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THE CHROMATIC NUMBER OF RANDOM BORSUK GRAPHS

MATTHEW KAHLE AND FRANCISCO MARTINEZ-FIGUEROA

ABSTRACT. We study a model of random graph where vertices are n i.i.d. uniform random points on

the unit sphere Sd in Rd+1, and a pair of vertices is connected if the Euclidean distance between them

is at least 2− ε . We are interested in the chromatic number of this graph as n tends to infinity.

It is not too hard to see that if ε > 0 is small and fixed, then the chromatic number is d + 2 with

high probability. We show that this holds even if ε → 0 slowly enough. We quantify the rate at which

ε can tend to zero and still have the same chromatic number. The proof depends on combining topo-

logical methods (namely the Lyusternik–Schnirelman–Borsuk theorem) with geometric probability

arguments. The rate we obtain is best possible, up to a constant factor — if ε → 0 faster than this, we

show that the graph is (d+1)-colorable with high probability.

1. INTRODUCTION

Given ε > 0 and d ≥ 1, the Borsuk Graph Bord(ε) is the graph with vertex set

corresponding to points on the d−dimensional unit sphere Sd ⊂ Rd+1 and edges

{x,y} if and only if ‖x− y‖ > 2− ε , that is, if the two points are ε-near to antipo-

dal. Here distance is measured in the ambient Euclidean space Rd+1. It is well

known that when ε is sufficiently small, its chromatic number is d +2, in fact this

is equivalent to the Borsuk–Ulam theorem.

The Borsuk graph was part of Lovász’s inspiration for his proof of the Kneser

conjecture [12]. Among other properties, this graph constitutes a nice example of a

graph with large chromatic number and odd girth. See for example [21, 17, 5, 6]. It

has also been studied because of its relation with Borsuk’s conjecture and distance

graphs [19, 3, 18, 20].

We are interested in the chromatic number of random induced n-vertex subgraphs

of the Borsuk graph. Our main point is that if ε → 0 slowly enough as n → ∞, then

topological lower bounds on chromatic number are tight. This contrasts with the

situation studied by Kahle in [8], where topological lower bounds are not efficient

for the chromatic number of Erdős–Rényi random graphs. Similar problems have

also been studied for random Kneser graphs in [11] and [10].
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The rest of the paper is organized as follows. We finish this section with some

definitions and notation. In section 2 we prove Theorem 1.1 when ε is fixed.

Theorem 1.1. Let d ≥ 1 and 0 < ε < 2−λd be fixed. Then a.a.s.

χ
Ä
Bord(ε,n)

ä
= d +2.

In section 3 we prove Theorem 1.2, stating that the chromatic number is still the

same when ε → 0 slowly.

Theorem 1.2. Let ε(n) =C

Ç
logn

n

å2/d

, where

C ≥ 64

3

(

3π2

4

)1/d

.

Then a.a.s. χ
Ä
Bord(ε(n),n)

ä
= d +2.

Finally in section 3.2 we prove Theorem 1.3, showing that this rate is tight, up

to a constant, in the sense that if ε → 0 faster, then the random Borsuk graph is

(d+1)-colorable, a.a.s.

Theorem 1.3. Let ε(n) =C(logn/n)2/d , where

C <
3(4−λ 2

d )

64

d

 
9

4d2
.

Then a.a.s. χ
Ä
Bord(ε(n),n)

ä
≤ d +1.

Definition 1.4 (Random Borsuk graph). Given n ≥ 1, d ≥ 1, and ε > 0, we define

a random Borsuk graph, Bord(ε,n), as follows.

• Its vertices are X1,X2, · · · ,Xn, n independent and identically distributed uni-

form random variables over the d-dimensional sphere Sd ⊂ Rd+1 of radius

1.

• Xi and X j for i 6= j are connected by an edge, if and only if ‖Xi−X j‖> 2−ε ,

where ‖·‖ is the Euclidean distance.

