possible to request the execution
of a reasoning step for that application or remove it from the infrastructure.

Nodes The Nodes page (Fig. 4b) allows monitoring the current state of the whole in-
frastructure, offering also the users the possibility to focus their analysis on a specific
node and/or link.

The Nodes page is divided into five panels.

Overview Displays when it received the last update, the current number of available
nodes and the evolution of that number over time. Allows also the users to select a par-
ticular node (among all the nodes of the infrastructure, not only the currently available
ones) and/or link, specifying the two endpoints of the link.

Node’s Detail Shows if the selected node is online and its last knows status, in terms of
available free hardware (i.e., RAM) and its evolution over time, and the available IoT
devices and software (if any).

Continuous QoS-compliant Orchestration in the Cloud-Edge Continuum 15

Link’s Detail Displays if the selected link is actually available and the last known value
of the available bandwidth and latency.

Link’s History Allows the users to view how the bandwidth and latency of the selected
link are changed over time.

Applications Shows when the last updates for the applications are received and the
current placement of the whole available services of all the deployed applications. If a
node is selected, it also displays which services are deployed on that specific node (if
any).

4 Experimental Assessment

In this section, we first illustrate the experimental assessment12 of FogArm at varying
infrastructure sizes and number of applications over a real-world testbed (Sect. 4.1).
We then show how continuous reasoning can boost decision-making and application
management times in a testbed made of 60 nodes and running 400 services (Sect. 4.2).

In each experiment, the infrastructure is built and configured through an automatic
script to guarantee the reproducibility of the procedure and results.

4.1 Scalability assessment

We perform a scalability assessment of FogArm to evaluate how scaling the size of the
infrastructure and the number of managed applications and services might affect the
orchestrators’ performance.

Experimental Setup. The assessment is divided into three experiments at increasing
size of the infrastructure (viz. 15, 30 and 60 nodes) and number of application13 replicas
(viz. 10, 25 and 50). Each composed of 8 services (viz. a total of 80, 200 and 400 ser-
vices, respectively). Testbeds span 3 regions spread across Italy (viz., Catania, Palermo
and Turin), with nodes evenly distributed among each region. Each node hosts a Fog-
Mon agent to monitor available resources14. We use replicas of the “Docker Swarm

12 We run all experiments over Virtual Machines (VMs) featuring 1 vCPU and 6GB of RAM,
and running Ubuntu 20.04.3 LTS, provided by the GARR Consortium and spread across 3
regions (viz., Catania, Palermo and Turin). Nodes run Python 3.8.10, Docker 20.10.12, docker-
compose 1.25.0 and SWI-Prolog 8.4.2 to support the correct execution of FogBrainX and
FogArm. A node in the Catania region is chosen as the leader from which the orchestration
process is actually executed, interacting with the FogArm CLI and the Web GUI.

13 Available at: https://github.com/michal-bures/docker-swarm-demo
14 In detail, whenever a new FogMon report is received, we artificially reduce the available node’s

RAM of a value picked at random from a Gaussian distribution centred at 750MB with a
standard deviation of 375MB. For each link, we artificially increase the latency by adding a
random value from a Gaussian distribution centred at 50 ms and with a standard deviation of
25 ms. Similarly, the bandwidth is artificially reduced by a value picked at random from a
Gaussian distribution centred at 12.5% of the available bandwidth and a standard deviation of
6.25%. Last, nodes and links have a failure probability of 5%.

16 G. Bisicchia et al.

Demo" application15, composed of 8 services (Fig. 6). For each replica, we simulate
changes through the CI/CD pipeline, by randomly producing a new commit and/or up-
dated service requirements16. Finally, we run and monitor experiments for 5 hours after
the initial deployment of all applications.

Fig. 6. Example application.

(a) Average times. (b) Average migrations.

Fig. 7. Results for the scalability assessment.

15 https://github.com/michal-bures/docker-swarm-demo
16 Each service can require from 250MB to 750MB of available RAM. For each service-to-

service communication a latency from 200ms to 750ms and an available bandwidth from
10Mbits/s to 30Mbits/s. Furthermore, each service has a different probability, from 75% to
100%, of being added to the last generated commit, so to also experiment with the addition
and/or removal of services at run-time.

