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THE CHROMATIC NUMBER OF RANDOM BORSUK GRAPHS

MATTHEW KAHLE AND FRANCISCO MARTINEZ-FIGUEROA

ABSTRACT. We study a model of random graph where vertices are n i.i.d. uniform random points on
the unit sphere S¢ in R?*!, and a pair of vertices is connected if the Euclidean distance between them
is at least 2 — €. We are interested in the chromatic number of this graph as n tends to infinity.

It is not too hard to see that if € > 0 is small and fixed, then the chromatic number is d + 2 with
high probability. We show that this holds even if € — 0 slowly enough. We quantify the rate at which
€ can tend to zero and still have the same chromatic number. The proof depends on combining topo-
logical methods (namely the Lyusternik—Schnirelman—Borsuk theorem) with geometric probability
arguments. The rate we obtain is best possible, up to a constant factor — if € — 0 faster than this, we
show that the graph is (d + 1)-colorable with high probability.

1. INTRODUCTION

Given € > 0 and d > 1, the Borsuk Graph Bord(e) is the graph with vertex set
corresponding to points on the d—dimensional unit sphere §¢ C R?*! and edges
{x,y} if and only if ||x — y|| > 2 — €, that is, if the two points are €-near to antipo-
dal. Here distance is measured in the ambient Euclidean space R4+!. It is well
known that when € is sufficiently small, its chromatic number is d + 2, in fact this
is equivalent to the Borsuk—Ulam theorem.

The Borsuk graph was part of Lovdsz’s inspiration for his proof of the Kneser
conjecture [12]. Among other properties, this graph constitutes a nice example of a
graph with large chromatic number and odd girth. See for example [21} (17,15, 16]. It
has also been studied because of its relation with Borsuk’s conjecture and distance
graphs [19, 3,18} 20].

We are interested in the chromatic number of random induced n-vertex subgraphs
of the Borsuk graph. Our main point is that if € — 0 slowly enough as n — oo, then
topological lower bounds on chromatic number are tight. This contrasts with the
situation studied by Kahle in [8], where topological lower bounds are not efficient
for the chromatic number of Erd6s—Rényi random graphs. Similar problems have
also been studied for random Kneser graphs in [11] and [[10].
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The rest of the paper is organized as follows. We finish this section with some
definitions and notation. In section 2l we prove Theorem [L.1l when € is fixed.

Theorem 1.1. Letd > 1 and 0 < € <2 — A, be fixed. Then a.a.s.
4 (Bord(e,n)> =d+2.

In section 3l we prove Theorem[1.2] stating that the chromatic number is still the
same when € — 0 slowly.

! 2/d
Theorem 1.2. Let £(n) =C < ogn) , Where
n

64 (312 /¢
c>2 (22

Then a.a.s. x (Bord(e(n),n)> =d+2.

Finally in section 3.2l we prove Theorem showing that this rate is tight, up
to a constant, in the sense that if € — 0 faster, then the random Borsuk graph is
(d+ 1)-colorable, a.a.s.

Theorem 1.3. Let £(n) = C(logn/n)*4, where

3(4—237) 4 9
““Ta i
Then a.a.s. (Bord(s(n),n)) <d+1.

Definition 1.4 (Random Borsuk graph). Givenn > 1, d > 1, and € > 0, we define
a random Borsuk graph, Bor’ (e,n), as follows.

e [tsvertices are X1,X»>,--- , X, n independent and identically distributed uni-
form random variables over the d-dimensional sphere $¢ C R4t of radius
1.

o X;and X fori# j are connected by an edge, if and only if || X; — X;|| > 2 —¢,
where ||-|| is the Euclidean distance.

Throughout this paper we will think of random Borsuk graphs on $¢ for a fixed
dimension d. However we will explicitly point out the constants that depend on
d in the statement of the results. We will denote the closed ball with center x and
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radius r by B(x,r) = {y eRM: x—y| < r}. Similarly, we denote intersections
of closed balls with the d-sphere by B (x,r), and we call them spherical caps, so

B(x,r) :=B(x,r)Ns? = {y est:|lx—y| < r}

Given a Borel set F C R4t we denote its volume, i.e. Lebesgue measure, as
¥ (F). Similarly, for a Borel set F C §¢, we denote its area on the surface of the
sphere, by 27(F). Also, we denote ®; = ”//<Sd> and oy = ,Q/(Sd). Given a graph
G, we denote its chromatic number by x(G).

