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Abstract

Recent studies show that Shewhart median chart is widely used
for detecting shifts in a process, but it is often rather inefficient in
detecting small or moderate process shifts. In order to overcome this
problem, a Synthetic chart can be used. This chart outperforms the
Shewhart type chart because it uses the information about the time in-
terval between two consecutive nonconforming samples. In this paper,
we propose and study the Phase II Synthetic median control chart. A
Markov chain methodology is used to evaluate the statistical perfor-
mance of the proposed chart. Moreover, its performance is investigated
in the presence of measurement errors, which are modelled by a linear
covariate error model. We provide the results of an extensive numerical
analysis with several tables and figures in order to show the statistical
performance of the investigated chart, for both cases of measurement
errors and no measurement errors. Finally, an example illustrates the
use of the Synthetic median chart.
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1 Introduction

Control charts are the simplest type of on-line statistical process control
(SPC) procedures. In recent years, many authors focus on developing uni-
variate and multivariate control charts for monitoring shifts in process mean
and/or changes in process standard deviation (covariance matrix). For fur-
ther details see for instance Chen and Hsieh 9 , Castagliola and Figueiredo 6 ,
Frisen 18 , Faraz et al. 17 , Aslam et al. 3 . In the SPC literature, median (X̃)
charts have already been investigated and used to detect shifts in a pro-
cess. Many authors have focused on developing their properties and design
stategies, for further details see for instance Castagliola 5 , Khoo 24 , Sheu
and Yang 36 , Castagliola and Figueiredo 6 , Ahmad et al. 1 , Ahmad et al. 2 ,
Castagliola et al. 7 , Hu and Castagliola 19 and Lin et al. 27 . It is well known
that Shewhart type control charts are very easy to design and to interpret.
However, they are rather slow in the detection of small or moderate process
shifts. For this reason several methods / strategies have been proposed in
SPC literature to overcome this problem. Among these methods, Synthetic
control charts are widely used to detect shifts in a process. Wu and Sped-
ding 42 were the first to introduce the Synthetic X̄ chart to the field of SPC;
then, its properties and design stategies have been thoroughly investigated
by many authors. For further details see, for instance, Davis and Woodall 15 ,
Chen and Huang 8 , Huang and Chen 22 , Costa and Rahim 13 , Costa et al. 12 ,
Wu et al. 41 , Khoo et al. 25 . Recently, Zhang et al. 43 investigated the effect
of estimated process parameters on the performance of the Synthetic chart
using a Markov chain model and they shown that the run length (RL) per-
formance of the Synthetic chart is quite different in the known and in the
estimated process parameters cases.

However, as far as we know, the Synthetic median (Synthetic X̃) control
chart has never been considered in the SPC literature. Therefore, the goal of
this paper is to investigate the performance of the Synthetic X̃ control chart.
Furthermore, in many industrial scenarios, there often exist significant mea-
surement errors that affect the performance of control charts. Since Bennet 4

investigated the effect of measurement errors on the Shewhart X̄ chart, the
consequences of the measurement errors on the performance of various con-
trol charts have been studied by a number of authors, see, for example,
Kanazuka 23 , Linna and Woodall 28 , Linna et al. 29 , Maravelakis 31 , Costa
and Castagliola 11 , Maravelakis 32 , Hu et al. 20 , Noorossana and Zerehsaz 35 ,
Hu et al. 21 , Tran et al. 39 , Tran et al. 38 , Cheng and Wang 10 , Maleki et al. 30

and Tran 37 . We examine here the performance of the Synthetic X̃ control
chart in the presence of measurement errors by assuming the measurement
error model as in Linna and Woodall 28 .

The remainder of the paper is organized as follows: in Section 2, the
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Synthetic X̃ chart and its run length properties are defined; in Section 3,
the statistical performance of the Synthetic X̃ chart is presented and simple
guidelines are proposed; in Section 4, the linear covariate error model for
the sample median is defined; Section 5 provides the formulas for the control
limits and the performance metrics of the Synthetic X̃ control chart in the
presence of a measurement errors; in Section 6, the effects of measurement
errors on the Synthetic X̃ control chart performance are investigated. Sec-
tion 7 presents an illustrative example and, finally, some concluding remarks
and recommendations are made in Section 8.

2 Design and implementation of the Synthetic X̃

control chart

Let {Xi,1, . . . ,Xi,n}, i = 1, 2, . . ., be a Phase II sample of n independent
normal random variables, more precisely, N(µ0 + δσ0, σ0), where i is the
subgroup number, µ0 is the in-control mean value, σ0 is the in-control stan-
dard deviation and δ is the magnitude of the standardized mean shift. If
δ = 0 the process is in-control and, when δ 6= 0, the process is out-of-
control. Let X̃i be the sample median of n independent normal random
variables {Xi,1, . . . ,Xi,n} corresponding to subgroup i = 1, 2, . . ., i.e.

X̃i =











Xi,((n+1)/2) if n is odd

Xi,(n/2) +Xi,(n/2+1)

2
if n is even

(1)

where {Xi,(1),Xi,(2), . . . ,Xi,(n)} is the ordered sample of the mean values
for subgroup i = 1, 2, . . .. Without loss of generality, we assume that the
sample size n is an odd value in this paper. This makes the sample median
easier and faster to compute. Like in Castagliola and Figueiredo 6 , the c.d.f.
(cumulative distribution function) FX̃(x|n) of the sample median X̃i can be
written as

FX̃i
(x|n) = Fβ

(

Φ

(

x− (µ0 + δσ0)

σ0

) ∣

∣

∣

∣

n+ 1

2
,
n+ 1

2

)

= Fβ

(

Φ

(

x− µ0

σ0
− δ

) ∣

∣

∣

∣

n+ 1

2
,
n+ 1

2

)

(2)

where Φ(x) is the c.d.f. of the standard normal distribution and Fβ(x|a, b) is
the c.d.f. of the beta distribution with parameters (a, b). Here a = b = n+1

2 .

The Synthetic X̃ chart consists of two sub-charts: a X̃ sub-chart and a
conforming run length (CRL) sub-chart. The CRL is defined as the num-
ber of inspected samples between two consecutive nonconforming samples,
inclusive of the nonconforming sample at the end. A sample is declared as

3



nonconforming if X̃i, i = 1, 2, . . ., falls outside predetermined control limits
of the X̃ sub-chart. Therefore, the control flow of the Synthetic X̃ control
chart can be summarized as follows:

Step 1 Determine the sample size n, the lower control limit H of the CRL
sub-chart and the control limits LCL and UCL of the X̃ sub-chart
(see (3) and (4) below).

Step 2 At each sampling point i = 1, 2, . . ., take a sample of size n from
the quality characteristic X and evaluate the sample median X̃i as in
(1).

Step 3 If LCL < X̃i < UCL, this sample is considered as a conforming
sample in the CRL sub-chart and the control flow goes back to step
2 to take the next sample. Otherwise, the sample is a nonconforming
one and the control flow goes to the next step.

Step 4 If CRL > H, the process is deemed to be in control and the control
flow goes back to step 2. Otherwise, the process is declared as out-of-
control and the control flow goes to the next step.

Step 5 Signal an out-of-control status to indicate a process mean shift.
Find and remove potential assignable cause(s). Then move back to
Step 2.

The control limits of the X̃ sub-chart of the Synthetic X̃ are

LCL = µ0 −Kσ0 (3)

UCL = µ0 +Kσ0. (4)

where K > 0 is a control chart constant. In order to obtain the run
length properties of the Synthetic X̃ control chart, similarly to Davis and
Woodall 15 , we use a Markov chain where the (H + 2,H + 2) transition
probability matrix P is equal to

P =

(

Q r

0⊺ 1

)

=



























1− θ θ 0 · · · · · · 0 0

0 0 1− θ
. . . 0 θ

...
. . .

. . .
. . .

...
...

...
. . . 1− θ 0

...
0 · · · · · · · · · 0 1− θ θ

1− θ 0 · · · · · · · · · 0 θ

0 · · · · · · · · · · · · 0 1



























, (5)

where 0⊺ = (0, 0, . . . , 0) is a (1,H + 1) row vector, Q is a (H + 1,H + 1)
transition probability matrix for the transient states, the (H +1, 1) column
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vector r satisfies r = 1 − Q1 with 1 = (1, 1, . . . , 1)⊺ and θ = P (X̃i 6∈
[LCL,UCL]) is the probability of a nonconforming sample on the X̃ sub-
chart, i.e. using (3) and (4)

θ = 1− FX̃i
(UCL|n) + FX̃i

(LCL|n)

= 1− Fβ

(

Φ

(

µ0 +Kσ0 − µ0

σ0
− δ

) ∣

∣

∣

∣

n+ 1

2
,
n+ 1

2

)

+Fβ

(

Φ

(

µ0 −Kσ0 − µ0

σ0
− δ

) ∣

∣

∣

∣

n+ 1

2
,
n+ 1

2

)

= 1− Fβ

(

Φ (K − δ)

∣

∣

∣

∣

n+ 1

2
,
n+ 1

2

)

+ Fβ

(

Φ (−K − δ)

∣

∣

∣

∣

n+ 1

2
,
n+ 1

2

)

,(6)

where FX̃i
(.|n) is the c.d.f. of X̃i as defined in (2).