Continuous QoS-compliant Orchestration in the Cloud-Edge Continuum 17

Experimental Results. Fig. 7a illustrates the experimental results in terms of the av-
erage FogArm execution times at increasing sizes of the infrastructure and number of
managed services. Execution times sum up both the time needed by FogBrainX to take
management decisions and by FogArm to actuate such decisions by interacting with
Docker Swarm. Fig. 7b shows the average percentage of migrations per execution step
over the total number of services that could be migrated (i.e., thus excluding from the
considered set of services those that are about to be added or removed).

Execution times (Fig. 7a) increase as the scale of the experiments increases. We
experience an average execution time of 20 seconds when managing 80 services on 15
nodes (i.e., around 250 ms on average for each service). When managing 400 services,
instead we experience an average execution time of 180 seconds (i.e., around 450 ms
per each managed service). We have, then, an increase of less than 2× on the average
execution times, while increasing by 5× the number of services and 4× the number
of nodes. This behaviour relates to the variation of the average amount of required
migrations over the experiments. Indeed, in smaller scenarios, we experience near-to-
zero migrations, while we reach more than 60% average migrations per execution step
in larger scenarios (Fig. 7b).

Overall, we observe an exponential increase both in execution times and migra-
tions. Indeed, as the size of the infrastructure and the number of managed services
increase, more resources are required by FogMon to monitor the infrastructure state
and by Docker to enact management decisions. Additionally, the larger number of man-
aged services leads to a more dynamic system that, therefore, requires more migrations
to maintain its optimal state. When the number of services and nodes increases, the
chances of resource congestion and failures naturally increase and cause more migra-
tions to satisfy application requirements. These results further highlight the need for
efficient resource management strategies that can scale with the size of the infrastruc-
ture and the number of managed services.

4.2 Continuous Reasoning assessment

In this section, we compare the continuous reasoning approach of FogArm against a
version exploiting exhaustive search, i.e., possibly migrating services that are not af-
fected by infrastructure changes or CI/CD triggers.

Experimental Setup. We consider the same settings of the largest scenario of the scala-
bility assessment (i.e. 60 nodes evenly spread in 3 regions across the Italian national ter-
ritory and 50 applications with most 8 services, for an overall number of 400 services).
We also employ the same approach for generating application commits and changing
infrastructure capabilities. Also in this case experiments last 5 hours.

Experimental Results. Fig. 8a compares the average execution times featured by Fog-
Arm exploiting the continuous reasoning and the exhaustive search. The continuous
reasoning strategy allows the orchestrator to save 35 seconds on average (i.e., around
15%) while determining and enforcing a given placement in comparison with the ex-
haustive search. We can relate such improvement with the different number of migra-
tions performed on average by the two strategies. Indeed, the exhaustive search en-
forces, on average, 33% more migrations, increasing also the execution time required to

18 G. Bisicchia et al.

enforce a given placement. Such results can be explained considering that FogBrainX,
and hence FogArm, tries to preserve the current deployment as much as possible. Fog-
Arm, therefore, migrates only those services in need of attention due to infrastructure
changes or CI/CD triggers.

(a) Average times. (b) Average migrations.

Fig. 8. Results for the continuous reasoning assessment.

On the other hand, the exhaustive search does not pay any attention to preserving
the current deployment, limiting itself only to finding a placement among all those ad-
missible and possibly leading to migrating more services than necessary. Overall, the
results indicate that the continuous reasoning strategy is more efficient than the exhaus-
tive search strategy in terms of execution time because it performs fewer migrations on
average. Indeed, the continuous reasoning approach is designed to take into account
and preserve the current deployment as much as possible while minimising the number
of migrations required to achieve the desired placement.

Finally, note that the exhaustive search is not QoS-aware, so we have no guarantees
that the placement found meets the given requirements. FogArm, instead, is designed to
find only QoS-aware placements and to modify such placements when a CI/CD trigger
or an infrastructure change occurs.

5 Related Work

The problem of designing platforms and methodologies for the orchestration and man-
agement of multi-service applications in the Cloud-Edge continuum is a very well-
known problem [9,30,32,33]. The main difficulties are given by the scale, heterogeneity
and diversity of the node’s infrastructures. Another important factor is the high dynam-
icity, in terms of resource capabilities variation (e.g., memory and bandwidth), failures
of nodes and links and, devices or users distribution, with their possible movements
[28]. Additionally, applications are composed of several different and heterogeneous
software components with possible dependencies among them [1].