We say that an event happens asymptotically almost surely (a.a.s) if the proba-
bility approaches 1 as n — oo.

2. RANDOM BORSUK GRAPH WITH € CONSTANT

We start by proving that when & > 0 is constant and small, x (Bor?(&,n)) = d 42
a.a.s.

Lemma 2.1. For x,y € §¢, ||[x—y|| >2 — € if and only if ||x+ | < 2\/& — %2

Proof. Since (—x)x is a diameter, (—x)y L Xy. Thus ||x+y||*> =4 — ||x— y||*, so the
claim follows. [ ]

Before getting into the analysis of the chromatic number, let us point out the fact
that the odd girth of the Borsuk graph is > 1/4/€. While this has been observed
before (see [5, 16, 21]), we include a proof for completeness.

Lemma 2.2. Let € > 0 and xy € $¢. If X0Y1X1Y2 - - XnYn+1 = Xo 1s an odd cycle in
the Borsuk graph Bor“(g), then 2n+ 1 > 1/+/€. In other words, all odd cycles in
Bor“ (&) have length greater than 1/./€.

Proof. Since ||x; —yi||, |[yvi —xi_1]| > 2 — €, for any i, by applying Lemma 2.1 we
get

i = xi1 | < [l 4 yil| + | =yi = xi-1 ]
= [ +yill + [lyi +xi1
<4\/e—¢€2/4

< 44/e.

Thus

[Fen = o[l < [l = n—1 ]| + n—1 — X2l 4+ + [lx1 = xo]| < 4nv/e.
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Finally,
2 =112x0]| = [lx0 +yur1ll < [0 =2l + [0 +yns1 ]| < 2(2n+1)Ve.

Therefore .
— < 2n+1.

VE

Lemma 2.3. For each d > 1, there exist a constant A; < 2 such that, whenever
0 < r <2— Ay, the Borsuk graph Bord(r) has a proper coloring with d 4 2 colors.

Proof. Let A be the regular (d + 1)-simplex inscribed in the unit d-sphere S¢. Con-
sider the map ® : dA — S¢ from the boundary of A to S¢ given by ®(x) = x/ ||x].
Note then that @ is a homeomorphism. Let T € JA be a maximal face, and let
Ay = diam (®(7)). Since A is regular, the value of A; does not depend on the face
T.

Note now that A; < 2. To see this, suppose that A; = 2. Since 7 is closed, so

is ®(71), so there exist x,y € T such that |®(x) —P(y)|| = 2. This means P(x)

and ®(y) are antipodal, and so y = —Hx. Since 7 is convex, 0 = I /(x| + y[)x +

¥l /(1 + vy must also be in T, but this is a contradiction, since T C dA, proving
the claim.

We now give a coloring for $¢ as follows. We start by coloring dA: give a
different color to each of the d + 2 facets, and for the lower dimensional faces,
assign an arbitrary color among the facets that contain them. Finally, color ®(x) €
S9_ with the color of x.

Note this is indeed a proper coloring for Bord(r), since all points in S¢ of the
same color lie on the image of a facet ®(7), of diameter A;; so if x and y have the
same color, ||x — y|| < A4 < 2—r so they are not connected by an edge in the Borsuk

graph. n

The upper bound for the chromatic number follows immediately from Lemma
The proof we give below for the lower bound, is a direct application of the
Lyusternik—Shnirelman—Borsuk Theorem [13} i4]. We state this well-known theo-
rem without proof; for more details and a self-contained proof see, for example,
Chapter 2 of Matousek’s book [[15]].

Theorem (Lyusternik—Shnirelman—-Borsuk). For any cover Uy, ...,U,. 1 of the sphere
S¢ by d + 1 open (or closed) sets, there is at least one set containing a pair of an-
tipodal points.



THE CHROMATIC NUMBER OF RANDOM BORSUK GRAPHS 5

We note that Barany gave a short proof of Kneser’s conjecture using this theorem
[2]. See also Greene’s proof [7]. For the rest of the paper, we refer to this theorem
as the LSB Theorem.

Proof of Theorem L1 By Lemma[2.3] since Bor?(&,n) C Bor(g), d +2 is an up-
per bound for the chromatic number of the random Borsuk graph.