Throughout this paper we will think of random Borsuk graphs on Sd for a fixed

dimension d. However we will explicitly point out the constants that depend on

d in the statement of the results. We will denote the closed ball with center x and
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radius r by B(x,r) =
¶

y ∈ Rd+1 : ‖x− y‖ ≤ r
©

. Similarly, we denote intersections

of closed balls with the d-sphere by ÛB(x,r), and we call them spherical caps, so

ÛB(x,r) := B(x,r)∩Sd =
¶

y ∈ Sd : ‖x− y‖ ≤ r
©

Given a Borel set F ⊂ Rd+1, we denote its volume, i.e. Lebesgue measure, as

V (F). Similarly, for a Borel set F ⊂ Sd , we denote its area on the surface of the

sphere, by A (F). Also, we denote ωd = V
Ä
Sd
ä

and αd = A
Ä
Sd
ä
. Given a graph

G, we denote its chromatic number by χ(G).
We say that an event happens asymptotically almost surely (a.a.s) if the proba-

bility approaches 1 as n → ∞.

2. RANDOM BORSUK GRAPH WITH ε CONSTANT

We start by proving that when ε > 0 is constant and small, χ(Bord(ε,n)) = d+2

a.a.s.

Lemma 2.1. For x,y ∈ Sd , ‖x− y‖> 2− ε if and only if ‖x+ y‖< 2
√

ε − ε2

4

Proof. Since (−x)x is a diameter, (−x)y ⊥ xy. Thus ‖x+ y‖2 = 4−‖x− y‖2, so the

claim follows. �

Before getting into the analysis of the chromatic number, let us point out the fact

that the odd girth of the Borsuk graph is > 1/
√

ε . While this has been observed

before (see [5, 6, 21]), we include a proof for completeness.

Lemma 2.2. Let ε > 0 and x0 ∈ Sd . If x0y1x1y2 · · ·xnyn+1 = x0 is an odd cycle in

the Borsuk graph Bord(ε), then 2n+1 ≥ 1/
√

ε . In other words, all odd cycles in

Bord(ε) have length greater than 1/
√

ε .

Proof. Since ‖xi − yi‖ ,‖yi − xi−1‖ > 2− ε , for any i, by applying Lemma 2.1, we

get

‖xi − xi−1‖ ≤ ‖xi + yi‖+‖−yi − xi−1‖
= ‖xi + yi‖+‖yi + xi−1‖
≤ 4
»

ε − ε2/4

< 4
√

ε.

Thus

‖xn − x0‖ ≤ ‖xn − xn−1‖+‖xn−1 − xn−2‖+ · · ·+‖x1 − x0‖ ≤ 4n
√

ε.
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Finally,

2 = ‖2x0‖= ‖x0 + yn+1‖ ≤ ‖x0 − xn‖+‖xn + yn+1‖< 2(2n+1)
√

ε.

Therefore
1√
ε
< 2n+1.

�

Lemma 2.3. For each d ≥ 1, there exist a constant λd < 2 such that, whenever

0 < r < 2−λd , the Borsuk graph Bord(r) has a proper coloring with d +2 colors.

Proof. Let ∆ be the regular (d +1)-simplex inscribed in the unit d-sphere Sd . Con-

sider the map Φ : ∂∆ → Sd from the boundary of ∆ to Sd given by Φ(x) = x/‖x‖.

Note then that Φ is a homeomorphism. Let τ ∈ ∂∆ be a maximal face, and let

λd = diam(Φ(τ)). Since ∆ is regular, the value of λd does not depend on the face

τ .

Note now that λd < 2. To see this, suppose that λd = 2. Since τ is closed, so

is Φ(τ), so there exist x,y ∈ τ such that ‖Φ(x)−Φ(y)‖ = 2. This means Φ(x)

and Φ(y) are antipodal, and so y = −‖y‖
‖x‖x. Since τ is convex, 0 = ‖y‖/(‖x‖+‖y‖)x+

‖y‖/(‖x‖+‖y‖)y must also be in τ , but this is a contradiction, since τ ⊂ ∂∆, proving

the claim.