Continuous QoS-compliant Orchestration in the Cloud-Edge Continuum 19

Addressing these issues, [10] proposes a device-aware, greedy approach to incre-
mentally build service provisioning solutions. The authors divided infrastructure into
two layers (viz., Fog and End devices), with the Fog layers subdivided into two sub-
layers (viz., High Fog and Mist). Considering such structure, the process iteratively
decomposes an application into sub-components and greedily places each component
considering its requirements. The process is repeated until all solution components are
provisioned. With respect to FogArm, in [10] a structural division of the infrastructure
is proposed, while in our work we consider infrastructure as a graph of nodes. Indeed,
we believe that a plain representation fits better the heterogeneity and pervasiveness of
the Cloud-Edge continuum.

Still dividing the Fog level, [31] proposes a hybrid choreography/orchestration hi-
erarchical strategy for service management in Fog environments, dividing the infras-
tructure into three layers (viz., IoT, Fog and Cloud). At the IoT level devices are or-
ganised in virtual clusters supporting the possibility of mobile devices. At such a level
the management devices cooperate among them, in a choreography fashion, offering
low response time and high resilience in presence of a device movement (i.e., shift into
a different virtual cluster). At the Fog level, both strategies are performed depending
on whether the fog device is in the south (i.e., closer to the IoT) or north (i.e., closer
to the Cloud) region. Choreography is performed in the south region, orchestration in
the north region and on the Cloud. The three-level architecture offers higher dynamism
to the lower levels while keeping a global view of the higher levels, in which possible
optimisation is performed. As discussed for [10] also here a structural representation
of the infrastructure is proposed. Furthermore, it is not clear how the services’ require-
ments are managed and checked by their Resource Manager. Finally, no prototypes
are implemented for this work and there is also a lack of experimental results, instead,
we proposed and assessed a fully automatic orchestrator, also gathering experimental
results in an actual infrastructure.

In [22], an orchestration middleware for IoT systems is presented. The orchestrator
features a three-level architecture. Each layer, from the topmost to the bottom, com-
prises, namely, a system description language to describe fog infrastructures and ser-
vices, persistent data storage and a management engine to formulate constraints that
encode system properties and requirements in the form of satisfiability modulo theory
(SMT). Such an engine enables the use of SMT solvers to determine a valid config-
uration at run-time. Despite, the description language proposed is powerful and flexi-
ble it requires a greater effort by the developers with respect to that required by Fog-
Arm in compiling the requirements.yml file and in [22] users are required to compile
also a description of the possible nodes’ templates while in FogArm the management
of the nodes is fully transparent and automated. Finally, in the proposed version only
the nodes’ failures are accounted for, on the contrary, FogArm is capable of managing
nodes, networks and services failures.

Working on Osmotic computing, [8] discusses an orchestration architecture in which
managed IoT applications, deployed in distributed environments, are modelled as a
graph of MicroELements (MELs). A MELs graph models microservices, which im-
plement specific functionalities, as well as microdata, representing information flows
from/to IoT devices. The proposed orchestrators, through a Deep Learning process,

20 G. Bisicchia et al.

generates MELs deployments based on previous experiences and eventually execute
the obtained deployments manifest. However, this work is only a theoretical work so
neither a working prototype nor an experimental assessment is proposed. Furthermore,
using a Deep Learning process usually decreases the explainability of the orchestrator,
making it difficult to understand why a certain management decision was taken. Instead,
the engine of FogArm, FogBrainX, thanks to its declarative nature is explainable and it
is possible to trace all the decision steps performed. A model-driven approach is also
exploited in [24], which proposes an attribute-driven framework for application devel-
opment and service orchestration, assisting developers through the entire development
lifecycle through a set of formal rules.

Exploiting Software Defined Networking, [16] presents a service orchestration mech-
anism to meet the latency and reliability requirements of IoT applications. Through a
target optimisation function, a differentiated task offloading strategy is applied consid-
ering task attributes as well as communication and computation energy consumption
and pre-estimated task offloading costs. Similarly, the problem of the placement of Vir-
tual Network Function is studied in [14], through a multi-objective optimisation prob-
lem model that is converted to a problem which is solved by a Markov approximation
technique.