Let F|,F,,...,Fy be a cover of ¢ by Borel sets, such that diam(F;) < g and
o/ (F;) > 0 for all i. Note we can construct such a family of sets in many ways, for
instance, as we do in the next section, we can consider a 8-net of S¢ and let the
sets F; to be spherical caps centered on the §-net of radius \/€/4 where 8 < \/€/4.
Note here that the sets F; and N depend only on €, which is fixed.

Let ¢ = min, % and G = Bor‘(g,n). The following computation shows that,

a.a.s., G contains at least one vertex in each of the sets F;.

P

=

(V(G)NF £0)| =1-P |’

1

1

since N and c are constant, 1 — N(1 —c¢)" — 1 as n — oo, proving the claim.

We may assume then, G has a vertex y; € F; fori = 1,...,N. Proceeding by way
of contradiction, suppose there exists a proper coloring of G with d + 1 colors. For

each j=1,...,d+ 1 define
~ €
U,-=UB<yk,§>

where the union is taken over all the y;’s of color j.

Since F; C B (y,-, %) ,the sets Uy, ...,Uy are a closed cover of S4. Thus, by the
LSB Theorem, there exists an antipodal pair in one of the closed sets. Without lost



6 MATTHEW KAHLE AND FRANCISCO MARTINEZ-FIGUEROA

of generality, say x, (—x) € U}, sox € E(yl, g) and (—x) € B (yz, @), with both
y1 and y, having color 1. Then,

2
Iy1+x20l < llyi = x| + x4+ 32/ < Ve < 2\/;7

where the last inequality holds because € < 2. Lemma[2.1lthen implies ||y; — yo|| >
2 —¢,s0y; and y, are connected by an edge in G, giving the desired contradiction.

]
3. RANDOM BORSUK GRAPH WITH € — 0

3.1. Lower Bound. The proof we gave for the lower bound in Theorem sug-
gests that we should be able to let € — 0 and still a.a.s. get the same chromatic
number. Indeed, this will be the case. We just need to control the number of sets N
we use to cover the sphere and their area, in such a way that

lim 1—N(1—¢)" — 1.

n—soo

In this section we discuss how to do this using 8-nets on S¢, and then adapt the
proof of Theorem[I.1]to get Theorem [1.2]
We start with a technical lemma on spherical caps.

Lemma 3.1. Given x € §¢ and 0 < r < 1, the following hold for the spherical cap
B=B(x,r).

(1) The boundary 9B, is a (d — 1)-dimensional sphere with radius
¥ =ry1-r2/4.

(2) Bis indeed a cap, i.e. there exist a d-hyperplane in R?*!, such that B is the
portion of §¢ contained in one of the semi-spaces defined by the hyperplane.

(3) The area <7(B) satisfies the inequalities
1 (v3\*! ,_ Bxr) d,
— (X)) HM<c o 5d
w\ 2 (s T3

Spherical caps are well studied in the literature. See, for example, Lemmas 2.2.
and 2.3 in [1]. We note that Lemma 2.2 in [[1]] is better than our Lemma [3.1]in the
case that r is fixed and d — oo, but we are interested in the case that d is fixed.
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Proof of Lemma 3.1l Without loss of generality, we may choosex=N = (0,...,0,1)
to be the north pole by rotating the sphere. Thus x € dB if and only if ||x|| = 1 and
|x—N|| = r. Then

2
7 =[x
=g+ g+ (= 1)

:x%—l—-~-—|—x¢2171+x¢21—2xd—|—1
:2—2Xd.

Soxg=1- é Therefore, the hyperplane {x; = 1 — é} determines the cap B,
proving (2). To get (1), note 1 = ||x||> = X34+ x5, s0o we get 3+ +x5 =
r? —r*/4 = (¥)?, for all x € dB, proving it is indeed a (d — 1)-dimensional sphere
with the desired radius.

For (3), recall we get the area of B= B (x,r) by integrating the length ¢ of the arc
from x to the boundary dB, over all the possible unit vectors. Thus

(B (x,r)) = / o) dg = ()4 / di = () oy

nesd-1 hesd—1

Some planar geometry gives the bounds

r < =2arcsin(r/2) <

WY
D

and

since 0 < r < 1. This gives

d—1
3
<£> oy < o(B) < grdad—l

Recall the formula for the surface area of the unit d-dimensional sphere

277:(d+1)/2
%= T a+n2);
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By using the fact that the Gamma function is increasing on [2,00) and treating the
first few cases separately, we have that for d > 1,

oag—1  T((d+1)/2) <

g  V/rl(d)2)

from which the desired result follows.