We now give a coloring for Sd as follows. We start by coloring ∂∆: give a

different color to each of the d + 2 facets, and for the lower dimensional faces,

assign an arbitrary color among the facets that contain them. Finally, color Φ(x) ∈
Sd , with the color of x.

Note this is indeed a proper coloring for Bord(r), since all points in Sd of the

same color lie on the image of a facet Φ(τ), of diameter λd; so if x and y have the

same color, ‖x− y‖ ≤ λd < 2−r so they are not connected by an edge in the Borsuk

graph. �

The upper bound for the chromatic number follows immediately from Lemma

2.3. The proof we give below for the lower bound, is a direct application of the

Lyusternik–Shnirelman–Borsuk Theorem [13, 4]. We state this well-known theo-

rem without proof; for more details and a self-contained proof see, for example,

Chapter 2 of Matousek’s book [15].

Theorem (Lyusternik–Shnirelman–Borsuk). For any cover U1, . . . ,Ud+1 of the sphere

Sd by d + 1 open (or closed) sets, there is at least one set containing a pair of an-

tipodal points.
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We note that Bárány gave a short proof of Kneser’s conjecture using this theorem

[2]. See also Greene’s proof [7]. For the rest of the paper, we refer to this theorem

as the LSB Theorem.

Proof of Theorem 1.1. By Lemma 2.3, since Bord(ε,n)⊂ Bord(ε), d +2 is an up-

per bound for the chromatic number of the random Borsuk graph.

Let F1,F2, . . . ,FN be a cover of Sd by Borel sets, such that diam(Fi) ≤
√

ε
2

and

A (Fi) > 0 for all i. Note we can construct such a family of sets in many ways, for

instance, as we do in the next section, we can consider a δ -net of Sd and let the

sets Fi to be spherical caps centered on the δ -net of radius
√

ε/4 where δ ≤
√

ε/4.

Note here that the sets Fi and N depend only on ε , which is fixed.

Let c = mini
A(Fi)

A(Sd)
and G = Bord(ε,n). The following computation shows that,

a.a.s., G contains at least one vertex in each of the sets Fi.

P





N
∧

i=1

(V (G)∩Fi 6= /0)



= 1−P





N
∨

i=1

(V (G)∩Fi = /0)





≥ 1−
N
∑

i=1

P [V (G)∩Fi = /0]

= 1−
N
∑

i=1

Ñ

1− A (Fi)

A
Ä
Sd
ä

én

≥ 1−N(1− c)n

since N and c are constant, 1−N(1− c)n → 1 as n → ∞, proving the claim.

We may assume then, G has a vertex yi ∈ Fi for i = 1, . . . ,N. Proceeding by way

of contradiction, suppose there exists a proper coloring of G with d +1 colors. For

each j = 1, . . . ,d+1 define

U j =
⋃ ÛB

(

yk,

√
ε

2

)

where the union is taken over all the yk’s of color j.

Since Fi ⊂ ÛB
(

yi,
√

ε
2

)

, the sets U1, . . . ,Ud+1 are a closed cover of Sd . Thus, by the

LSB Theorem, there exists an antipodal pair in one of the closed sets. Without lost
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of generality, say x,(−x) ∈U1, so x ∈ ÛB
(

y1,
√

ε
2

)

and (−x) ∈ ÛB
(

y2,
√

ε
2

)

, with both

y1 and y2 having color 1. Then,

‖y1 + y2‖ ≤ ‖y1 − x‖+‖x+ y2‖ ≤
√

ε ≤ 2

√

ε − ε2

4
,

where the last inequality holds because ε < 2. Lemma 2.1 then implies ‖y1 − y2‖>
2− ε , so y1 and y2 are connected by an edge in G, giving the desired contradiction.

�

3. RANDOM BORSUK GRAPH WITH ε → 0

3.1. Lower Bound. The proof we gave for the lower bound in Theorem 1.1, sug-

gests that we should be able to let ε → 0 and still a.a.s. get the same chromatic

number. Indeed, this will be the case. We just need to control the number of sets N

we use to cover the sphere and their area, in such a way that

lim
n→∞

1−N(1− c)n → 1.