Moving on to industry tools, the most popular solutions are based on container or-
chestration. In this field, the orchestrator manages the entire lifecycle of a container
ranging from its creation to its destruction or termination and scaling or migrating con-
tainers if needed. Among the most widely used we have Docker in its Swarm mode17

and Kubernetes18, targeting clusters and datacenters. Both solutions do not offer high
awareness of the services’ requirements. Docker Swarm offers a system of constraints
based on the labelling of nodes and services (i.e. placing a service if its labels match
those of the nodes), while Kubernetes allows specifying simple CPU, memory and stor-
age constraints. At the same time, these solutions are carried out manually, thus not
coping with the high dynamism of Cloud-Edge infrastructures.

Finally, Topology and Orchestration Specification for Cloud Applications (TOSCA)
[19] is one of the first and main proposals for standardising the service orchestration in
an extensible and flexible way [3,20]. TOSCA is an open-source language to define an
interoperable model of cloud applications. TOSCA describes the components as well
as the relationship and dependencies between them and their requirements and capabil-
ities, thus enabling portability and automated management. With TOSCA applications
are described as a typed, direct topology graph, representing components as nodes and
the dependencies between them as links. For each component is also possible to de-
scribe its requirements as well as the needed operations and policies.

In [7], the TOSCA standard and the Docker ecosystem are exploited to propose
an orchestration strategy for the management of multi-component applications based
on a TOSCA-based representation. The approach allows specifying software compo-
nents and Docker containers to form an application and automatically deploy and man-
age such applications. With respect to FogArm in this work the management of the
applications is performed in a single machine and not on a distributed infrastructure.

17 https://docs.docker.com/engine/swarm/
18 https://kubernetes.io/

Continuous QoS-compliant Orchestration in the Cloud-Edge Continuum 21

Furthermore, the orchestrator requires already developed management plans and it is
not capable of finding the placement automatically. On the contrary, [18], proposes a
TOSCA-based orchestration tool for automating the process of federating Kubernetes
container clusters even across different cloud providers. However, both the orchestrator
illustrated do not support the connection with a CI/CD pipeline, and thus the modifica-
tion of the applications’ topology or requirements at runtime.

Concluding, to the best of our knowledge, none of the existing orchestration solu-
tions, unlike FogArm, supports continuous reasoning or more generally a continuous
(i.e., incremental and differential) scheduling process that makes QoS- and context-
aware management of microservices, possibly ensuring the optimisation of the allo-
cation of services on highly dynamic infrastructures, in continuity with the CI/CD
pipeline. Furthermore, most existing proposals only referred to simulated environments
due to the lack of orchestration platforms capable of monitoring the needed QoS at-
tributes, and to the limited availability of Cloud-Edge testbeds [27].

FogArm, instead, is capable of autonomously adapting the deployment of the appli-
cation in response to changes to the application specification coming from the CI/CD
pipeline and to variations infrastructural detected through a distributed monitoring tool.
When triggered FogArm applies a continuous reasoning approach, through the inter-
action with FogBrainX. Finally, FogArm is assessed in an actual geographically dis-
tributed infrastructure over the Italian national territory.

6 Conclusions

In this paper, we proposed FogArm, a next-gen orchestrator prototype that performs
fully automated and QoS-compliant continuous management of multiservice applica-
tions on top of highly dynamic and geographically distributed infrastructures.

To perform the orchestration process FogArm interacts with different tools viz.,
FogMon to gather the current status of the infrastructure’s resources, FogBrainX to
exploit its continuous reasoning approach to find a valid placement in a continuous and
scalable way and finally, Docker Swarm to implement the low-level operations through
Docker’s constraints.

FogArm continuously monitors the status of the infrastructure, the application’s re-
quirements and the current deployments searching for changes. When a change occurs,
FogArm verifies through FogBrainX if a new placement is required. If so, FogArm gen-
erates the suitable management operations to accomplish the desired placements and
interacts with Docker to perform the operations.

Through FogArm, developers are required only to define the requirements of each
application’s service. The whole process of deployment and management is fully au-
tomated without any required user action. FogArm works also in continuity with the
CI/CD pipelines, supporting the current iterative and incremental development process.
Additionally, users can interact with FogArm through a CLI or a Web GUI.