IA

1 d
T T’

For the sake of completeness, we include the following discussion on J-nets.
See, for example, [[14, Chapter 13] for more details.

Definition 3.2 (6-Nets). Given a metric space X with metric d, a 6-net is a subset
P C X such that for every x € X, there exists y € BB with d(x,y) < 0.

We can then construct a d-net for any compact metric space M inductively. In-
deed, choose any point y; € M. For each m > 2, if B, = U;’Llé(y,-, 0) C M, choose
any y,+1 € M\ By,. Otherwise, stop and let Z = {y|,y2,... ym}-

Compactness ensures that the process stops. It’s clear that 4 is a 6-net and
moreover it is also a maximal &-apart set. That is, d(y;,y;) > 6 whenever i # j, and
we can not add any other point to # without destroying this property. This implies
that the balls of radius 6 and center on the points y;’s cover M, while the open balls
of radius §/2 with center on the y;’s are all disjoint. We now show that we can
control the size of the §-net in the case that M = S,

Lemma 3.3. Foreveryd > 1 and 0 < 6 < 1 there exists a d-net Z C S9  such that
(1) for every two points y;,y; € X4, ||y —yjH > 0, and (2) its cardinality .4~ = |#|
satisfies:

3 2(3%)(d+1)
gs1 =" =T s

In the literature, it seems more common to find an upper bound such as
d+1
N < (4/8)7,

which is a better bound when 0 is constant and d — o [14, Lemma 13.1.1]. How-
ever, the bound we give is more useful for us since we are dealing with d constant
and 6 — 0.

Proof of Lemma[3.3l By letting % be the d-net defined above, we already have a
5-net for the sphere S¢ that is also a §-apart maximal set. To prove the inequalities
on its cardinality we give a volume and an area arguments.
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Since the points y; € 4 are 0 apart, the open balls int (B (y,-, g)) are disjoint. So

7/<,QB (yzg)) =N ay (g)dﬂ :

where w; denotes the volume of the d + 1—dimensional unit ball in R?*t!, Morever,
all such balls are contained in the set B (O, 1+5 ) \B (0 1— —) Thus

(009 < o+ 2) o)
(04

=6 (1+= ) (1—§>r

]
< a)dSXi:(l >

:wdé(d+1)(1+§>

3\ 4
<wg8(d+1) (§> )
and the upper bound for .4 follows.

For the lower bound, we consider the area of the spherical caps. Since all points
in $¢ are within distance 8 of the points y; € % we must have

¢<sd):d<gé<yi, )<Zszf( (v1,8)) = A /(B (y1,9))

(8
Therefore, Lemma[3.1]yields 4" > o B (<y0,>5)> = d?o‘d ’ .

We now proceed to prove Theorem [1.2]

Proof of Theorem[L.2l Let G = Bor?(g(n),n). Since € — 0, eventually &€ < 2 — A,
so by Lemma[2.3] x(G) < d+2. We now proceed to prove the lower bound by a
modification of the proof of theorem
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Let 8 = \/€/4. Let 2 be the §-net given by Lemma[3.3] Say Z = {y1,y2,--, N }»
where
23N (d+1) Ay
5d T gd/y
and A; is a constant which only depends on d. For each i = 1,--- N, define
F; = B(y;,8). Note then the F/'s cover the sphere and diam (F}) < 28 = g

N <

Applying Lemma 3.1 we have
d—1
A (Fi) > 1 (V3 el2 — g gl _. .
A(S?) ~ 4m

8
where B, is constant.

Finally, all that remains to prove is that 1 — N(1 —c¢)" — 1 as n — oo, even when

N and ¢ depend on n. This is as follows
Ag

= % (1 —Bded/z)n

Agn B,C?10gn\"
- ar (e Ter
C?/21ogn n
Adn
LA
~ C9/21ogn
_ Ad 1—Bdcd/2
C?/21ogn
The last expression goes to zero as n — oo, since
64 4 372
> = B
-3 4
s0 B;C4/% > 1 and this completes the proof. n

exp (—BdCd/2 logn)

C

Corollary. If

64 4372 (logn\*/?
— ) — < <2 —
3 1 ( " ) _8(11) _2 Ad

for all sufficently large n, then ¥ (Bord(e(n),n)> =d+2aas.