In this section we discuss how to do this using δ -nets on Sd , and then adapt the

proof of Theorem 1.1 to get Theorem 1.2.

We start with a technical lemma on spherical caps.

Lemma 3.1. Given x ∈ Sd and 0 < r < 1, the following hold for the spherical cap

B = ÛB(x,r).

(1) The boundary ∂B, is a (d−1)-dimensional sphere with radius

r′ = r
»

1− r2/4.

(2) B is indeed a cap, i.e. there exist a d-hyperplane in Rd+1, such that B is the

portion of Sd contained in one of the semi-spaces defined by the hyperplane.

(3) The area A (B) satisfies the inequalities

1

π

(√
3

2

)d−1

rd ≤
A
Ä ÛB(x,r)

ä

A
Ä
Sd
ä ≤ d

3
rd.

Spherical caps are well studied in the literature. See, for example, Lemmas 2.2.

and 2.3 in [1]. We note that Lemma 2.2 in [1] is better than our Lemma 3.1 in the

case that r is fixed and d → ∞, but we are interested in the case that d is fixed.
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Proof of Lemma 3.1. Without loss of generality, we may choose x=N =(0, . . . ,0,1)
to be the north pole by rotating the sphere. Thus x ∈ ∂B if and only if ‖x‖= 1 and

‖x−N‖= r. Then

r2 = ‖x−N‖2

= x2
0 + · · ·+ x2

d−1 +(xd −1)2

= x2
0 + · · ·+ x2

d−1 + x2
d −2xd +1

= 2−2xd.

So xd = 1− r2

2
. Therefore, the hyperplane {xd = 1− r2

2
} determines the cap B,

proving (2). To get (1), note 1 = ‖x‖2 = x2
0 + · · ·+ x2

d , so we get x2
0 + · · ·+ x2

d−1 =

r2 − r4/4 = (r′)2, for all x ∈ ∂B, proving it is indeed a (d −1)-dimensional sphere

with the desired radius.

For (3), recall we get the area of B = ÛB(x,r) by integrating the length ℓ of the arc

from x to the boundary ∂B, over all the possible unit vectors. Thus

A
Ä ÛB(x,r)

ä
=
∫

û∈Sd−1
ℓ(r′)d−1dû = ℓ(r′)d−1

∫

û∈Sd−1
dû = ℓ(r′)d−1αd−1.

Some planar geometry gives the bounds

r ≤ ℓ= 2arcsin(r/2)≤ π

3
r,

and √
3

2
r ≤ r′ ≤ r,

since 0 < r < 1. This gives

(√
3

2

)d−1

rdαd−1 ≤ A (B)≤ π

3
rdαd−1

Recall the formula for the surface area of the unit d-dimensional sphere

αd =
2π(d+1)/2

Γ((d +1)/2)
.
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By using the fact that the Gamma function is increasing on [2,∞) and treating the

first few cases separately, we have that for d ≥ 1,

1

π
≤ αd−1

αd

=
Γ((d+1)/2)√

π Γ(d/2)
≤ d

π
,

from which the desired result follows.

�

For the sake of completeness, we include the following discussion on δ -nets.

See, for example, [14, Chapter 13] for more details.

Definition 3.2 (δ -Nets). Given a metric space X with metric d, a δ -net is a subset

B ⊂ X such that for every x ∈ X, there exists y ∈ B with d(x,y)< δ .

We can then construct a δ -net for any compact metric space M inductively. In-

deed, choose any point y1 ∈ M. For each m ≥ 2, if Bm = ∪m
i=1
ÛB(yi,δ )( M, choose

any ym+1 ∈ M \Bm. Otherwise, stop and let B = {y1,y2, . . . ym}.
Compactness ensures that the process stops. It’s clear that B is a δ -net and

moreover it is also a maximal δ -apart set. That is, d(yi,y j)> δ whenever i 6= j, and

we can not add any other point to B without destroying this property. This implies

that the balls of radius δ and center on the points yi’s cover M, while the open balls

of radius δ/2 with center on the yi’s are all disjoint. We now show that we can

control the size of the δ -net in the case that M = Sd .