Our experiments have shown how FogArm can scale even on high dynamic, ge-
ographically distributed infrastructures with up to 60 nodes spread across Italy while
managing up to 400 services from 50 applications, and continuously interacting with
the CI/CD pipelines. Furthermore, the continuous reasoning methodology proved to

22 G. Bisicchia et al.

save more than 15% of the execution time (i.e., around 35 seconds) while migrating on
average 33% services fewer than the version of FogArm featuring only the exhaustive
search strategy.

To the best of our knowledge, FogArm represents a first complete prototype of a
next-gen orchestrator for the continuous QoS-compliant management of multi-service
applications on geographically distributed Cloud-Edge infrastructures. FogArm proved
to be able to scale up to tens of nodes and hundreds of managed services while also
reducing execution times and migrations thanks to continuous reasoning.

However, FogArm is only an initial prototype of a next-gen orchestrator based on
continuous reasoning to achieve the continuous and QoS-compliant management of
multi-service applications on geographically distributed Cloud-Edge networks, also ca-
pable of working in continuity with the CI/CD pipeline and infrastructure monitoring.
Thus, we consider here some possible limitations to our proposal. First, the current
implementation of FogArm works by interacting with Docker, but to improve the ex-
ecution times it could be interesting to substitute Docker with a more advanced tool
(e.g., Kubernetes) or to work directly with a container run-time environment (e.g.,
containerd), thus excluding the interactions with intermediates. At the same time, the
improvement of the low-level mechanism of FogArm should be accompanied by the
development of strategies and techniques to support the stateful migrations of services,
thus enabling the persistency of the data over time and nodes. Furthermore, currently
FogArm reasons only on software, IoT devices and RAM requirements. However, Fog-
BrainX could be extended to support more expressive policies managing a richer infras-
tructure model including, for example, CPU, HDD and security requirements. Addition-
ally, in the current prototype, the user has to manually insert the service’s requirements.
However, a useful extension could include a process of Data Mining to automatically
generate, possibly exploiting a system of code’s annotations, the service requirements.
Finally, it would be very interesting to design such a process also exploiting a continu-
ous reasoning methodology to speed up the process of requirements extraction.

To conclude, we discuss some future research lines:

Developing new placement strategies Continuous reasoning is designed to boost the
performance of a given placer, reducing the size of the considered problem and re-
using previously computed results as much as possible. Following this principle,
FogBrainX could support several different placement strategies (e.g., genetic algo-
rithms), possibly providing either a logic programming implementation of the de-
sired approach or a logic interface to the implementation of the placer. Furthermore,
the application and infrastructure models can be enriched by considering other QoS
requirements/capabilities (e.g., security properties, energy consumption). Addition-
ally, a stateful migration mechanism could be studied to better support the applica-
tion orchestration.

Extending run-time decisions Our methodologies could be extended by considering
other management decisions (e.g., application scaling, service adaption), possibly
including explanations on why a certain management decision was (not) taken. This
would enrich the capabilities of our orchestrator, enabling both more sophisticated
application management and improving visibility into the decision-making process.

Continuous QoS-compliant Orchestration in the Cloud-Edge Continuum 23

Workload stress test A further assessment of FogArm could involve studying its be-
haviour under stressful conditions through increasing workload on the managed ser-
vices, thus even overloading both the node and links on the infrastructure through
experimenting with the actual flow of data and users’ interaction even in difficult
condition with service crash or data loss.

Acknowledgements

Thanks are due to the GARR Consortium for allowing us to experiment with the GARR
infrastructure, to the staff of the GARR Cloud Support and especially to Dr Alberto
Colla for their availability and support in using GARR Cloud resources.

