CORRIGENDUM

Corrigendum: Empirical analysis of the relationship between CC and SLOC in a large corpus of Java methods and C functions published on 9 December 2015

Davy Landman¹ | Alexander Serebrenik² | Eric Bouwers³ | Jurgen Vinju^{1,2,4}

¹Centrum Wiskunde & Informatica, Amsterdam, The Netherlands ²Eindhoven University of Technology, Eindhoven, The Netherlands ³Software Improvement Group, Amsterdam, The Netherlands ⁴INRIA Lille Nord Europe, Lille, France

Correspondence

Jurgen Vinju, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands. E-mail: jurgen.vinju@cwi.nl

1 | INTRODUCTION

During the preparation of the corresponding chapter in Davy Landman's PhD thesis, some minor graphical and statistical discrepancies were found in the paper "Empirical analysis of the relationship between CC and SLOC in a large corpus of Java methods and C functions."1

To support future reproduction and use of this work, we prepared the current erratum, containing several updated figures, a diagnosis of the cause of the errors, and an explanation of the effect on the original paper.

None of the issues reported in this erratum influence the conclusions of the original paper.

2 | ISSUES DISCOVERED

- The hexagonal scatter plots in Figure 8 lack a more prominent line at CC = 0. This was caused by a bug* in ggplot, which would filter out data around the limits.
- The R² values in the Tables 4B and 5B of the C corpus were off by a maximum of 0.01 from the actual result. The cause was that this table was not re-calculated after fixing a bug in the "remove out-of-scope code" phase. Note that the impact of this error is scattered throughout the paper, as the correlations of Tables 4 and 5 are often repeated for clarity in the remaining sections (for example, the R² of the linear model for all the C functions is 0.43 instead of 0.44).
- Our R code calculating the log-transformed linear fit contained an error. The dashed lines in Figures 8, 9, and 12 are impacted and the shape of the residual plot in 11. The biggest impact is in Figure 12, where the original fit seemed to miss the data almost entirely. We misinterpreted this phenomenon in the last sentence of the second paragraph of section 4.4.2; it is not caused by the skewness of the distributions of the two metrics, but rather by the current bug.
- The custom implementation of the log-scaled y-axis of the residual plots in Figure 11 contained two errors:
 - The labels on the y-axis were off by a factor 10 о
 - For the negative side of the residual plot, we took the absolute, calculated the log10 value, and made it negative again. However, values between 0 and 1 (the values close to the linear fit) turn into a negative value (as log 10(1) equals 0). This caused strange outliers in the original plots that were not scrutinized. The fixed residual plots do not have this outliers and look much more like the data in Figure 9.
- We republished the data sets related to the current paper on Zenodo to increase their availability:
 - Landman, Davy. (2015). A Curated Corpus of Java Source Code based on Sourcerer (2015) [Data set]. Zenodo. http://doi.org/10.5281/zenodo. 208213
 - Landman, Davy. (2015). A Large Corpus of C Source Code based on Gentoo packages [Data set]. Zenodo. http://doi.org/10.5281/zenodo. 208215
 - Davy Landman. (2015, February 26). cwi-swat/jsep-sloc-versus-cc. Zenodo. http://doi.org/10.5281/zenodo.293795

reported and confirmed: https://github.com/tidyverse/ggplot2/issues/2061

LANDMAN ET AL.

3 | NEW IMAGES

The remaining part of this erratum contains updated tables and figures as replacements for the original paper.

FIGURE 8 Scatter plots of SLOC vs CC zoomed in on the bottom left quadrant. The solid and dashed lines are the linear regression before and after the log transform. The grayscale gradient of the hexagons is logarithmic

TABLE 4	Correlations for part of the tail of the independent
variable	SLOC. All correlations have a high significance level
$(p \leq 1 \times 1)$	0^{-16}). (b) C functions

Min. SLOC	Coverage	R ²	log R ²	ρ	Functions
1	100%	0:43	0:70	0:83	5810834
12	50%	0:41	0:52	0:70	2 905 417
16	40%	0:40	0:47	0:68	2 324 334
27	25%	0:38	0:37	0:63	1 452 709
33	20%	0:38	0:33	0:61	1 162 167
56	10%	0:35	0:22	0:55	581084
220	1%	0:28	0:05	0:38	58 109
714	0:100%	0:20	0:01	0:28	5811
2695	0:010%	0:13	0:00	0:04	582

TABLE 5 Correlations for part of the tail of the independent variable SLOC removed. All correlations have a high significance level ($p \le 1 \times 10^{-16}$). (b) C functions

Max. SLOC	Coverage	R ²	log R ²	ρ	Functions
44 881	100%	0:43	0:70	0:83	5810834
3825	99:995%	0:62	0:70	0:83	5 810 543
2693	99:990%	0:62	0:70	0:83	5810252
714	99:900%	0:66	0:70	0:83	5 805 023
220	99%	0:66	0:69	0:83	5 752 725
56	90%	0:56	0:61	0:79	5 229 750
33	80%	0:47	0:53	0:75	4 648 667
27	75%	0:43	0:49	0:73	4 358 125
16	60%	0:33	0:37	0:65	3 486 500
12	50%	0:26	0:28	0:58	2 905 417

FIGURE 9 Scatter plots of SLOC vs CC on a log-log scale. The solid and dashed lines are the linear regression before and after the log transform. The grayscale gradient of the hexagons is logarithmic

FIGURE 11 Residual plot of the linear regressions after the log transform, both axis are on a log scale. The grayscale gradient of the hexagons is logarithmic

FIGURE 12 Scatter plots of SLOC vs CC for Java and C files. The solid and dashed lines are the linear regression before and after the log transform. The grayscale gradient of the hexagons is logarithmic

ORCID

Davy Landman b http://orcid.org/0000-0003-3571-3134 Jurgen Vinju http://orcid.org/0000-0002-2686-7409

REFERENCES

1. Landman D, Serebrenik A, Bouwers E, Vinju JJ. Empirical analysis of the relationship between CC and SLOC in a large corpus of Java methods and C functions. J Softw Evol Proc. 2016;28(7):589-618.