Proof. The chromatic number is monotone with respect to €, so this follows di-
rectly. [ ]
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3.2. Upper Bound. Theorem[I.2]and its Corollary shows that if € — 0 sufficiently
slowly then the chromatic number of the random Borsuk graph is a.a.s. d+2. In this
section we show that the rate obtained is tight, up to a constant factor. That is, we
show an upper bound for € for which the random Borsuk graph is (d + 1)-colorable.

We start our analysis by constructing a proper coloring of Bor?(g) \ B(x, §) with
exactly d + 1 colors, for a suitable 0 that depends on €. Lemma[3.1] establishes that
the boundary of an spherical cap on $¢ is a $¢~! with radius §’, and Lemma[2.3] al-
lows to color it with d + 1 colors. We will provide the technical details to translate
this coloring into a proper coloring of the desired graph.

For the following analysis consider the spherical cap A = B (N,r), where N is
the north pole. For each x € 8¢\ {N,—N}, let % : [0, ] — S¢ be the great semi-
circle going from N to —N and passing through x. Define f : ¢ — dA by letting
f(x) be the intersection of ¥, with dA. Note this is a well defined function, since if
x = (xp,-..,Xq), We can parametrize

sint sint
%c(t)_ ﬁxo,...,ﬁxd,l,cost

so its last coordinate takes all values in [—1, 1] exactly once for 0 <7 < &, and from

: . . . 2
Lemma 3.1l we know dA consists of all points with last coordinate a := 1 — ..

The following lemmas construct the desired coloring.

Lemma 3.4. Let x,y € S\ {N,—N} such that ||x — y|| < . Define y/ = (30, ...,Y)
to be the point in the geodesic ¥, such that y/, = x,. Then ||x —y'|| < 24.

Proof. Without lost of generality, we may assume y = (0,0,...,0, l—yczpyd)’
since we can get this by a rotation of the sphere that leaves the last coordinate
fixed. This rotation fixes the north and south poles, so it also transforms the geo-
desic through y into another geodesic through y. Thus, the formula for the geodesic
simplifies to

% = (0,...,0,sint,cost), for 0 <z < 7.

So,y = (0,...,0,1/1 —x3,x;). Then

2
b=yl = B4+ 2 a (xat = 1233) + (ra—3a)?
= (1 —X§> +(1 —yZ) —2xd,1\/ 1 —yfl-i-(xd—yd)z



12 MATTHEW KAHLE AND FRANCISCO MARTINEZ-FIGUEROA

and

=y = (Vi=z - yT=23) + ta—sa?

:(l—xd) l—yd -2 l—xd l—yd—l— Xg— yd)

Since xy_1 < |xg_1| < \/xF+-- x5 = /1 —x3, we get ly—y|| < x—y,

and so
=] < =1l + |y = < 2=yl < 25.

Lemma 3.5. Let x,y € S\ {N,—N} such that x ¢ AU (—A) and |[x — y|| < 8. Then

1f () = F)II < 28.

Proof. Lety' € ¢ such that its last coordinate is ¥l; = x4. From the parametrization
for v, we see f(x) = ¥%(t1), where cost; = a and sint; = /1 —a? = &', the radius
of 0A, hence

o) o)
f(.X)— \/qx()?"'?ﬁxdfba .

A similar expression holds for f(y'), with y, = x4, so we get

Moreover, since x € AU (—A), |x4| < a, so \/f—xz <1, s0 || f(x) = fO)] <

|x—/||. Finally, if we let y' be the one defined in Lemma[3.4] f(y') = f(y), and

therefore [| f(x) — f(y) | = I/ (x) = FO)I < [lx =] < 26.
|
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Lemma 3.6. Let O < € < 1, such that

8ve

F=—— < 1,
3(4—27_))

xe 89 and A = B(x,r). Let H be the induced subgraph of Bor?(g) by the vertex
set SY\ A. Then y(H) <d+1.

Proof. Without loss of generality let x = N the north pole, so A = B (N,r). Lemma

says dA is a S~ ! sphere of radius 7 = ry/1 — ’4—2 > gr. Thus adapting Lemma
we can color it in such a way that every two points with the same color are at a
distance of at most A;_;7’. We then color H by giving each point y € S\ A\ {—~N}
the color of f(y), and giving the south pole —N any color. We proceed to prove this
is a proper coloring of H.