Let q be the (H +1, 1) vector of initial probabilities associated with the
H+2 transient states, i.e., q = (q0, q1, . . . , qH+1)

⊺. As proposed by Neuts 34

and Latouche and Ramaswami 26 , since the number of steps, say Run Length
or RL, until the process reaches the absorbing state is a Discrete PHase-

type (or DPH) random variable of parameters (Q,q), the mean (ARL) and
the standard-deviation (SDRL) of RL of the Synthetic X̃ control chart are
equal to

ARL = ν1, (7)

SDRL =
√

ν2 − ν21 + ν1, (8)

with

ν1 = q⊺(I−Q)−11, (9)

ν2 = 2q⊺(I −Q)−2Q1. (10)

and q = (q0, q1, . . . , qH+1)
⊺ which the solution of (I − Q)q = 1 yields the

zero-state ARL (see Davis and Woodall 16).

It is important to note that, if the process is running for some time in
an in-control condition, it will reach quite quickly the steady-state mode.
In order to study the long term properties of the Synthetic X̃ control chart,
it is appropriate to investigate the steady-state ARL. Using the Markov
Chain approach, the cyclical steady state mean (SARL) and the standard-
deviation (SSDRL) of the run length RL of the Synthetic X̃ control chart
are found as follows

SARL = νs1, (11)

SSDRL =
√

νs2 − ν2s1 + νs1 (12)
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with

νs1 = ψ⊺(I−Q)−11, (13)

νs2 = 2ψ⊺(I −Q)−2Q1, (14)

where the vector ψ is the cyclical steady state distribution. Following Dar-
roch and Seneta 14 we conclude that the cyclical steady-state vector is given

by ψ = (I−Q⊺)−1q

1⊺(I−Q⊺)−1q
, where q is the (H + 1, 1) vector utilized in (7).

The statistical design of the Synthetic X̃ control chart is a nonlinear opti-
mization problem aimed at selecting the optimal couple of chart parameters
(H∗,K∗) such that

(H∗,K∗) = argmin
(K,H)

ARL(n,K,H, δ), (15)

subject to

ARL(n,K,H, δ = 0) = ARL0, (16)

or
ARL(n,K,H, δ = 0) = SARL0, (17)

where, for δ 6= 0, ARL(n,K,H, δ) is either the zero state or the cyclical

steady state ARL of the Synthetic X̃ control chart; ARL0 and SARL0 are
the predefined “in-control” zero state and cyclical steady state ARL value,
respectively. The optimization procedure can be summarized as follows:

Step 1 Set n, δ and ARL0/SARL0. Set ARLopt = +∞;

Step 2 Initialize H = 1;

Step 3 Compute K through constraint (17);

Step 4 Calculate ARL from the current design solution (H,K) by using
equation (7) or (11);

Step 5 If ARL < ARLopt, then ARLopt = ARL and (H∗,K∗) = (H,K).
Set H = H +1 and go back to Step 3. Otherwise, go to the next step;

Step 6 Take the current solution (H∗,K∗) as the optimal set of design
parameters for the Synthetic X̃ control chart and compute the opti-
mal control limits (LCL,UCL) of the Synthetic X̃ sub-chart by using
equations (3) and (4).

In this study, like in Tran and Tran 40 , in order to find these optimal
combinations (H∗,K∗) we simultaneously use a non-linear equation solver
jointly with an optimization algorithm developed in Scicoslab software.
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3 The Performance of the Synthetic X̃ control chart

In this Section, we will use the ARL, SDRL to evaluate the performance of
the Synthetic X̃ chart. Recall that the “in-control” zero state and cyclical

steady state ARL values are denoted by ARL0 and SARL0, respectively;
and here we set ARL0 = SARL0 = 370.4.

The zero state ARL and SDRL when the process is out-of-control (de-
noted by ARL1 and SDRL1) of the Synthetic X̃ control chart and the
optimal set of design parameters K∗, H∗ (when ARL0 = 370.4) are shown
in Table 1 for different combinations of δ ∈ {0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0}
and n ∈ {3, 5, 7, 9}.

INSERT TABLE 1 ABOUT HERE

In general, the proposed control chart has an attractive performance
compared to the Shewhart-X̃ chart, especially for small magnitude shifts
and small sample sizes. For instance, when n = 3 and δ = 0.2, we have
ARL1 = 258.3 and SDRL1 = 257.8 for the Shewhart-X̃ chart; ARL1 =
217.5 and SDRL1 = 282.9 for the Synthetic X̃ control chart, see Table 1.

The steady state ARL and SDRL when the process is out-of-control (de-
noted by SARL1 and SSDRL1) of the Synthetic X̃ control chart and the
optimal set of design parameters K∗, H∗ (when SARL0 = 370.4) are shown
in Table 2 for different combinations of δ ∈ {0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0}
and n ∈ {3, 5, 7, 9}. For instance, when n = 3 and δ = 0.2, we have K∗ = 37,
H∗ = 1.7225, ARL1 = 235.3 and SDRL1 = 235.6 for the Synthetic X̃ con-
trol chart.

INSERT TABLE 2 ABOUT HERE

4 Linear covariate error model for sample median

In this section, the linear covariate error model for the sample median X̃ is
defined. Let us assume that, at time i = 1, 2, . . ., the quality characteristic
X of n ≥ 1 consecutive items is equal to {Xi,1,Xi,2, . . . ,Xi,n}. We assume
that these Xi,j ’s are independent normal (µ0+δσ0, σ0) random variables. As
suggested by Linna andWoodall 28 , we assume that the quality characteristic
Xi,j is not directly observable, but can only be assessed from the results
{X∗

i,j,1,X
∗

i,j,2, . . . ,X
∗

i,j,m} of a set of m ≥ 1 measurement operations with
each X∗

i,j,k being equal to (linear covariate error model)

X∗

i,j,k = A+BXi,j + εi,j,k, (18)
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where A and B are two known constants and εi,j,k is a normal N(0, σM )
random error term due to the measurement inaccuracy, which is indepen-
dent of Xi,j. The smaller σM is, the higher the measure precision is.

For subgroup i = 1, 2, . . ., as j = 1, 2, . . . , n and k = 1, 2, . . . ,m, we have
m × n observations Xi,j,k and the mean X̄∗

i,j of the observable quantities
{X∗

i,j,1,X
∗

i,j,2, . . . ,X
∗

i,j,m} is equal to

X̄∗

i,j =
1

m

m
∑

k=1

X∗

i,j,k

=
1

m

m
∑

k=1

(A+BXi,j + εi,j,k)

= A+BXi,j +
1

m

m
∑

k=1

εi,j,k. (19)

It can then easily be shown that the mean µ∗ = E(X̄∗

i,j) and the standard

deviation σ∗ = σ(X̄∗

i,j) of X̄
∗

i,j are equal to

µ∗ = A+B(µ0 + δσ0), (20)

σ∗ =

√

B2σ2
0 +

σ2
M

m
. (21)

Let X̃∗

i be the sample median of the mean values {X̄∗

i,1, X̄
∗

i,2, . . . , X̄
∗

i,n}
corresponding to subgroup i = 1, 2, . . ., i.e.,

X̃∗

i =















X̄∗

i,((n+1)/2) if n is odd

X̄∗

i,(n/2) + X̄∗

i,(n/2+1)

2
if n is even

, (22)

where {X̄∗

i,(1), X̄
∗

i,(2), . . . , X̄
∗

i,(n)} is the ordered sample of the mean values

for subgroup i = 1, 2, . . .. In this case, the c.d.f. (cumulative distribution
function) FX̃∗(x|n) of the sample median X̃∗

i can be expressed as

FX̃∗

i

(x|n) = Fβ

(

Φ

(

x− µ∗

σ∗

) ∣

∣

∣

∣

n+ 1

2
,
n+ 1

2

)

= Fβ



Φ





x−A−B(µ0 + δσ0)
√

B2σ2
0 +

σ2

M

m





∣

∣

∣

∣

n+ 1

2
,
n+ 1

2



 . (23)

5 Implementation of the Synthetic X̃ chart with

measurement errors

If the in-control values for the mean µ0, the standard deviation σ0 and the
constants A, B, m, σM are all known, the control limits of the Synthetic X̃
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sub-chart in the presence of measurement errors are simply equal to

LCL∗ = A+Bµ0 −K

√

B2σ2
0 +

σ2
M

m
,

UCL∗ = A+Bµ0 +K

√

B2σ2
0 +

σ2
M

m
,

(24)

where K > 0 is a constant that depends on n, H and on the desired in-
control performance. The run length of the Synthetic X̃ control chart with
measurement errors can be obtained from (7) and (11) by simply replacing
the probabilities in (25) by θ∗ with:

θ∗ = 1− FX̃∗

i

(UCL∗|n) + FX̃∗

i

(LCL∗|n) (25)

= 1− Fβ



Φ



K − δBσ0
√

B2σ2
0 +

σ2

M

m





∣

∣

∣

∣

n+ 1

2
,
n+ 1

2



 (26)

+ Fβ



Φ



−K − δBσ0
√

B2σ2
0 +

σ2

M

m





∣

∣

∣

∣

n+ 1

2
,
n+ 1

2



 (27)

where FX̃∗

i

(.|n) is the c.d.f. of X̃∗

i as defined in (23).