References

1. Barika, M., Garg, S., Zomaya, A.Y., Wang, L., Moorsel, A.V., Ranjan, R.: Orchestrating
big data analysis workflows in the cloud: research challenges, survey, and future directions.
ACM Computing Surveys (CSUR) 52(5), 1–41 (2019)

2. Bellavista, P., Berrocal, J., Corradi, A., Das, S.K., Foschini, L., Zanni, A.: A survey on fog
computing for the Internet of Things. Pervasive Mob. Comp. 52, 71 – 99 (2019). https:
//doi.org/10.1016/j.pmcj.2018.12.007

3. Bellendorf, J., Mann, Z.Á.: Cloud topology and orchestration using tosca: A systematic lit-
erature review. In: European Conference on Service-Oriented and Cloud Computing. pp.
207–215. Springer (2018)

4. Bobrovskis, S., Jurenoks, A.: A survey of continuous integration, continuous delivery and
continuos deployment. In: BIR workshops. pp. 314–322 (2018)

5. Brogi, A., Forti, S., Gaglianese, M.: Measuring the fog, gently. In: Yangui, S., Rodriguez,
I.B., Drira, K., Tari, Z. (eds.) Service-Oriented Computing - 17th International Confer-
ence, ICSOC 2019, Toulouse, France, October 28-31, 2019, Proceedings. Lecture Notes in
Computer Science, vol. 11895, pp. 523–538. Springer (2019). https://doi.org/10.1007/
978-3-030-33702-5_40, https://doi.org/10.1007/978-3-030-33702-5_40

6. Brogi, A., Forti, S., Guerrero, C., Lera, I.: How to Place Your Apps in the Fog - State of the
Art and Open Challenges. Softw. Pract. Exp. 50(5), 719–740 (2020). https://doi.org/
10.1002/spe.2766

7. Brogi, A., Rinaldi, L., Soldani, J.: Tosker: a synergy between tosca and docker for orches-
trating multicomponent applications. Software: Practice and Experience 48(11), 2061–2079
(2018)

8. Carnevale, L., Celesti, A., Galletta, A., Dustdar, S., Villari, M.: From the cloud to edge and
iot: a smart orchestration architecture for enabling osmotic computing. In: 2018 32nd In-
ternational Conference on Advanced Information Networking and Applications Workshops
(WAINA). pp. 419–424 (2018). https://doi.org/10.1109/WAINA.2018.00122

9. Costa, B., Bachiega, J., de Carvalho, L.R., Araujo, A.P.F.: Orchestration in fog computing: A
comprehensive survey. ACM Comput. Surv. 55(2) (jan 2022). https://doi.org/10.1145/
3486221, https://doi.org/10.1145/3486221

10. Donassolo, B., Fajjari, I., Legrand, A., Mertikopoulos, P.: Fog based framework for iot ser-
vice provisioning. In: 2019 16th IEEE Annual Consumer Communications & Networking
Conference (CCNC). pp. 1–6 (2019). https://doi.org/10.1109/CCNC.2019.8651835

https://doi.org/10.1016/j.pmcj.2018.12.007
https://doi.org/10.1016/j.pmcj.2018.12.007
https://doi.org/10.1016/j.pmcj.2018.12.007
https://doi.org/10.1016/j.pmcj.2018.12.007
https://doi.org/10.1007/978-3-030-33702-5_40
https://doi.org/10.1007/978-3-030-33702-5_40
https://doi.org/10.1007/978-3-030-33702-5_40
https://doi.org/10.1007/978-3-030-33702-5_40
https://doi.org/10.1007/978-3-030-33702-5_40
https://doi.org/10.1002/spe.2766
https://doi.org/10.1002/spe.2766
https://doi.org/10.1002/spe.2766
https://doi.org/10.1002/spe.2766
https://doi.org/10.1109/WAINA.2018.00122
https://doi.org/10.1109/WAINA.2018.00122
https://doi.org/10.1145/3486221
https://doi.org/10.1145/3486221
https://doi.org/10.1145/3486221
https://doi.org/10.1145/3486221
https://doi.org/10.1145/3486221
https://doi.org/10.1109/CCNC.2019.8651835
https://doi.org/10.1109/CCNC.2019.8651835

24 G. Bisicchia et al.

11. Forti, S., Bisicchia, G., Brogi, A.: Declarative continuous reasoning in the cloud-IoT contin-
uum. Journal of Logic and Computation 32(2), 206–232 (02 2022). https://doi.org/10.
1093/logcom/exab083, https://doi.org/10.1093/logcom/exab083

12. Forti, S., Gaglianese, M., Brogi, A.: Lightweight self-organising distributed monitoring of
Fog infrastructures. Future Gener. Comput. Syst. 114, 605–618 (2021)