From Lemma 2.1 the neighbors of the south pole lie in E( A\ E—€2/ 4) CA,
so —N is isolated in H. Let y,z € S¢\ A\ {—N} such that ||y —z|| > 2 — €. Lemma

2implies [[y+z|| < 0 :=2y/e— %2. If we had (—y), (—z) € A, that would mean
¥,z € —A, but then ||y —z|]| < r <2 — ¢ for small €. So we may assume (—y) & A,
and sincey € A, (—y) € —A. Thus (—y) AU (—A) and |-y —z|| < 8, thus Lemma
3.3implies

2
IF(=0) - F@I <28 =4ye -5 <4y = m?rg Nrerra

From the definition of f, it is clear that f(—y) = —f(y), thus Lemma 2.1l implies
1 f(y) — f(2)|| > A4—17, and so f(y) and f(z) have different colors, meaning y and
z have different colors as well. Therefore y(H) < d+ 1.

As an immediate application, if a random Borsuk graph leaves some spherical
cap in S of radius bigger than r with no vertices, then it can be colored with d + 1
colors. We will show that this is indeed the case when € — 0 at the said rate. We
now include some theorems about Poisson Point Processes and Poisson distribu-
tions. For their proofs and a complete discussion refer to [16] or [9]].

Theorem 3.7 (Poissonization). Let X1, X», . .., be uniform random variables on S¢.
Let M ~ Pois(A) and let i) be the random counting measure associated to the point
process Py= {X1,X2,...,Xu}. Then P, is a Poisson Point Process and for a Borel

A cC 8% n(A) ~ Pois (l 1(3)))‘
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Lemma 3.8. For n > 0, P [Pois (2n) < n] < e~ 03067,

We are now ready to prove the Theorem

Proof of Theorem[[.3l Let X,X, ..., be uniform random variables on S¢. Let M ~
Pois (2n). Let n be the random counting measure of the Poisson Point Process
{X1,...,Xn}. Similarly, let N} be the counting measure of the Random points

{X1,...,Xn}.
Let

5=V _4ve
= A)

where A, is a constant which only depends on d. Let Z = {yy,...,yny} be the §-net
given by Lemma[3.3] so

3 By

> - = 4

and By is constant. Let F; = B(y;,8/2) for i = 1,...,N be spherical caps centered
at the §-net. Thus, as in the proof of the F;’s are disjoint. Lemma[3.1] gives

, d
o(F) _d (g) _ pyell?,

where D, is constant.

Note that these spherical caps have the same radius required by Lemma SO
if we prove that a.a.s. one of these F;’s doesn’t contain any vertices of the random
Borsuk graph, then it must be contained in §¢ \ F;, and the Lemma[3.6gives a proper
(d+ 1) coloring. This is what we do.

Note that

N
P min 1(F) 0}—Pl<i<N

min Ny (F) = O} +P[M <n]. (1)
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We have

N
An(E)>0| =1-[[P[n(F) >0

i=1 i=1

—1— (1 —P {Pois (mﬁé?)) = ODN

> 1—exp <—exp <—2n@> N)

Oq

N
P

min 1 (F) :0} =1-P

1<i<N

B
> 1—exp (—exp(—ZnDdsd/z)gd—‘/lz)

_ By 1—2D 4/
= 1 —eXp (_Wlognn d .

This last expression tends to 1 as n — oo, since C is such that 1 — 2DdCd/ 250.

Lemma[3.8 assures that

P[M < n] =P[Pois (2n) < n] =0

as n — oo, and therefore (I)) gives [P

in n}(F)= 1 ired.
lI%lilgnan( i) 0} — 1, as desired

4. FURTHER QUESTIONS

(1) It might be possible to find sharper constants in Theorems [.2]and For
d =1, it is certainly possible. The following can be achieved with similar
methods to the ones used throughout this paper, so we include the statement
without proof.

Theorem 4.1. Let & = C (logn/n)>.

() If C >97% /4, then a.as. x (Bor!(g,n)) = 3.
(b) If C < /4, then a.as. x (Bor'(g,n)) < 2.
(2) We wonder whether there exist functions € = £(n) such that the chromatic

number of the random Borsuk graph Bor?(&,n) a.a.s. equals i, for 1 <i <
d+1.
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(3) We only studied here the case that d is fixed and ¢ is either fixed or tends to
zero at some rate. It also seems interesting to let d — oo at some rate, or to
let d be fixed and € — 2. See, for example, Raigorodskii’s work on coloring
high-dimensional spheres [[19]].

We thank our anonymous referees for careful reading and helpful comments.
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