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ON SCHAUDER EQUIVALENCE RELATIONS

XIN MA

Abstract. In this paper, we study Schauder equivalence relations, which are

Borel equivalence relations generated by Banach spaces with basic sequences.

We prove that the set of equivalence relations generated by basic sequences has

boundaries. In addition, we prove that both RN/lp and RN/c0 are not reducible

to the equivalence relation generated by Tsirelson space T with the unit vec-

tor basis {tn}. We also shows that Borel equivalence relations generated by

α−Tsirelson spaces are mutually incompatible. Based on this argument, we

show that any basis of Schauder equivalence relations must be of cardinal 2ω .

1. Introduction

The Borel reducibility hierarchy of equivalence relations on Polish spaces now

becomes the main focus of invariant descriptive set theory, which has been an

essential branch of the descriptive set theory. One of the most important kind of

equivalence relations is the orbit equivalence relation generated by actions of Polish

groups. A lot of important results and essential tools have been investigated. A

separable Banach space with its norm topology can be regarded as a Polish abelian

group. By a well-known theorem of Mazur (see Theorem 1.a.5 in [17]), it admits a

basic sequence. Then the subspace generated by such a sequence can be regarded

as a Borel subgroup of RN (N = {0, 1, 2 . . .}). Then, its natural action on RN

generates a Borel equivalence relation. Some important situations have been studied

thoroughly. For example, Dougherty and Hjorth proved that for any p, q ∈ [1,∞],

RN/lp ≤B RN/lq ⇐⇒ p ≤ q,

while RN/lp and RN/c0 are Borel incomparable. ( see [7] and [12]).

Some kind of general form of the equivalence relations were further investi-

gated successfully. Professor Ding introduced a kind of lp−like equivalence relations

E((Xn); p). Let (Xn, dn), n < ω is a sequence of pseudo-metric spaces with p ≥ 1,
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2 XIN MA

He set that for any x, y ∈ Πn<ωXn,

(x, y) ∈ E((Xn); p) ⇐⇒
∑

n<ω

dn(x(n), y(n)) < ∞,

He found that the reducibility between such equivalence relations are closely related

to finitely Hölder(α) embedding by providing criteria of the reducibility. His the-

orem provides a lot of reducibility and non-reducibility results in the equivalence

relations related to classical Banach spaces of the form E((Lr); p) and E((c0); q).

(see [4] and [5]).

Another kind of lp−like equivalence relations Ef was introduced by Mátrai.

For any f : [0, 1] → R+ He considered the following relation on [0, 1]N:

xEfy ⇐⇒
∑

i<ω

f(|x(n)− y(n)|) < ∞.

He embedded any a liner chain of the order P (ω)/Fin into the set of the equivalence

relations between RN/lp and RN/lq, where 1 ≤ p < q < ∞, to answer a problem of

Gao in negative(See [19]).

More recently, Yin [25] has moved further to embed whole P (ω)/Fin into the

set of the equivalence relations between RN/lp and RN/lq to show the reducibility

order of Borel equivalence relations between RN/lp and RN/lq are rather complex.

In this paper, we would like to study Schauder equivalence relations, which

are Borel equivalence relations generated by Banach spaces with basic sequences.

we firstly prove following two theorems in general. We denote E(X, (xn)) the

equivalence relation generated by Banach space X with the basic sequence {xn}.

For some terminology in functional analysis, a subspace Y of a Banach space X

always means that Y is a closed subspace in X .

Theorem 1.1. Let Y be a Banach space, with {yn} being a Schauder basis. If X

is a subspace of Y , then there is a subspace Z of X, with a basis {zn}, such that

E(Z, (zn)) ≤B E(Y, (yn)).

Furthermore, If X is a subspace of Y , with a normalized subsymmetric basic

sequence {xn}, then, E(X, (xn)) ≤B E(Y, (yn)).

Theorem 1.2. Both X and Y are Banach spaces. {xn} and {yn} are normalized

basic sequences of X and Y , respectively. If two following conditions hold:

(1) for all subsequences {xbn} of {xn}, {xbn} does not dominate the {yn},

and

(2) {yn} is lower semi-homogeneous,

then E(X, (xn)) �B E(Y, (yn)).
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Using the theorems and their proof above, we can show RN/l1 and RN/c0 are

minimal equivalence relations in the order of reducibility among all the equivalence

relation of the form E(X, (xn)). Of course, the minimality of RN/l1 can also be

obtained by the property that RN/l1 is a minimal turbulent equivalence relation.