Lemma 3.3. For every d ≥ 1 and 0 < δ < 1 there exists a δ -net B ⊂ Sd , such that

(1) for every two points yi,y j ∈ B,
∥

∥

∥yi − y j

∥

∥

∥ > δ , and (2) its cardinality N = |B|
satisfies:

3

dδ d
≤ N ≤ 2(3d)(d+1)

δ d
.

In the literature, it seems more common to find an upper bound such as

N ≤ (4/δ )d+1,

which is a better bound when δ is constant and d → ∞ [14, Lemma 13.1.1]. How-

ever, the bound we give is more useful for us since we are dealing with d constant

and δ → 0.

Proof of Lemma 3.3. By letting B be the δ -net defined above, we already have a

δ -net for the sphere Sd that is also a δ -apart maximal set. To prove the inequalities

on its cardinality we give a volume and an area arguments.
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Since the points yi ∈ B are δ apart, the open balls int
Ä
B
Ä
yi,

δ
2

ää
are disjoint. So

V

Ñ
N
⋃

i=1

B

Ç
yi,

δ

2

åé

= N ωd

Ç
δ

2

åd+1

,

where ωd denotes the volume of the d +1-dimensional unit ball in Rd+1. Morever,

all such balls are contained in the set B
Ä
0,1+ δ

2

ä
\B
Ä
0,1− δ

2

ä
. Thus

V

Ñ
N
⋃

i=1

B

Ç
yi,

δ

2

åé

≤ V

Ç
B

Ç
0,1+

δ

2

åå
−V

Ç
B

Ç
0,1− δ

2

åå

= ωd

ÑÇ
1+

δ

2

åd+1

−
Ç

1− δ

2

åd+1
é

= ωdδ
d
∑

r=0

Ç
1+

δ

2

åd−rÇ
1− δ

2

år

≤ ωdδ
d
∑

r=0

Ç
1+

δ

2

åd

= ωdδ (d +1)

Ç
1+

δ

2

åd

≤ ωdδ (d +1)

Ç
3

2

åd

,

and the upper bound for N follows.

For the lower bound, we consider the area of the spherical caps. Since all points

in Sd are within distance δ of the points yi ∈ B we must have

A
Ä
Sd
ä
= A

Ñ
N
⋃

i=1

ÛB(yi,δ )

é

≤
N
∑

i=1

A
Ä ÛB(yi,δ )

ä
= N A

Ä ÛB(y1,δ )
ä

Therefore, Lemma 3.1 yields N ≥
A
Ä
Sd
ä

A
Ä ÛB(y0,δ )

ä ≥ 3

dδ d
. �

We now proceed to prove Theorem 1.2.

Proof of Theorem 1.2. Let G = Bord(ε(n),n). Since ε → 0, eventually ε < 2−λd ,

so by Lemma 2.3, χ(G) ≤ d +2. We now proceed to prove the lower bound by a

modification of the proof of theorem 1.1.
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Let δ =
√

ε/4. Let B be the δ -net given by Lemma 3.3. Say B= {y1,y2, · · · ,yN},

where

N ≤ 2(3d)(d+1)

δ d
=

Ad

εd/2
,

and Ad is a constant which only depends on d. For each i = 1, · · · ,N, define

Fi = ÛB(yi,δ ). Note then the F ′
i s cover the sphere and diam(Fi)≤ 2δ =

√
ε

2
.

Applying Lemma 3.1, we have

A (Fi)

A
Ä
Sd
ä ≥ 1

4π

(√
3

8

)d−1

εd/2 = Bdεd/2 =: c,

where Bd is constant.