6 The effects of measurement errors on Synthetic

X̃ chart

From Section 2, for fixed values ofm, n, B and η, we can obtain the (H∗,K∗)
values and the coresponding to the zero state ARL (ARL1) values. Simi-
larly, we can obtain the (H∗,K∗) values and the coresponding to the steady
state ARL (SARL1) values of the Synthetic X̃ chart with linear covariate
error model. We set ARL0 = SARL0 = 370.4. These values are presented
in Table 3 and Table 4 for different combinations of the precision error ra-
tio η ∈ {0, 0.1, 0.2, 0.3, 0.5, 1.0}, δ ∈ {0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0} and
n ∈ {3, 5, 7, 9} when m = 1 and B = 1.

INSERT TABLE 3 ABOUT HERE

INSERT TABLE 4 ABOUT HERE

The obtained results show that, for fixed values of n, δ, m = 1 and B = 1,
the smaller the precision error ratio η is, the faster the control charts are in
the detection of the out-of-control condition, demonstrating the negative ef-
fect of the measurement errors on the performance of the Synthetic X̃ chart.
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For instance, when n = 3, B = 1, m = 1 and δ = 0.2, we have ARL1 = 217.5
and SARL1 = 235.3 for η = 0 (process is free of measurement error) and
ARL1 = 221.4 and SARL1 = 156.6 for η = 0.2 (see Table 3 and Table 4).

Table 5 and Table 6 show the performance of the Synthetic X̃ charts un-
der linear covariate error model for different combinations of B ∈ {1, 2, 3, 4, 5},
δ ∈ {0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0} and n ∈ {3, 5, 7, 9} when m = 1 and
η = 0.28. The specific value of η = 0.28 is motivated by assuming an
acceptable value for the signal-to-noise ratio

SNR =

√

√

√

√

2
1+η2

1− 1
1+η2

=

√
2

η
, (28)

which is a measure of performance of the measurement system precision

adequacy. The SNR is defined by the Automotive Industry Action Group
(AIAG) for the execution of a Gauge R&R analysis (see Montgomery 33 ).
The value η = 0.28 corresponds to SNR = 5, which is the lower bound
value to get an acceptable precision of the measurement system.

INSERT TABLE 5 ABOUT HERE

INSERT TABLE 6 ABOUT HERE

It can be noted from Table 5 and Table 6 that, for fixed values of n, δ, η
and m, as the value of B increases, the negative effect of the measurement
errors on the performance of the Synthetic X̃ charts decrease. For instance,
when n = 3, η = 0.28, m = 1 and δ = 0.2, we have ARL1 = 225.0 and
SARL1 = 242.2 for B = 1 and ARL1 = 218.0 and SARL1 = 235.7 for
B = 4 (see Table 5 and Table 6).

The performance of the Synthetic X̃ chart under linear covariate er-
ror model is shown in Table 7 and Table 8 for different combinations of
m ∈ {1, 3, 5, 7, 10}, δ ∈ {0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0} and n ∈ {3, 5, 7, 9}
when B = 1 and η = 0.28.

INSERT TABLE 7 ABOUT HERE

INSERT TABLE 8 ABOUT HERE

We can directly deduce that, for fixed values of n, δ, B and η, as the
number m of measurements per item increases, the values of ARL1 and
SARL1 both decrease, demonstrating the positive effect of the number of
repeated measurements m per item on the performance of the Synthetic X̃
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chart. Furthermore, from Tables 3, 4, 7 and 8, we can immediately note
that, for fixed value of n, with m = 5 measurements per item, the values of
ARL1 and SARL1 in the presence of measurement errors are approximately
the same as the values of ARL1 and SARL1 without measurement errors
(i.e., η = 0) when η ≤ 0.28. For instance, when n = 3, η = 0.28 and δ = 0.2,
we have ARL1 = 219.1 and SARL1 = 242.2 for m = 1, ARL = 219.1 and
SARL1 = 236.7 for m = 5 and ARL = 217.5 SARL1 = 235.3 when process
is free of measurement errors. We can conclude that the precision error does
not affect significantly the performance of the Synthetic X̃ control chart for
the usual levels of accuracy errors provided by calibrated gauges for the case
of m = 5 measurements per item. In general, we can also note that the effect
of measurement errors on the performance of Synthetic X̃ chart is reduced
by taking multiple measurements m = 5.

7 Illustrative example

In order to illustrate the use of the Synthetic X̃ chart in the presence of
measurement error, let us consider a production process of 500 ml milk bot-
tles where the quality characteristic X of interest is the weight (in ml) of
each bottle. The context of the example presented here is similar to the
one introduced in Castagliola et al. 7 . We assume that, from the Phase
I data , the following quantities have been estimated: µ0 = 500.023 and
σ0 = 0.9616. According to the quality practitioner in charge of this pro-
cess, a shift of 0.5σ0 (i.e. δ = 0.5) in the mean should be interpreted as
a signal that something is going wrong in the production. Concerning the
parameters of the linear covariate error model, we assume η = 0.28, B = 1,
A = 0, m = 1 and n = 5. We set ARL0 = 370.4 for Synthetic X̃ control
chart. By using the optimization procedure, we have K∗ = 1.3552, H∗ = 22.

INSERT TABLE 9 ABOUT HERE

INSERT FIGURE 1 ABOUT HERE

Based on (24), the control limits of the Synthetic X̃ sub-chart in the
presence of measurement errors are:

LCL∗ = 500.023 − 1.3552 ×
√

0.96162 + (0.9616 × 0.28)2 = 498.6698,

UCL∗ = 500.023 + 1.3552 ×
√

0.96162 + (0.9616 × 0.28)2 = 501.3762.

The first 10 subgroups are supposed to be in-control while the last 10
subgroups are supposed to have less milk weight, and thus, to be out-of-
control. The corresponding sample median values Ỹi are presented in Table 9
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and plotted in the X̃ sub-chart in Figure 1, respectively. The chart does
not trigger any signal during in-control production. On the other hand, at
sample #16 a point is plotted above UCL∗ and a conforming run length
CRL1 = 16 < H∗ = 22 is recorded. Therefore, the Synthetic X̃ control
chart triggers an alarm signalling at sample #16.

8 Concluding Remarks

In this paper we proposed a Synthetic X̃ control chart and investigated its
statistical properties via a Markov chain methodology. We also studied the
effects of measurement errors on the performance of the Synthetic X̃ control
chart by assuming a linear covariate error model. Based on the presented
results, it is obvious that measurement errors greatly affect the performance
of Synthetic X̃ chart compared to no measurement errors case. The perfor-
mance of the Synthetic X̃ chart deteriorates when the measurement errors
increase. As a result, increasing the coefficient B in the linear covariate
model can reduce the negative effect of measurement errors on Synthetic X̃
chart. Furthermore, measuring each item several times can also reduce the
efffects of measurement errors on the performance of Synthetic X̃ chart, but
increasing at the same time the cost of monitoring and control.