13. Gaglianese, M., Forti, S., Paganelli, F., Brogi, A.: Assessing and enhancing a cloud-iot mon-
itoring service over federated testbeds. Future Generation Computer Systems (2023)

14. He, W., Guo, S., Liang, Y., Qiu, X.: Markov approximation method for optimal service or-
chestration in iot network. IEEE Access 7, 49538–49548 (2019). https://doi.org/10.
1109/ACCESS.2019.2910807

15. Herrera, J.L., Berrocal, J., Forti, S., Brogi, A., Murillo, J.M.: Continuous qos-aware adapta-
tion of cloud-iot application placements. Computing pp. 1–23 (2023)

16. Huang, M., Liu, W., Wang, T., Liu, A., Zhang, S.: A cloud–mec collaborative task offloading
scheme with service orchestration. IEEE Internet of Things Journal 7(7), 5792–5805 (2020).
https://doi.org/10.1109/JIOT.2019.2952767

17. Jelasity, M.: Gossip, pp. 139–162. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-17348-6_7, https://doi.org/10.
1007/978-3-642-17348-6_7

18. Kim, D., Muhammad, H., Kim, E., Helal, S., Lee, C.: Tosca-based and federation-aware
cloud orchestration for kubernetes container platform. Applied Sciences 9(1) (2019). https:
//doi.org/10.3390/app9010191, https://www.mdpi.com/2076-3417/9/1/191

19. Lipton, P., Lauwers, C., Tamburri, D.: Oasis topology and orchestration specification for
cloud applications (tosca) tc. March2017 (2017)

20. Luzar, A., Stanovnik, S., Cankar, M.: Examination and comparison of tosca orchestration
tools. In: European Conference on Software Architecture. pp. 247–259. Springer (2020)

21. Mahmud, R., Ramamohanarao, K., Buyya, R.: Application management in fog computing
environments: A taxonomy, review and future directions. ACM Comput. Surv. 53(4) (jul
2020). https://doi.org/10.1145/3403955, https://doi.org/10.1145/3403955

22. Pradhan, S., Dubey, A., Khare, S., Nannapaneni, S., Gokhale, A., Mahadevan, S., Schmidt,
D.C., Lehofer, M.: Chariot: Goal-driven orchestration middleware for resilient iot systems.
ACM Trans. Cyber-Phys. Syst. 2(3) (jun 2018). https://doi.org/10.1145/3134844,
https://doi.org/10.1145/3134844

23. Qiu, T., Chi, J., Zhou, X., Ning, Z., Atiquzzaman, M., Wu, D.O.: Edge computing in indus-
trial internet of things: Architecture, advances and challenges. IEEE Commun. Surv. Tutori-
als 22(4), 2462–2488 (2020). https://doi.org/10.1109/COMST.2020.3009103

24. Rafique, W., Zhao, X., Yu, S., Yaqoob, I., Imran, M., Dou, W.: An application development
framework for internet-of-things service orchestration. IEEE Internet of Things Journal 7(5),
4543–4556 (2020)

25. Salaht, F.A., Desprez, F., Lèbre, A.: An overview of service placement problem in fog and
edge computing. ACM Computing Surveys (CSUR) 53, 1 – 35 (2020)

26. Schubert, E., Rousseeuw, P.J.: Faster k-medoids clustering: Improving the pam, clara, and
clarans algorithms. In: Amato, G., Gennaro, C., Oria, V., Radovanović, M. (eds.) Similarity
Search and Applications. pp. 171–187. Springer International Publishing, Cham (2019)

27. Smolka, S., Mann, Z.Á.: Evaluation of fog application placement algorithms: A survey. Com-
puting pp. 1–27 (2022)

28. Svorobej, S., Bendechache, M., Griesinger, F., Domaschka, J.: Orchestration from the Cloud
to the Edge, pp. 61–77. Springer International Publishing, Cham (2020). https://doi.org/
10.1007/978-3-030-41110-7_4, https://doi.org/10.1007/978-3-030-41110-7_4