Finally, all that remains to prove is that 1−N(1− c)n → 1 as n → ∞, even when

N and c depend on n. This is as follows

N(1− c)n ≤ Ad

εd/2
(1− c)n

=
Ad

εd/2

(

1−Bdεd/2
)n

=
Adn

Cd/2 logn

(

1− BdCd/2 logn

n

)n

≤ Adn

Cd/2 logn
exp

(

−BdCd/2 logn
)

=
Ad

Cd/2 logn
n1−BdCd/2

The last expression goes to zero as n → ∞, since

C ≥ 64

3

d

√

3π2

4
,

so BdCd/2 ≥ 1 and this completes the proof. �

Corollary. If

64

3

d

√

3π2

4

Ç
logn

n

å2/d

≤ ε(n)≤ 2−λd

for all sufficently large n, then χ
Ä
Bord(ε(n),n)

ä
= d+2 a.a.s.

Proof. The chromatic number is monotone with respect to ε , so this follows di-

rectly. �
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3.2. Upper Bound. Theorem 1.2 and its Corollary shows that if ε → 0 sufficiently

slowly then the chromatic number of the random Borsuk graph is a.a.s. d+2. In this

section we show that the rate obtained is tight, up to a constant factor. That is, we

show an upper bound for ε for which the random Borsuk graph is (d+1)-colorable.

We start our analysis by constructing a proper coloring of Bord(ε)\ ÛB(x,δ ) with

exactly d+1 colors, for a suitable δ that depends on ε . Lemma 3.1 establishes that

the boundary of an spherical cap on Sd is a Sd−1 with radius δ ′, and Lemma 2.3 al-

lows to color it with d +1 colors. We will provide the technical details to translate

this coloring into a proper coloring of the desired graph.

For the following analysis consider the spherical cap A = ÛB(N,r), where N is

the north pole. For each x ∈ Sd \ {N,−N}, let γx : [0,π ]→ Sd be the great semi-

circle going from N to −N and passing through x. Define f : Sd → ∂A by letting

f (x) be the intersection of γx with ∂A. Note this is a well defined function, since if

x = (x0, . . . ,xd), we can parametrize

γx(t) =

Ñ
sint»
1− x2

d

x0, . . . ,
sint»
1− x2

d

xd−1,cos t

é

so its last coordinate takes all values in [−1,1] exactly once for 0 ≤ t ≤ π , and from

Lemma 3.1 we know ∂A consists of all points with last coordinate a := 1− r2

2
.

The following lemmas construct the desired coloring.

Lemma 3.4. Let x,y ∈ Sd \{N,−N} such that ‖x− y‖ ≤ δ . Define y′ = (y′0, . . . ,y
′
d)

to be the point in the geodesic γy, such that y′d = xd . Then ‖x− y′‖ ≤ 2δ .

Proof. Without lost of generality, we may assume y = (0,0, . . . ,0,
»

1− y2
d,yd),

since we can get this by a rotation of the sphere that leaves the last coordinate

fixed. This rotation fixes the north and south poles, so it also transforms the geo-

desic through y into another geodesic through y. Thus, the formula for the geodesic

simplifies to

γy = (0, . . . ,0,sint,cost), for 0 ≤ t ≤ π .

So, y′ = (0, . . . ,0,
»

1− x2
d,xd). Then

‖x− y‖2 = x2
0 + · · ·+ x2

d−2 +
Å

xd−1 −
√

1− y2
d

ã2

+(xd − yd)
2

= (1− x2
d)+(1− y2

d)−2xd−1

√

1− y2
d +(xd − yd)

2
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and

∥

∥

∥y− y′
∥

∥

∥

2
=
Å
√

1− y2
d −

√

1− x2
d

ã2

+(xd − yd)
2

= (1− x2
d)+(1− y2

d)−2
√

1− x2
d

√

1− y2
d +(xd − yd)

2

Since xd−1 ≤ |xd−1| ≤
√

x2
0 + · · ·+ x2

d−1 =
»

1− x2
d , we get ‖y− y′‖ ≤ ‖x− y‖,

and so
∥

∥

∥x− y′
∥

∥

∥≤ ‖x− y‖+
∥

∥

∥y− y′
∥

∥

∥≤ 2‖x− y‖ ≤ 2δ .

�

Lemma 3.5. Let x,y ∈ Sd \{N,−N} such that x 6∈ A∪ (−A) and ‖x− y‖ ≤ δ . Then

‖ f (x)− f (y)‖ ≤ 2δ .