Investigation of the effect of measurement errors on the performance
of other Synthetic-type control charts along similar lines, as well as their
economic-statistical design will be of great interest. For both, research is
currently in progress.
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Zero state ARL
δ n = 3 n = 5 n = 7 n = 9

0.1 (100, 1.8533) (95, 1.4771) (91, 1.2613) (88, 1.1178)
(319.3, 413.2) (295.0, 382.1) (272.9, 354.0) (253.2, 328.8)

0.2 (79, 1.8305) (67, 1.4498) (59, 1.2320) (53, 1.0872)
(217.5, 282.9) (170.2, 221.8) (136.4, 178.1) (111.8, 146.2)

0.3 (58, 1.7996) (45, 1.4172) (36, 1.1968) (31, 1.0528)
(131.6, 171.9) (87.9, 115.0) (62.7, 82.0) (47.1, 61.4)

0.5 (30, 1.7300) (20, 1.3466) (15, 1.1302) (12, 0.9878)
(46.1, 60.1) (25.3, 32.6) (16.1, 20.4) (11.2, 14.0)

0.7 (17, 1.6664) (11, 1.2912) (8, 1.0792) (6, 0.9370)
(18.3, 23.4) (9.4, 11.4) (5.9, 6.8) (4.1, 4.6)

1.0 (8, 1.5773) (5, 1.2141) (4, 1.0201) (3, 0.8834)
(6.3, 7.4) (3.3, 3.5) (2.2, 2.0) (1.7, 1.4)

1.5 (4, 1.4907) (3, 1.1617) (2, 0.9579) (2, 0.8508)
(2.1, 1.8) (1.4, 0.8) (1.2, 0.5) (1.1, 0.3)

2.0 (2, 1.3995) (2, 1.1187) (2, 0.9579) (2, 0.8508)
(1.3, 0.7) (1.1, 0.3) (1.0, 0.1) (1.0, 0.1)

Table 1: (H∗,K∗) values (first row) and zero states (ARL1, SDRL1) values
(second row) of the Synthetic X̃ control chart control chart for different
values of δ ∈ [0.1, 2], n ∈ {3, 5, 7, 9} and ARL0 = 370.4

Steady state ARL
δ n = 3 n = 5 n = 7 n = 9

0.1 (42, 1.7347) (43, 1.3881) (43, 1.1881) (42, 1.0535)
(326.6, 329.7) (305.3, 307.9) (285.8, 287.9) (268.0, 269.6)

0.2 (37, 1.7225) (31, 1.3627) (27, 1.1570) (24, 1.0201)
(235.3, 235.6) (190.4, 189.5) (157.3, 155.7) (132.4, 130.3)

0.3 (26, 1.6875) (20, 1.3271) (17, 1.1244) (14, 0.9858)
(152.4, 150.7) (107.2, 104.8) (79.8, 77.2) (62.0, 59.4)

0.5 (14, 1.6227) (10, 1.2672) (8, 1.0676) (6, 0.9278)
(60.7, 58.1) (35.6, 33.3) (23.8, 21.6) (17.3, 15.4)

0.7 (8, 1.5602) (6, 1.2202) (5, 1.0299) (4, 0.8982)
(26.8, 24.6) (14.7, 12.7) (9.6, 7.9) (7.1, 5.4)

1.0 (5, 1.5050) (3, 1.1526) (3, 0.9869) (2, 0.8450)
(10.3, 8.5) (5.7, 4.3) (4.0, 2.5) (3.2, 1.8)

1.5 (3, 1.4420) (2, 1.1110) (2, 0.9513) (2, 0.8450)
(3.8, 2.3) (2.6, 1.2) (2.2, 0.7) (2.0, 0.5)

2.0 (2, 1.3899) (2, 1.1110) (4, 1.0113) (6, 0.9278)
(2.4, 0.9) (2.0, 0.4) (1.9, 0.4) (1.9, 0.4)

Table 2: (H∗,K∗) values (first row) and steady states (SARL1, SSDRL1)
values (second row) of the Synthetic X̃ control chart control chart for dif-
ferent values of δ ∈ [0.1, 2], n ∈ {3, 5, 7, 9} and ARL0 = 370.4
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n = 3
δ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.1 (100, 1.8533, 319.3) (100, 1.8533, 319.8) (100, 1.8533, 321.1) (101, 1.8542, 323.1) (102, 1.8552, 328.6) (105, 1.8579, 343.4)
0.2 (79, 1.8305, 217.5) (79, 1.8305, 218.5) (80, 1.8318, 221.4) (81, 1.8330, 226.0) (83, 1.8354, 239.1) (92, 1.8453, 278.4)
0.3 (58, 1.7996, 131.6) (58, 1.7996, 132.6) (59, 1.8014, 135.7) (60, 1.8031, 140.7) (64, 1.8096, 155.3) (76, 1.8267, 205.5)
0.5 (30, 1.7300, 46.1) (30, 1.7300, 46.7) (31, 1.7336, 48.4) (32, 1.7370, 51.3) (35, 1.7467, 60.3) (48, 1.7801, 99.0)
0.7 (17, 1.6664, 18.3) (17, 1.6664, 18.6) (17, 1.6664, 19.4) (18, 1.6730, 20.8) (20, 1.6849, 25.3) (30, 1.7300, 47.3)
1.0 (8, 1.5773, 6.3) (8, 1.5773, 6.4) (9, 1.5916, 6.7) (9, 1.5916, 7.2) (10, 1.6042, 8.8) (16, 1.6595, 17.8)
1.5 (4, 1.4907, 2.1) (4, 1.4907, 2.1) (4, 1.4907, 2.2) (4, 1.4907, 2.3) (5, 1.5191, 2.8) (7, 1.5610, 5.3)
2.0 (2, 1.3995, 1.3) (2, 1.3995, 1.3) (3, 1.4534, 1.3) (3, 1.4534, 1.3) (3, 1.4534, 1.5) (4, 1.4907, 2.4)

n = 5
δ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.1 (95, 1.4771, 295.0) (95, 1.4771, 295.6) (95, 1.4771, 297.4) (96, 1.4779, 300.3) (97, 1.4787, 308.0) (101, 1.4818, 329.4)
0.2 (67, 1.4498, 170.2) (68, 1.4510, 171.2) (68, 1.4510, 174.4) (70, 1.4533, 179.4) (73, 1.4566, 194.1) (84, 1.4677, 241.0)
0.3 (45, 1.4172, 87.9) (45, 1.4172, 88.8) (46, 1.4191, 91.4) (47, 1.4209, 95.7) (51, 1.4276, 108.6) (64, 1.4461, 157.4)
0.5 (20, 1.3466, 25.3) (21, 1.3510, 25.6) (21, 1.3510, 26.7) (22, 1.3552, 28.5) (25, 1.3666, 34.3) (36, 1.3983, 61.7)
0.7 (11, 1.2912, 9.4) (11, 1.2912, 9.5) (11, 1.2912, 9.9) (12, 1.2994, 10.7) (14, 1.3139, 13.1) (21, 1.3510, 26.0)
1.0 (5, 1.2141, 3.3) (5, 1.2141, 3.4) (6, 1.2324, 3.5) (6, 1.2324, 3.7) (7, 1.2476, 4.5) (11, 1.2912, 9.1)
1.5 (3, 1.1617, 1.4) (3, 1.1617, 1.4) (3, 1.1617, 1.4) (3, 1.1617, 1.5) (3, 1.1617, 1.7) (5, 1.2141, 2.8)
2.0 (2, 1.1187, 1.1) (2, 1.1187, 1.1) (2, 1.1187, 1.1) (2, 1.1187, 1.1) (2, 1.1187, 1.1) (3, 1.1617, 1.5)

n = 7
δ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.1 (91, 1.2613, 272.9) (91, 1.2613, 273.7) (92, 1.2620, 275.9) (92, 1.2620, 279.4) (94, 1.2634, 289.0) (100, 1.2674, 315.9)
0.2 (59, 1.2320, 136.4) (59, 1.2320, 137.4) (60, 1.2332, 140.5) (62, 1.2355, 145.5) (65, 1.2387, 160.2) (77, 1.2502, 210.2)
0.3 (36, 1.1968, 62.7) (37, 1.1988, 63.4) (37, 1.1988, 65.6) (39, 1.2026, 69.1) (42, 1.2080, 80.1) (56, 1.2284, 124.2)
0.5 (15, 1.1302, 16.1) (16, 1.1353, 16.3) (16, 1.1353, 17.0) (17, 1.1400, 18.2) (19, 1.1487, 22.2) (28, 1.1782, 42.1)
0.7 (8, 1.0792, 5.9) (8, 1.0792, 5.9) (8, 1.0792, 6.2) (9, 1.0890, 6.7) (10, 1.0976, 8.2) (16, 1.1353, 16.5)
1.0 (4, 1.0201, 2.2) (4, 1.0201, 2.3) (4, 1.0201, 2.3) (4, 1.0201, 2.5) (5, 1.0395, 2.9) (8, 1.0792, 5.7)
1.5 (2, 0.9579, 1.2) (2, 0.9579, 1.2) (2, 0.9579, 1.2) (2, 0.9579, 1.2) (3, 0.9947, 1.3) (4, 1.0201, 2.0)
2.0 (2, 0.9579, 1.0) (2, 0.9579, 1.0) (2, 0.9579, 1.0) (2, 0.9579, 1.0) (2, 0.9579, 1.0) (2, 0.9579, 1.2)