Then a natural question, corresponding to a well-known theorem in Banach spaces,

arises now: For all E(X, (xn)), whether for some p ≥ 1, RN/lp ≤ E(X, (xn)) or

RN/c0 ≤ E(X, (xn)) always holds for one case. We answer this question in negative.

In fact, just the equivalence relation generated by Tsirelson space (T, (tn)) (the dual

of the original Tsirelson space) witness a different situation.

Using the theorems above and the method addressed on turbulent ideals in-

troduced by Farah(see [8] and [9]), we can prove following theorems.

Proposition 1.3. For any p ≥ 1, Neither RN/lp nor RN/c0 are Borel reducible to

E(T, (tn)).

We say any two equivalence relations E and F in a class C are compatible if

there is an equivalence relation R ∈ C such that both R ≤B E and R ≤B F hold.

We say subclass B of a class C of equivalence relations is a basis of C if for any

E ∈ C, there is a F ∈ B such that F ≤B E. Using these terminologies, we can

prove the following theorem and corollary .

Firstly, Corresponding to another theorem in Banach space theory that any

α-Tsirelson space and β-Tsirelson space are totally incomparable if α 6= β, we have:

Theorem 1.4. E(Tα, (t
α
n)) and E(Tβ , (t

β
n)) are incompatible among all Schauder

equivalence relations.

Similar to the result of Farah([8]), we have:

Corollary 1.5. Every basis of the class of Schauder equivalence relations must be

of cardinal 2ω

2. Preliminaries

In this section, we recall some basic notions concerning descriptive set theory,

Banach spaces and Ideals. For the standard terminology in descriptive set theory

we refer to [11], [14] and [15]. We call a topological space Polish if it is separable

and completely metrizable. A Polish group is a topological group with a compatible

Polish topology. If X is a Polish space and G is a Polish group with an action · to

X , then the orbit equivalence relation EX
G is defined by

xEX
G y ⇐⇒ ∃g ∈ G(g · x = y).
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Let X , Y are Polish spaces and E, F are equivalence relations on X and Y ,

respectively. A Borel reduction from E to F is a Borel function θ : X → Y witnesses

that

xEy ⇐⇒ θ(x)Fθ(y)

for all x, y ∈ X . In this case, we say that E is Borel reducible to F , denoted by

E ≤B F , if there is a Borel reduction from E to F . We say E and F are Borel

equivalent, denoted by E ∼B F , If E ≤B F and F ≤B E. We call E strictly Borel

reducible to F , denoted by E <B F , if E ≤B F but not F ≤B E. If E is Borel

reducible to a Borel countable equivalence relation, we say E essentially countable.

Hjorth once studied a dynamical property of group actions called turbulence

and proved that any equivalence relations generated by turbulent actions is not

essentially countable. Related to turbulent equivalence relations, Hjorth(see [12])

also proved the 5th dichotomy theorem as follows.

Theorem 2.1 (Hjorth [12]). Let a Borel equivalence relation E ≤B RN/l1. Then

exactly one of the following holds:

(1) E is essentially countable;

(2) RN/l1 ≤B E.

As RN/l1 is turbulent, we thus know that it is a minimal equivalence relation

generated by a turbulent action.

Given a Banach space X , a Schauder basis {xn} of X means that any x ∈ X

can be expanded by the form x =
∞
∑

n=0
anxn for a unique {an} in RN. A sequence

{xn} is a basis of its closed linear span [xn]
∞
n=0 is called a basic sequence. we

say {xn} unconditional if x =
∞
∑

n=0
anxn converges unconditionally. Here, a series

∞
∑

n=0
xn converges unconditionally means that the series

∞
∑

n=0
xπ(n) converges for every

permutation π of the integers. A basic sequence {xn} is unconditional if and only

if the convergence of
∞
∑

n=0
anxn implies the convergence of

∞
∑

n=0
bnxn whenever |bn| ≤

|an|, for all n. For more details, please see see Proposition 1.c.6 in [17]

Now, we mention the definition of the Schauder equivalence relations. This

definition is due to Ding.

Definition 2.2 (Ding [6]). For a basic sequence {xn} in Banach spaceX , we denote

coef(X, (xn)) to be the set of all a = (an) ∈ RN such that
∑

anxn converges. Define

the Schauder equivalence relation E(X, (xn)) by, for any x, y ∈ RN,

(x, y) ∈ E(X, (xn)) ⇐⇒ x− y ∈ coef(X, (xn)).
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It is worth noting that coef(X, (xn)) is a Borel subgroup of RN. As the pro-

jection map on X to each coordinates is continuous, we can easily check that

coef(X, (xn)) is a Polishable subgroup of RN. E(X, (xn)) is an orbit equivalence re-

lation generated by the natural turbulent action of coef(X, (xn)) on RN and it is easy

to check that such equivalence relations is Borel. We can easily see that E(lp, (en))

is just the well-known equivalence relation RN/lp and similarly, E(c0, (en)) is RN/c0.