Proof. Let y′ ∈ Sd such that its last coordinate is y′d = xd . From the parametrization

for γx, we see f (x) = γx(t1), where cos t1 = a and sint1 =
√

1−a2 = δ ′, the radius

of δA, hence

f (x) =

Ñ
δ ′

»
1− x2

d

x0, . . . ,
δ ′

»
1− x2

d

xd−1,a

é

.

A similar expression holds for f (y′), with y′d = xd , so we get

∥

∥

∥ f (x)− f (y′)
∥

∥

∥=

Õ
d−1
∑

i=0

δ ′2

1− x2
d

(xi − y′i)2

=
δ ′

»
1− x2

d

Õ
d−1
∑

i=0

(xi − y′i)2

≤ δ ′
»

1− x2
d

∥

∥

∥x− y′
∥

∥

∥

Moreover, since x 6∈ A ∪ (−A), |xd| < a, so δ ′»
1−x2

d

< 1, so ‖ f (x)− f (y′)‖ ≤

‖x− y′‖. Finally, if we let y′ be the one defined in Lemma 3.4, f (y′) = f (y), and

therefore ‖ f (x)− f (y)‖= ‖ f (x)− f (y′)‖ ≤ ‖x− y′‖ ≤ 2δ .

�
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Lemma 3.6. Let 0 < ε < 1, such that

r =
8
√

ε
√

3(4−λ 2
d−1)

< 1,

x ∈ Sd , and A = ÛB(x,r). Let H be the induced subgraph of Bord(ε) by the vertex

set Sd \A. Then χ(H)≤ d +1.

Proof. Without loss of generality let x = N the north pole, so A = ÛB(N,r). Lemma

3.1 says ∂A is a Sd−1 sphere of radius r′ = r
√

1− r2

4
≥

√
3

2
r. Thus adapting Lemma

2.3, we can color it in such a way that every two points with the same color are at a

distance of at most λd−1r′. We then color H by giving each point y ∈ Sd \A\{−N}
the color of f (y), and giving the south pole −N any color. We proceed to prove this

is a proper coloring of H.

From Lemma 2.1, the neighbors of the south pole lie in ÛB
(

N,
»

ε − ε2/4
)

⊂ A,

so −N is isolated in H. Let y,z ∈ Sd \A\{−N} such that ‖y− z‖> 2− ε . Lemma

2.1 implies ‖y+ z‖ < δ := 2
√

ε − ε2

4
. If we had (−y),(−z) ∈ A, that would mean

y,z ∈ −A, but then ‖y− z‖ ≤ r ≤ 2− ε for small ε . So we may assume (−y) 6∈ A,

and since y 6∈ A, (−y) 6∈ −A. Thus (−y) 6∈ A∪(−A) and ‖−y− z‖ ≤ δ , thus Lemma

3.5 implies

‖ f (−y)− f (z)‖ ≤ 2δ = 4

√

ε − ε2

4
< 4

√
ε =

√

4−λ 2
d−1

√
3

2
r ≤

√

4−λ 2
d−1r′

From the definition of f , it is clear that f (−y) = − f (y), thus Lemma 2.1 implies

‖ f (y)− f (z)‖> λd−1r′, and so f (y) and f (z) have different colors, meaning y and

z have different colors as well. Therefore χ(H)≤ d +1.

�

As an immediate application, if a random Borsuk graph leaves some spherical

cap in Sd of radius bigger than r with no vertices, then it can be colored with d +1

colors. We will show that this is indeed the case when ε → 0 at the said rate. We

now include some theorems about Poisson Point Processes and Poisson distribu-

tions. For their proofs and a complete discussion refer to [16] or [9].

Theorem 3.7 (Poissonization). Let X1,X2, . . . , be uniform random variables on Sd .

Let M ∼ Pois(λ ) and let η be the random counting measure associated to the point

process Pλ = {X1,X2, . . . ,XM}. Then Pλ is a Poisson Point Process and for a Borel

A ⊂ Sd , η(A)∼ Pois

Å
λ A(A)

A(Sd)

ã
.
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Lemma 3.8. For n ≥ 0, P [Pois(2n)< n]≤ e−0.306n.