n = 9
δ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.1 (88, 1.1178, 253.2) (88, 1.1178, 254.0) (88, 1.1178, 256.5) (89, 1.1184, 260.5) (91, 1.1197, 271.5) (98, 1.1240, 303.2)
0.2 (53, 1.0872, 111.8) (53, 1.0872, 112.7) (54, 1.0883, 115.6) (55, 1.0895, 120.4) (59, 1.0938, 134.5) (72, 1.1059, 184.8)
0.3 (31, 1.0528, 47.1) (31, 1.0528, 47.7) (32, 1.0549, 49.4) (33, 1.0569, 52.3) (36, 1.0626, 61.5) (49, 1.0823, 100.4)
0.5 (12, 0.9878, 11.2) (12, 0.9878, 11.4) (13, 0.9935, 11.9) (13, 0.9935, 12.8) (15, 1.0035, 15.7) (23, 1.0329, 30.7)
0.7 (6, 0.9370, 4.1) (6, 0.9370, 4.2) (7, 0.9485, 4.4) (7, 0.9485, 4.7) (8, 0.9584, 5.7) (13, 0.9935, 11.6)
1.0 (3, 0.8834, 1.7) (3, 0.8834, 1.7) (3, 0.8834, 1.8) (4, 0.9060, 1.9) (4, 0.9060, 2.2) (6, 0.9370, 4.0)
1.5 (2, 0.8508, 1.1) (2, 0.8508, 1.1) (2, 0.8508, 1.1) (2, 0.8508, 1.1) (2, 0.8508, 1.1) (3, 0.8834, 1.6)
2.0 (2, 0.8508, 1.0) (2, 0.8508, 1.0) (2, 0.8508, 1.0) (2, 0.8508, 1.0) (2, 0.8508, 1.0) (2, 0.8508, 1.1)

Table 3: (H∗,K∗, ARL1) values of the Synthetic X̃ chart control chart in
the presence of measurement errors for different values of η, δ, n, B = 1,
m = 1
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n = 3
δ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.1 (42, 1.7347, 326.6) (42, 1.7347, 327.0) (42, 1.7347, 328.2) (42, 1.7347, 329.9) (41, 1.7324, 334.7) (37, 1.7225, 347.5)
0.2 (37, 1.7225, 235.3) (37, 1.7225, 236.2) (38, 1.7250, 238.9) (38, 1.7250, 243.2) (39, 1.7276, 255.2) (42, 1.7347, 290.6)
0.3 (26, 1.6875, 152.4) (27, 1.6913, 153.5) (27, 1.6913, 156.6) (28, 1.6950, 161.5) (30, 1.7019, 176.0) (36, 1.7198, 224.0)
0.5 (14, 1.6227, 60.7) (14, 1.6227, 61.4) (14, 1.6227, 63.4) (14, 1.6227, 66.7) (16, 1.6371, 77.0) (22, 1.6705, 118.9)
0.7 (8, 1.5602, 26.8) (8, 1.5602, 27.1) (8, 1.5602, 28.2) (9, 1.5737, 29.9) (10, 1.5856, 35.6) (14, 1.6227, 62.1)
1.0 (5, 1.5050, 10.3) (5, 1.5050, 10.4) (5, 1.5050, 10.8) (5, 1.5050, 11.5) (6, 1.5267, 13.9) (8, 1.5602, 26.1)
1.5 (3, 1.4420, 3.8) (3, 1.4420, 3.8) (3, 1.4420, 4.0) (3, 1.4420, 4.2) (3, 1.4420, 4.9) (4, 1.4778, 8.8)
2.0 (2, 1.3899, 2.4) (2, 1.3899, 2.4) (2, 1.3899, 2.5) (2, 1.3899, 2.5) (2, 1.3899, 2.8) (3, 1.4420, 4.3)

n = 5
δ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.1 (43, 1.3881, 305.3) (43, 1.3881, 305.9) (43, 1.3881, 307.5) (43, 1.3881, 310.0) (43, 1.3881, 316.8) (41, 1.3845, 335.4)
0.2 (31, 1.3627, 190.4) (32, 1.3652, 191.4) (32, 1.3652, 194.5) (33, 1.3676, 199.3) (34, 1.3700, 213.3) (39, 1.3806, 256.8)
0.3 (20, 1.3271, 107.2) (20, 1.3271, 108.2) (21, 1.3312, 110.9) (21, 1.3312, 115.5) (23, 1.3387, 129.0) (30, 1.3601, 178.1)
0.5 (10, 1.2672, 35.6) (10, 1.2672, 36.1) (10, 1.2672, 37.4) (10, 1.2672, 39.7) (11, 1.2757, 46.8) (16, 1.3084, 78.6)
0.7 (6, 1.2202, 14.7) (6, 1.2202, 14.9) (6, 1.2202, 15.5) (6, 1.2202, 16.5) (7, 1.2347, 19.8) (10, 1.2672, 36.6)
1.0 (3, 1.1526, 5.7) (3, 1.1526, 5.8) (3, 1.1526, 6.0) (4, 1.1812, 6.4) (4, 1.1812, 7.6) (6, 1.2202, 14.3)
1.5 (2, 1.1110, 2.6) (2, 1.1110, 2.6) (2, 1.1110, 2.7) (2, 1.1110, 2.8) (2, 1.1110, 3.1) (3, 1.1526, 5.0)
2.0 (2, 1.1110, 2.0) (2, 1.1110, 2.0) (2, 1.1110, 2.0) (2, 1.1110, 2.1) (2, 1.1110, 2.2) (2, 1.1110, 2.8)

n = 7
δ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.1 (43, 1.1881, 285.8) (43, 1.1881, 286.4) (43, 1.1881, 288.4) (43, 1.1881, 291.5) (43, 1.1881, 300.0) (43, 1.1881, 323.7)
0.2 (27, 1.1570, 157.3) (28, 1.1595, 158.3) (28, 1.1595, 161.4) (29, 1.1619, 166.4) (31, 1.1664, 180.8) (37, 1.1782, 228.5)
0.3 (17, 1.1244, 79.8) (17, 1.1244, 80.6) (17, 1.1244, 83.0) (18, 1.1285, 86.9) (19, 1.1324, 98.8) (26, 1.1544, 145.0)
0.5 (8, 1.0676, 23.8) (8, 1.0676, 24.1) (8, 1.0676, 25.1) (8, 1.0676, 26.7) (9, 1.0767, 31.8) (13, 1.1047, 56.1)
0.7 (5, 1.0299, 9.6) (5, 1.0299, 9.8) (5, 1.0299, 10.1) (5, 1.0299, 10.8) (5, 1.0299, 13.0) (8, 1.0676, 24.5)
1.0 (3, 0.9869, 4.0) (3, 0.9869, 4.1) (3, 0.9869, 4.2) (3, 0.9869, 4.4) (3, 0.9869, 5.2) (4, 1.0113, 9.4)
1.5 (2, 0.9513, 2.2) (2, 0.9513, 2.2) (2, 0.9513, 2.2) (2, 0.9513, 2.3) (2, 0.9513, 2.5) (3, 0.9869, 3.6)
2.0 (4, 1.0113, 1.9) (4, 1.0113, 1.9) (4, 1.0113, 1.9) (3, 0.9869, 2.0) (2, 0.9513, 2.0) (2, 0.9513, 2.3)

n = 9
δ η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.1 (42, 1.0535, 268.0) (42, 1.0535, 268.8) (42, 1.0535, 271.1) (42, 1.0535, 274.6) (43, 1.0549, 284.5) (44, 1.0562, 312.6)
0.2 (24, 1.0201, 132.4) (24, 1.0201, 133.4) (25, 1.0226, 136.3) (26, 1.0250, 141.2) (28, 1.0295, 155.5) (34, 1.0411, 204.6)
0.3 (14, 0.9858, 62.0) (14, 0.9858, 62.7) (15, 0.9903, 64.7) (15, 0.9903, 68.0) (17, 0.9984, 78.4) (23, 1.0175, 120.6)
0.5 (6, 0.9278, 17.3) (6, 0.9278, 17.5) (7, 0.9387, 18.2) (7, 0.9387, 19.4) (8, 0.9480, 23.3) (11, 0.9698, 42.4)
0.7 (4, 0.8982, 7.1) (4, 0.8982, 7.1) (4, 0.8982, 7.4) (4, 0.8982, 7.9) (4, 0.8982, 9.5) (6, 0.9278, 17.8)
1.0 (2, 0.8450, 3.2) (2, 0.8450, 3.2) (2, 0.8450, 3.3) (3, 0.8765, 3.5) (3, 0.8765, 4.0) (4, 0.8982, 6.9)
1.5 (2, 0.8450, 2.0) (2, 0.8450, 2.0) (2, 0.8450, 2.1) (2, 0.8450, 2.1) (2, 0.8450, 2.2) (2, 0.8450, 2.9)
2.0 (6, 0.9278, 1.9) (6, 0.9278, 1.9) (6, 0.9278, 1.9) (6, 0.9278, 1.9) (4, 0.8982, 1.9) (2, 0.8450, 2.1)