29. Uehara, M.: Mist computing: Linking cloudlet to fogs. Computational Science/Intelligence
and Applied Informatics pp. 201–213 (2018)

https://doi.org/10.1093/logcom/exab083
https://doi.org/10.1093/logcom/exab083
https://doi.org/10.1093/logcom/exab083
https://doi.org/10.1093/logcom/exab083
https://doi.org/10.1093/logcom/exab083
https://doi.org/10.1109/ACCESS.2019.2910807
https://doi.org/10.1109/ACCESS.2019.2910807
https://doi.org/10.1109/ACCESS.2019.2910807
https://doi.org/10.1109/ACCESS.2019.2910807
https://doi.org/10.1109/JIOT.2019.2952767
https://doi.org/10.1109/JIOT.2019.2952767
https://doi.org/10.1007/978-3-642-17348-6_7
https://doi.org/10.1007/978-3-642-17348-6_7
https://doi.org/10.1007/978-3-642-17348-6_7
https://doi.org/10.1007/978-3-642-17348-6_7
https://doi.org/10.3390/app9010191
https://doi.org/10.3390/app9010191
https://doi.org/10.3390/app9010191
https://doi.org/10.3390/app9010191
https://www.mdpi.com/2076-3417/9/1/191
https://doi.org/10.1145/3403955
https://doi.org/10.1145/3403955
https://doi.org/10.1145/3403955
https://doi.org/10.1145/3134844
https://doi.org/10.1145/3134844
https://doi.org/10.1145/3134844
https://doi.org/10.1109/COMST.2020.3009103
https://doi.org/10.1109/COMST.2020.3009103
https://doi.org/10.1007/978-3-030-41110-7_4
https://doi.org/10.1007/978-3-030-41110-7_4
https://doi.org/10.1007/978-3-030-41110-7_4
https://doi.org/10.1007/978-3-030-41110-7_4
https://doi.org/10.1007/978-3-030-41110-7_4

Continuous QoS-compliant Orchestration in the Cloud-Edge Continuum 25

30. Velasquez, K., Abreu, D.P., Assis, M.R., Senna, C., Aranha, D.F., Bittencourt, L.F., Laran-
jeiro, N., Curado, M., Vieira, M., Monteiro, E., et al.: Fog orchestration for the internet of
everything: state-of-the-art and research challenges. Journal of Internet Services and Appli-
cations 9(1), 1–23 (2018)

31. Velasquez, K., Abreu, D.P., Gonçalves, D., Bittencourt, L., Curado, M., Monteiro, E.,
Madeira, E.: Service orchestration in fog environments. In: 2017 IEEE 5th International
Conference on Future Internet of Things and Cloud (FiCloud). pp. 329–336 (2017). https:
//doi.org/10.1109/FiCloud.2017.49

32. Wen, Z., Yang, R., Garraghan, P., Lin, T., Xu, J., Rovatsos, M.: Fog orchestration for internet
of things services. IEEE Internet Computing 21(02), 16–24 (mar 2017). https://doi.org/
10.1109/MIC.2017.36

33. Wen, Z., Yang, R., Garraghan, P., Lin, T., xu, J., Rovatsos, M.: Fog orchestration for internet
of things services. IEEE Internet Computing 21, 16–24 (03 2017). https://doi.org/10.
1109/MIC.2017.36

34. Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J., Jue,
J.P.: All one needs to know about fog computing and related edge computing paradigms:
A complete survey. J. Syst. Archit. 98, 289–330 (2019). https://doi.org/10.1016/j.
sysarc.2019.02.009

https://doi.org/10.1109/FiCloud.2017.49
https://doi.org/10.1109/FiCloud.2017.49
https://doi.org/10.1109/FiCloud.2017.49
https://doi.org/10.1109/FiCloud.2017.49
https://doi.org/10.1109/MIC.2017.36
https://doi.org/10.1109/MIC.2017.36
https://doi.org/10.1109/MIC.2017.36
https://doi.org/10.1109/MIC.2017.36
https://doi.org/10.1109/MIC.2017.36
https://doi.org/10.1109/MIC.2017.36
https://doi.org/10.1109/MIC.2017.36
https://doi.org/10.1109/MIC.2017.36
https://doi.org/10.1016/j.sysarc.2019.02.009
https://doi.org/10.1016/j.sysarc.2019.02.009
https://doi.org/10.1016/j.sysarc.2019.02.009
https://doi.org/10.1016/j.sysarc.2019.02.009

	Continuous QoS-compliant Orchestration in the Cloud-Edge Continuum