We are now ready to prove the Theorem 1.3.

Proof of Theorem 1.3. Let X1,X2, . . . , be uniform random variables on Sd . Let M ∼
Pois(2n). Let η be the random counting measure of the Poisson Point Process

{X1, . . . ,XM}. Similarly, let ηn
1 be the counting measure of the Random points

{X1, . . . ,Xn}.

Let

δ =
16

√
ε

√

3(4−λ 2
d−1)

= Ad

√
ε,

where Ad is a constant which only depends on d. Let B = {y1, . . . ,yN} be the δ -net

given by Lemma 3.3, so

N ≥ 3

dδ d
=

Bd

εd/2
,

and Bd is constant. Let Fi = ÛB(yi,δ/2) for i = 1, . . . ,N be spherical caps centered

at the δ -net. Thus, as in the proof of 3.3, the Fi’s are disjoint. Lemma 3.1 gives

A (Fi)

A
Ä
Sd
ä ≤ d

3

Ç
δ

2

åd

= Ddεd/2,

where Dd is constant.

Note that these spherical caps have the same radius required by Lemma 3.6, so

if we prove that a.a.s. one of these Fi’s doesn’t contain any vertices of the random

Borsuk graph, then it must be contained in Sd \Fi, and the Lemma 3.6 gives a proper

(d+1) coloring. This is what we do.

Note that

P

ñ
min

1≤i≤N
η(Fi) = 0

ô
≤ P

ñ
min

1≤i≤N
ηn

1 (Fi) = 0

ô
+P [M < n] . (1)
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We have

P

ñ
min

1≤i≤N
η(Fi) = 0

ô
= 1−P





N
∧

i=1

η(Fi)> 0



= 1−
N
∏

i=1

P [η(Fi)> 0]

= 1−
Ç

1−P

ñ
Pois

Ç
2n

A (F1)

αd

å
= 0

ôåN

≥ 1− exp

Ç
−exp

Ç
−2n

A (F1)

αd

å
N

å

≥ 1− exp

Ç
−exp(−2nDdεd/2)

Bd

εd/2

å

= 1− exp

Ç
− Bd

Cd/2 logn
n1−2DdCd/2

å
.

This last expression tends to 1 as n → ∞, since C is such that 1−2DdCd/2 > 0.

Lemma 3.8 assures that

P [M < n] = P [Pois(2n)< n]→ 0

as n → ∞, and therefore (1) gives P

ñ
min

1≤i≤N
ηn

1 (Fi) = 0

ô
→ 1, as desired.

�

4. FURTHER QUESTIONS

(1) It might be possible to find sharper constants in Theorems 1.2 and 1.3. For

d = 1, it is certainly possible. The following can be achieved with similar

methods to the ones used throughout this paper, so we include the statement

without proof.

Theorem 4.1. Let ε =C (logn/n)2
.

(a) If C ≥ 9π2/4, then a.a.s. χ
Ä
Bor1(ε,n)

ä
= 3.

(b) If C < π2/4, then a.a.s. χ
Ä
Bor1(ε,n)

ä
≤ 2.

(2) We wonder whether there exist functions ε = ε(n) such that the chromatic

number of the random Borsuk graph Bord(ε,n) a.a.s. equals i, for 1 ≤ i ≤
d +1.
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(3) We only studied here the case that d is fixed and ε is either fixed or tends to

zero at some rate. It also seems interesting to let d → ∞ at some rate, or to

let d be fixed and ε → 2. See, for example, Raigorodskii’s work on coloring

high-dimensional spheres [19].

We thank our anonymous referees for careful reading and helpful comments.
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dowatelskiĭ Institut Matematiki i Mechaniki pri O. M. G. U.: Moscow, 1930.
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[20] A. A. Sagdeev. An improved Frankl-Rödl theorem and some of its geometric consequences.

Problemy Peredachi Informatsii, 54(2):45–72, 2018.
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