Table 4: (H∗,K∗, SARL1) values of the Synthetic X̃ chart control chart in
the presence of measurement errors for different values of η, δ, n, B = 1,
m = 1
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n = 3
δ B = 1 B = 2 B = 3 B = 4 B = 5

0.1 (101, 1.8542, 322.6) (100, 1.8533, 320.2) (100, 1.8533, 319.7) (100, 1.8533, 319.5) (100, 1.8533, 319.5)
0.2 (80, 1.8318, 225.0) (79, 1.8305, 219.4) (79, 1.8305, 218.4) (79, 1.8305, 218.0) (79, 1.8305, 217.8)
0.3 (60, 1.8031, 139.5) (58, 1.7996, 133.6) (58, 1.7996, 132.5) (58, 1.7996, 132.1) (58, 1.7996, 131.9)
0.5 (32, 1.7370, 50.6) (30, 1.7300, 47.2) (30, 1.7300, 46.6) (30, 1.7300, 46.4) (30, 1.7300, 46.3)
0.7 (18, 1.6730, 20.5) (17, 1.6664, 18.9) (17, 1.6664, 18.6) (17, 1.6664, 18.5) (17, 1.6664, 18.4)
1.0 (9, 1.5916, 7.0) (9, 1.5916, 6.5) (8, 1.5773, 6.4) (8, 1.5773, 6.3) (8, 1.5773, 6.3)
1.5 (4, 1.4907, 2.3) (4, 1.4907, 2.2) (4, 1.4907, 2.1) (4, 1.4907, 2.1) (4, 1.4907, 2.1)
2.0 (3, 1.4534, 1.3) (2, 1.3995, 1.3) (2, 1.3995, 1.3) (2, 1.3995, 1.3) (2, 1.3995, 1.3)

n = 5
δ B = 1 B = 2 B = 3 B = 4 B = 5

0.1 (96, 1.4779, 299.6) (95, 1.4771, 296.2) (95, 1.4771, 295.5) (95, 1.4771, 295.3) (95, 1.4771, 295.2)
0.2 (69, 1.4522, 178.3) (68, 1.4510, 172.3) (68, 1.4510, 171.1) (68, 1.4510, 170.7) (67, 1.4498, 170.5)
0.3 (47, 1.4209, 94.7) (45, 1.4172, 89.6) (45, 1.4172, 88.7) (45, 1.4172, 88.3) (45, 1.4172, 88.2)
0.5 (22, 1.3552, 28.1) (21, 1.3510, 26.0) (21, 1.3510, 25.6) (21, 1.3510, 25.4) (21, 1.3510, 25.4)
0.7 (12, 1.2994, 10.5) (11, 1.2912, 9.6) (11, 1.2912, 9.5) (11, 1.2912, 9.4) (11, 1.2912, 9.4)
1.0 (6, 1.2324, 3.7) (5, 1.2141, 3.4) (5, 1.2141, 3.3) (5, 1.2141, 3.3) (5, 1.2141, 3.3)
1.5 (3, 1.1617, 1.5) (3, 1.1617, 1.4) (3, 1.1617, 1.4) (3, 1.1617, 1.4) (3, 1.1617, 1.4)
2.0 (2, 1.1187, 1.1) (2, 1.1187, 1.1) (2, 1.1187, 1.1) (2, 1.1187, 1.1) (2, 1.1187, 1.1)

n = 7
δ B = 1 B = 2 B = 3 B = 4 B = 5

0.1 (92, 1.2620, 278.6) (91, 1.2613, 274.4) (91, 1.2613, 273.6) (91, 1.2613, 273.3) (91, 1.2613, 273.2)
0.2 (61, 1.2343, 144.4) (60, 1.2332, 138.4) (59, 1.2320, 137.3) (59, 1.2320, 136.9) (59, 1.2320, 136.7)
0.3 (38, 1.2008, 68.3) (37, 1.1988, 64.1) (37, 1.1988, 63.4) (37, 1.1988, 63.1) (37, 1.1988, 63.0)
0.5 (17, 1.1400, 17.9) (16, 1.1353, 16.5) (16, 1.1353, 16.3) (16, 1.1353, 16.2) (16, 1.1353, 16.1)
0.7 (9, 1.0890, 6.6) (8, 1.0792, 6.0) (8, 1.0792, 5.9) (8, 1.0792, 5.9) (8, 1.0792, 5.9)
1.0 (4, 1.0201, 2.4) (4, 1.0201, 2.3) (4, 1.0201, 2.3) (4, 1.0201, 2.2) (4, 1.0201, 2.2)
1.5 (2, 0.9579, 1.2) (2, 0.9579, 1.2) (2, 0.9579, 1.2) (2, 0.9579, 1.2) (2, 0.9579, 1.2)
2.0 (2, 0.9579, 1.0) (2, 0.9579, 1.0) (2, 0.9579, 1.0) (2, 0.9579, 1.0) (2, 0.9579, 1.0)

n = 9
δ B = 1 B = 2 B = 3 B = 4 B = 5

0.1 (89, 1.1184, 259.6) (88, 1.1178, 254.8) (88, 1.1178, 253.9) (88, 1.1178, 253.6) (88, 1.1178, 253.4)
0.2 (55, 1.0895, 119.3) (53, 1.0872, 113.7) (53, 1.0872, 112.6) (53, 1.0872, 112.2) (53, 1.0872, 112.1)
0.3 (32, 1.0549, 51.6) (31, 1.0528, 48.2) (31, 1.0528, 47.6) (31, 1.0528, 47.4) (31, 1.0528, 47.3)
0.5 (13, 0.9935, 12.6) (13, 0.9935, 11.6) (12, 0.9878, 11.4) (12, 0.9878, 11.3) (12, 0.9878, 11.3)
0.7 (7, 0.9485, 4.6) (6, 0.9370, 4.3) (6, 0.9370, 4.2) (6, 0.9370, 4.2) (6, 0.9370, 4.2)
1.0 (4, 0.9060, 1.9) (3, 0.8834, 1.8) (3, 0.8834, 1.7) (3, 0.8834, 1.7) (3, 0.8834, 1.7)
1.5 (2, 0.8508, 1.1) (2, 0.8508, 1.1) (2, 0.8508, 1.1) (2, 0.8508, 1.1) (2, 0.8508, 1.1)
2.0 (2, 0.8508, 1.0) (2, 0.8508, 1.0) (2, 0.8508, 1.0) (2, 0.8508, 1.0) (2, 0.8508, 1.0)

Table 5: (H∗,K∗, ARL1) values of the Synthetic X̃ chart control chart in
the presence of measurement errors for different values of B, δ, n, η = 0.28,
m = 1
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n = 3
δ B = 1 B = 2 B = 3 B = 4 B = 5

0.1 (42, 1.7347, 329.5) (42, 1.7347, 327.4) (42, 1.7347, 327.0) (42, 1.7347, 326.8) (42, 1.7347, 326.8)
0.2 (38, 1.7250, 242.2) (37, 1.7225, 237.1) (37, 1.7225, 236.1) (37, 1.7225, 235.7) (37, 1.7225, 235.5)
0.3 (28, 1.6950, 160.4) (27, 1.6913, 154.5) (27, 1.6913, 153.3) (27, 1.6913, 152.9) (26, 1.6875, 152.8)
0.5 (14, 1.6227, 66.0) (14, 1.6227, 62.1) (14, 1.6227, 61.3) (14, 1.6227, 61.1) (14, 1.6227, 60.9)
0.7 (9, 1.5737, 29.5) (8, 1.5602, 27.5) (8, 1.5602, 27.1) (8, 1.5602, 26.9) (8, 1.5602, 26.9)
1.0 (5, 1.5050, 11.4) (5, 1.5050, 10.5) (5, 1.5050, 10.4) (5, 1.5050, 10.3) (5, 1.5050, 10.3)
1.5 (3, 1.4420, 4.1) (3, 1.4420, 3.9) (3, 1.4420, 3.8) (3, 1.4420, 3.8) (3, 1.4420, 3.8)
2.0 (2, 1.3899, 2.5) (2, 1.3899, 2.4) (2, 1.3899, 2.4) (2, 1.3899, 2.4) (2, 1.3899, 2.4)