The followings is the definition of the block bases of a basic sequence.

Definition 2.3. ([17, Definition 1.a.10]) Let {xn} be a basic sequence in a Banach

space X. A sequence of non-zero vectors {uj} in X of the form uj =
pj+1
∑

pj+1
anxn,

with {an} scalars and p1 < p2 < · · · an increasing sequence of integers, is called a

block basic sequence or briefly a block basis of {xn}.

For two basic sequence {xn} and {yn} inX and Y , if coef(X, (xn)) ⊂ coef(Y, (yn)),

we say that {xn} dominates {yn}, denoted by {xn} ≫ {yn} (see [3]). If coef(X, (xn)) =

coef(Y, (yn)), we say {xn} and {yn} are equivalent. We call {xn} subsequence equiv-

alent if for any subsequence {xkn} of {xn}, coef(X, (xn)) = coef(X, (xkn)). An

unconditional subsequence equivalent basic sequence is called subsymmetric.(see

Definition 3.a.2 in [17]). Furthermore, we call {xn} symmetric if for any permuta-

tion π of N, coef(X, (xn)) = coef(X, (xπ(n))).

Another property we mention is called lower semi-homogeneous. It means that

any normalized block bases of {xn} dominates {xn}, where {xn} is a normalized

basis inX . To my knowledge, This property was firstly studied by Casazza and Bor-

Luh Lin (see [1]). Undoubtedly, c0 and lp, 1 ≤ p < ∞ are lower semi-homogeneous

(see Theorem 2.a.9 in [17]) but it is not true that only they have the property. In

[1], there is such an example concerning a Lorentz sequence space. It is easy to

check that, or by Proposition 1 in [1], every lower semi-homogeneous basis is an

unconditional basis.

For a Tsirelson’s space T in this paper, we mean the dual space of the oringinal

space constructed by Tsirelson. We would like to provide its definition here. In

fact, we would like to move further to provide the definition of a general version of

Tsirelson space, Tα, here. Based on this definition, Tsirelson space, T is just Tα,

when α is 1/2. For any finite non-void subset E, F of ω, we denote E < F for

max(E) < min(F ), with n < E, instead of {n} < E, and with analogous meanings

for E ≤ F . For the space c00, we mean the sequence space of all sequences of scalars

which are eventually zero.

Definition 2.4. ([17, Example 2.e.1]) For any α ∈ (0, 1), define a sequence of

norms ‖ · ‖m upon c00 as follows: fixing x =
∑

n
anxn ∈ c00, let ‖x‖0 = max

n
|an|.
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Then by induction, for m ≥ 0

‖x‖m+1 = max{‖x‖m, α ·max[

k
∑

j=1

‖Ejx‖m]},

where “inner” max is taken over all choices of finite subsets {Ej}kj=1 of N as k

varies and such that k ≤ E1 < E2 < . . . < Ek.

Then ‖x‖ = lim ‖x‖m is a norm on c00. The general Tsirelson space Tα is the

completion of c00 with the norm ‖ · ‖.

When α is 1/2, T1/2 is the Tsirelson space T . This definition, as far as I

know, is firstly introduced by Figiel and Johnson [10] and further being studied by

Cassazza, Johnson and Tzafriri and Shura([2], [3]). It is well-known that Tα are

spaces which contain no subspace isomorphic to any lp for p ≥ 1 and c0. They have

similar properties in some way but can be totally different from each other. That

is, for different α, β, Tα and Tβ are totally incomparable Banach spaces, i.e. they

do not have same infinite-dimensional subspaces in the isomorphic view. For more

details, see Definition 2.c.1 in [17] and theorem X.a.3 in [3].

More “Tsirelson-like” spaces Th and Tα,h can be defined in the similar manner.

If we define ‖x‖m+1 = max{‖x‖m, α ·max[
h(k)
∑

j=1

‖Ejx‖m]} for some strictly increasing

function h from N to N, we will obtain the Tα,h. Similarly, when α is 1/2, we

obtain the Th. It is worth noting that the basis {thn} in Th is equivalent to the basic

sequence {th(n)} of the basis {tn} in T . For more details, Please see [2] and [3].