n = 5
δ B = 1 B = 2 B = 3 B = 4 B = 5

0.1 (43, 1.3881, 309.4) (43, 1.3881, 306.4) (43, 1.3881, 305.8) (43, 1.3881, 305.6) (43, 1.3881, 305.5)
0.2 (32, 1.3652, 198.3) (32, 1.3652, 192.4) (32, 1.3652, 191.3) (32, 1.3652, 190.9) (32, 1.3652, 190.7)
0.3 (21, 1.3312, 114.4) (21, 1.3312, 109.0) (20, 1.3271, 108.0) (20, 1.3271, 107.7) (20, 1.3271, 107.5)
0.5 (10, 1.2672, 39.2) (10, 1.2672, 36.5) (10, 1.2672, 36.0) (10, 1.2672, 35.9) (10, 1.2672, 35.8)
0.7 (6, 1.2202, 16.2) (6, 1.2202, 15.1) (6, 1.2202, 14.8) (6, 1.2202, 14.8) (6, 1.2202, 14.7)
1.0 (4, 1.1812, 6.3) (3, 1.1526, 5.9) (3, 1.1526, 5.8) (3, 1.1526, 5.8) (3, 1.1526, 5.8)
1.5 (2, 1.1110, 2.7) (2, 1.1110, 2.6) (2, 1.1110, 2.6) (2, 1.1110, 2.6) (2, 1.1110, 2.6)
2.0 (2, 1.1110, 2.1) (2, 1.1110, 2.0) (2, 1.1110, 2.0) (2, 1.1110, 2.0) (2, 1.1110, 2.0)

n = 7
δ B = 1 B = 2 B = 3 B = 4 B = 5

0.1 (43, 1.1881, 290.8) (43, 1.1881, 287.1) (43, 1.1881, 286.3) (43, 1.1881, 286.1) (43, 1.1881, 286.0)
0.2 (29, 1.1619, 165.2) (28, 1.1595, 159.3) (28, 1.1595, 158.2) (28, 1.1595, 157.8) (27, 1.1570, 157.6)
0.3 (17, 1.1244, 86.0) (17, 1.1244, 81.3) (17, 1.1244, 80.5) (17, 1.1244, 80.2) (17, 1.1244, 80.0)
0.5 (8, 1.0676, 26.3) (8, 1.0676, 24.4) (8, 1.0676, 24.1) (8, 1.0676, 24.0) (8, 1.0676, 23.9)
0.7 (5, 1.0299, 10.7) (5, 1.0299, 9.9) (5, 1.0299, 9.7) (5, 1.0299, 9.7) (5, 1.0299, 9.7)
1.0 (3, 0.9869, 4.4) (3, 0.9869, 4.1) (3, 0.9869, 4.1) (3, 0.9869, 4.0) (3, 0.9869, 4.0)
1.5 (2, 0.9513, 2.3) (2, 0.9513, 2.2) (2, 0.9513, 2.2) (2, 0.9513, 2.2) (2, 0.9513, 2.2)
2.0 (3, 0.9869, 1.9) (4, 1.0113, 1.9) (4, 1.0113, 1.9) (4, 1.0113, 1.9) (4, 1.0113, 1.9)

n = 9
δ B = 1 B = 2 B = 3 B = 4 B = 5

0.1 (42, 1.0535, 273.8) (42, 1.0535, 269.5) (42, 1.0535, 268.7) (42, 1.0535, 268.4) (42, 1.0535, 268.3)
0.2 (25, 1.0226, 140.1) (25, 1.0226, 134.3) (24, 1.0201, 133.2) (24, 1.0201, 132.9) (24, 1.0201, 132.7)
0.3 (15, 0.9903, 67.3) (14, 0.9858, 63.3) (14, 0.9858, 62.6) (14, 0.9858, 62.3) (14, 0.9858, 62.2)
0.5 (7, 0.9387, 19.2) (6, 0.9278, 17.8) (6, 0.9278, 17.5) (6, 0.9278, 17.4) (6, 0.9278, 17.4)
0.7 (4, 0.8982, 7.8) (4, 0.8982, 7.2) (4, 0.8982, 7.1) (4, 0.8982, 7.1) (4, 0.8982, 7.1)
1.0 (3, 0.8765, 3.4) (2, 0.8450, 3.3) (2, 0.8450, 3.2) (2, 0.8450, 3.2) (2, 0.8450, 3.2)
1.5 (2, 0.8450, 2.1) (2, 0.8450, 2.0) (2, 0.8450, 2.0) (2, 0.8450, 2.0) (2, 0.8450, 2.0)
2.0 (6, 0.9278, 1.9) (6, 0.9278, 1.9) (6, 0.9278, 1.9) (6, 0.9278, 1.9) (6, 0.9278, 1.9)

Table 6: (H∗,K∗, SARL1) values of the Synthetic X̃ chart control chart in
the presence of measurement errors for different values of B, δ, n, η = 0.28,
m = 1
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n = 3
δ m = 1 m = 3 m = 5 m = 7 m = 10

0.1 (101, 1.8542, 322.6) (100, 1.8533, 320.5) (100, 1.8533, 320.0) (100, 1.8533, 319.8) (100, 1.8533, 319.7)
0.2 (80, 1.8318, 225.0) (79, 1.8305, 220.1) (79, 1.8305, 219.1) (79, 1.8305, 218.6) (79, 1.8305, 218.3)
0.3 (60, 1.8031, 139.5) (58, 1.7996, 134.3) (58, 1.7996, 133.2) (58, 1.7996, 132.8) (58, 1.7996, 132.4)
0.5 (32, 1.7370, 50.6) (30, 1.7300, 47.6) (30, 1.7300, 47.0) (30, 1.7300, 46.7) (30, 1.7300, 46.5)
0.7 (18, 1.6730, 20.5) (17, 1.6664, 19.0) (17, 1.6664, 18.8) (17, 1.6664, 18.6) (17, 1.6664, 18.5)
1.0 (9, 1.5916, 7.0) (9, 1.5916, 6.5) (8, 1.5773, 6.4) (8, 1.5773, 6.4) (8, 1.5773, 6.4)
1.5 (4, 1.4907, 2.3) (4, 1.4907, 2.2) (4, 1.4907, 2.1) (4, 1.4907, 2.1) (4, 1.4907, 2.1)
2.0 (3, 1.4534, 1.3) (2, 1.3995, 1.3) (2, 1.3995, 1.3) (2, 1.3995, 1.3) (2, 1.3995, 1.3)

n = 5
δ m = 1 m = 3 m = 5 m = 7 m = 10

0.1 (96, 1.4779, 299.6) (95, 1.4771, 296.6) (95, 1.4771, 296.0) (95, 1.4771, 295.7) (95, 1.4771, 295.5)
0.2 (69, 1.4522, 178.3) (68, 1.4510, 172.9) (68, 1.4510, 171.8) (68, 1.4510, 171.4) (68, 1.4510, 171.0)
0.3 (47, 1.4209, 94.7) (45, 1.4172, 90.2) (45, 1.4172, 89.3) (45, 1.4172, 88.9) (45, 1.4172, 88.6)
0.5 (22, 1.3552, 28.1) (21, 1.3510, 26.2) (21, 1.3510, 25.8) (21, 1.3510, 25.7) (21, 1.3510, 25.5)
0.7 (12, 1.2994, 10.5) (11, 1.2912, 9.7) (11, 1.2912, 9.6) (11, 1.2912, 9.5) (11, 1.2912, 9.5)
1.0 (6, 1.2324, 3.7) (6, 1.2324, 3.4) (5, 1.2141, 3.4) (5, 1.2141, 3.4) (5, 1.2141, 3.3)
1.5 (3, 1.1617, 1.5) (3, 1.1617, 1.4) (3, 1.1617, 1.4) (3, 1.1617, 1.4) (3, 1.1617, 1.4)
2.0 (2, 1.1187, 1.1) (2, 1.1187, 1.1) (2, 1.1187, 1.1) (2, 1.1187, 1.1) (2, 1.1187, 1.1)

n = 7
δ m = 1 m = 3 m = 5 m = 7 m = 10

0.1 (92, 1.2620, 278.6) (91, 1.2613, 274.9) (91, 1.2613, 274.1) (91, 1.2613, 273.8) (91, 1.2613, 273.5)
0.2 (61, 1.2343, 144.4) (60, 1.2332, 139.1) (60, 1.2332, 138.0) (59, 1.2320, 137.6) (59, 1.2320, 137.2)
0.3 (38, 1.2008, 68.3) (37, 1.1988, 64.6) (37, 1.1988, 63.8) (37, 1.1988, 63.5) (37, 1.1988, 63.3)
0.5 (17, 1.1400, 17.9) (16, 1.1353, 16.7) (16, 1.1353, 16.4) (16, 1.1353, 16.3) (16, 1.1353, 16.2)
0.7 (9, 1.0890, 6.6) (8, 1.0792, 6.1) (8, 1.0792, 6.0) (8, 1.0792, 6.0) (8, 1.0792, 5.9)
1.0 (4, 1.0201, 2.4) (4, 1.0201, 2.3) (4, 1.0201, 2.3) (4, 1.0201, 2.3) (4, 1.0201, 2.3)
1.5 (2, 0.9579, 1.2) (2, 0.9579, 1.2) (2, 0.9579, 1.2) (2, 0.9579, 1.2) (2, 0.9579, 1.2)
2.0 (2, 0.9579, 1.0) (2, 0.9579, 1.0) (2, 0.9579, 1.0) (2, 0.9579, 1.0) (2, 0.9579, 1.0)

n = 9
δ m = 1 m = 3 m = 5 m = 7 m = 10

0.1 (89, 1.1184, 259.6) (88, 1.1178, 255.4) (88, 1.1178, 254.5) (88, 1.1178, 254.1) (88, 1.1178, 253.8)
0.2 (55, 1.0895, 119.3) (53, 1.0872, 114.3) (53, 1.0872, 113.3) (53, 1.0872, 112.9) (53, 1.0872, 112.5)
0.3 (32, 1.0549, 51.6) (31, 1.0528, 48.6) (31, 1.0528, 48.0) (31, 1.0528, 47.7) (31, 1.0528, 47.5)
0.5 (13, 0.9935, 12.6) (13, 0.9935, 11.7) (13, 0.9935, 11.5) (12, 0.9878, 11.4) (12, 0.9878, 11.4)
0.7 (7, 0.9485, 4.6) (7, 0.9485, 4.3) (6, 0.9370, 4.2) (6, 0.9370, 4.2) (6, 0.9370, 4.2)
1.0 (4, 0.9060, 1.9) (3, 0.8834, 1.8) (3, 0.8834, 1.8) (3, 0.8834, 1.8) (3, 0.8834, 1.7)
1.5 (2, 0.8508, 1.1) (2, 0.8508, 1.1) (2, 0.8508, 1.1) (2, 0.8508, 1.1) (2, 0.8508, 1.1)
2.0 (2, 0.8508, 1.0) (2, 0.8508, 1.0) (2, 0.8508, 1.0) (2, 0.8508, 1.0) (2, 0.8508, 1.0)

Table 7: (H∗,K∗, ARL1) values of the Synthetic X̃ chart control chart in
the presence of measurement errors for different values of B, δ, n, η = 0.28

22



n = 3
δ m = 1 m = 3 m = 5 m = 7 m = 10

0.1 (42, 1.7347, 329.5) (42, 1.7347, 327.6) (42, 1.7347, 327.2) (42, 1.7347, 327.1) (42, 1.7347, 326.9)
0.2 (38, 1.7250, 242.2) (37, 1.7225, 237.6) (37, 1.7225, 236.7) (37, 1.7225, 236.3) (37, 1.7225, 236.0)
0.3 (28, 1.6950, 160.4) (27, 1.6913, 155.1) (27, 1.6913, 154.1) (27, 1.6913, 153.6) (27, 1.6913, 153.2)
0.5 (14, 1.6227, 66.0) (14, 1.6227, 62.5) (14, 1.6227, 61.8) (14, 1.6227, 61.5) (14, 1.6227, 61.3)
0.7 (9, 1.5737, 29.5) (8, 1.5602, 27.7) (8, 1.5602, 27.3) (8, 1.5602, 27.2) (8, 1.5602, 27.1)
1.0 (5, 1.5050, 11.4) (5, 1.5050, 10.6) (5, 1.5050, 10.5) (5, 1.5050, 10.4) (5, 1.5050, 10.4)
1.5 (3, 1.4420, 4.1) (3, 1.4420, 3.9) (3, 1.4420, 3.9) (3, 1.4420, 3.9) (3, 1.4420, 3.8)
2.0 (2, 1.3899, 2.5) (2, 1.3899, 2.4) (2, 1.3899, 2.4) (2, 1.3899, 2.4) (2, 1.3899, 2.4)

n = 5
δ m = 1 m = 3 m = 5 m = 7 m = 10

0.1 (43, 1.3881, 309.4) (43, 1.3881, 306.7) (43, 1.3881, 306.2) (43, 1.3881, 305.9) (43, 1.3881, 305.7)
0.2 (32, 1.3652, 198.3) (32, 1.3652, 193.1) (32, 1.3652, 192.0) (32, 1.3652, 191.6) (32, 1.3652, 191.2)
0.3 (21, 1.3312, 114.4) (21, 1.3312, 109.7) (20, 1.3271, 108.7) (20, 1.3271, 108.3) (20, 1.3271, 108.0)
0.5 (10, 1.2672, 39.2) (10, 1.2672, 36.8) (10, 1.2672, 36.3) (10, 1.2672, 36.1) (10, 1.2672, 36.0)
0.7 (6, 1.2202, 16.2) (6, 1.2202, 15.2) (6, 1.2202, 15.0) (6, 1.2202, 14.9) (6, 1.2202, 14.8)
1.0 (4, 1.1812, 6.3) (3, 1.1526, 5.9) (3, 1.1526, 5.9) (3, 1.1526, 5.8) (3, 1.1526, 5.8)
1.5 (2, 1.1110, 2.7) (2, 1.1110, 2.6) (2, 1.1110, 2.6) (2, 1.1110, 2.6) (2, 1.1110, 2.6)
2.0 (2, 1.1110, 2.1) (2, 1.1110, 2.0) (2, 1.1110, 2.0) (2, 1.1110, 2.0) (2, 1.1110, 2.0)

n = 7
δ m = 1 m = 3 m = 5 m = 7 m = 10

0.1 (43, 1.1881, 290.8) (43, 1.1881, 287.5) (43, 1.1881, 286.8) (43, 1.1881, 286.5) (43, 1.1881, 286.3)
0.2 (29, 1.1619, 165.2) (28, 1.1595, 160.0) (28, 1.1595, 158.9) (28, 1.1595, 158.5) (28, 1.1595, 158.1)
0.3 (17, 1.1244, 86.0) (17, 1.1244, 81.9) (17, 1.1244, 81.0) (17, 1.1244, 80.7) (17, 1.1244, 80.4)
0.5 (8, 1.0676, 26.3) (8, 1.0676, 24.6) (8, 1.0676, 24.3) (8, 1.0676, 24.2) (8, 1.0676, 24.1)
0.7 (5, 1.0299, 10.7) (5, 1.0299, 10.0) (5, 1.0299, 9.8) (5, 1.0299, 9.8) (5, 1.0299, 9.7)
1.0 (3, 0.9869, 4.4) (3, 0.9869, 4.1) (3, 0.9869, 4.1) (3, 0.9869, 4.1) (3, 0.9869, 4.1)
1.5 (2, 0.9513, 2.3) (2, 0.9513, 2.2) (2, 0.9513, 2.2) (2, 0.9513, 2.2) (2, 0.9513, 2.2)
2.0 (3, 0.9869, 1.9) (4, 1.0113, 1.9) (4, 1.0113, 1.9) (4, 1.0113, 1.9) (4, 1.0113, 1.9)

n = 9
δ m = 1 m = 3 m = 5 m = 7 m = 10

0.1 (42, 1.0535, 273.8) (42, 1.0535, 270.0) (42, 1.0535, 269.2) (42, 1.0535, 268.9) (42, 1.0535, 268.6)
0.2 (25, 1.0226, 140.1) (25, 1.0226, 135.0) (25, 1.0226, 133.9) (24, 1.0201, 133.5) (24, 1.0201, 133.1)
0.3 (15, 0.9903, 67.3) (14, 0.9858, 63.8) (14, 0.9858, 63.0) (14, 0.9858, 62.7) (14, 0.9858, 62.5)
0.5 (7, 0.9387, 19.2) (6, 0.9278, 17.9) (6, 0.9278, 17.7) (6, 0.9278, 17.6) (6, 0.9278, 17.5)
0.7 (4, 0.8982, 7.8) (4, 0.8982, 7.3) (4, 0.8982, 7.2) (4, 0.8982, 7.2) (4, 0.8982, 7.1)
1.0 (3, 0.8765, 3.4) (2, 0.8450, 3.3) (2, 0.8450, 3.2) (2, 0.8450, 3.2) (2, 0.8450, 3.2)
1.5 (2, 0.8450, 2.1) (2, 0.8450, 2.1) (2, 0.8450, 2.0) (2, 0.8450, 2.0) (2, 0.8450, 2.0)
2.0 (6, 0.9278, 1.9) (6, 0.9278, 1.9) (6, 0.9278, 1.9) (6, 0.9278, 1.9) (6, 0.9278, 1.9)

Table 8: (H∗,K∗, SARL1) values of the Synthetic X̃ control chart in the
presence of measurement errors for different values of B, δ, n, η = 0.28

23