There are more sequence spaces which are generalization of lp. We firstly

mention Orlicz sequence spaces, which were firstly introduced by Orlicz. For more

detail, Please see [17]

Definition 2.5. ([17, Definition 4.a.1]) An Orlicz Function M is a continuous

non-decreasing and convex function defined for t ≥ 0 such that M(0) = 0 and

lim
t→∞

M(t) = ∞.

For any Orlicz functionM we can define Banach space lM contains all sequences

of scalar x ∈ RN such that
∞
∑

n=0
M(x(n)/ρ) < ∞ for some ρ. On lM , we can define

a compatible norm as follows:

‖x‖ = inf{ρ :
∞
∑

n=0

M(x(n)/ρ) < ∞}

The subspace hM of lM , which contains all sequences x ∈ lM such that
∞
∑

n=0
M(x(n)/ρ) <

∞ for all ρ, is of particular interest. It can be checked that hM is a closed subspace
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of lM and unit vectors {en} form a symmetric basis of hM . (see Proposition 4.a.2

in [17]). The following property is called ∆
′

−condition.

Definition 2.6. An Orlicz function M is said to satisfy the ∆
′

−condition at zero if

there is real numbers c and x0 such that for all x, y ∈ [0, x0], M(xy) ≥ cM(x)M(y).

Now, we mention Lorentz sequence spaces d(w, p), which were introduced firstly

by Lorentz as function spaces. For more details, please also see [17].

Definition 2.7. ([17, Definition 4.e.1]) Let 1 ≤ p < ∞, and let w = {wn} be a

non-decreasing sequence of positive numbers such that w0 = 1, lim
n→∞

wn = 0 and
∞
∑

n=0
wn = ∞. The Banach space of all sequence x ∈ RN for which

‖x‖ = sup
π
(

∞
∑

n=1

‖x(π(n))‖pwn)
1/p < ∞,

where π ranges over all the permutations of the integers, is denoted by d(w, p) and

it is called a Lorentz sequence space

For an ideal I , we mean a set I ⊂ P (ω) such that for any A,B ∈ I ,

A ∪ B ∈ I and if C ⊂ A ∈ I , then C ∈ I . Such an ideal can be regarded as

a subset of Cantor space 2N with the usual product topology. A Borel ideal thus

means that the ideal is a Borel subset of 2N. In this way, any Borel ideal is a Borel

subgroups of 2N under the operation ∆, where x∆y = (x− y)
⋃

(y − x). Then, the

natural action, ∆, of a Borel ideal I on 2N can generate a equivalence relation.

If such an action is turbulent, we say I is turbulent. In addition, we say an

ideal I Polishable if it is a Polishable subgroup in 2N.

A typical way to define an ideal is to use submeasures. A submeasure on a set

A is any map φ : P (A) → [0.∞], satisfying φ(∅) = 0, φ({a}) < ∞ for all a, and

φ(x) ≤ φ(x
⋃

y) ≤ φ(x) + φ(y). A submeasure φ on N is lower-semicontinuous,

or LSC for brevity, if we have φ(x) = supn φ(x
⋂

[0, n)) for all x ∈ P (N). For

any submeasure φ, Define the tail submeasure φ∞(x) = infn(φ(x
⋂

[n,∞))). Now,

following ideals will be considered.

Finφ = {x ∈ P (N) : φ(x) < ∞}

Nullφ = {x ∈ P (N) : φ(x) = 0}

Exhφ = {x ∈ P (N) : φ∞(x) = 0}

Using these terminology, a characterization theorem which is due to Solecki,

can be arrived as follows:
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Theorem 2.8. ([14, Theorem 3.5.1]) Suppose that I ⊂ P (ω) is an ideal, then

following conditions are equivalent:

(1) I has the form Exhφ, where φ is a LSC submeasure on N.

(2) I is Polishable.

(3) I is an analytic P-ideal.

Furthermore, I is an Fσ P-ideal iff I = Finφ = Exhφ, for some LSC sub-

measure.

Remark 2.9. We know that any Polishable ideal I has the form Exhφ, where φ is

a LSC submeasure, on N is turbulent if and only if φ({n}) → 0. See [16].

A famous type of turbulent analytical P-ideals is the summable ideals. Here,

we only mention I1/n = {A :
∑

n∈A

1/n < ∞}. It is well-known that EI1/n
∼ RN/l1.

For more details about ideals, we refer to [14]. Given a Banach space X , and an

unconditional basic sequence {xn} of X such that
∑

xn diveges. we can define an

ideal as follows:

I = {A :
∑

n∈A

xn converges}.

In this manner, Farah defined a kind of α−Tsirelson ideals Tf,h,α.(see [8] and

[9]). Actually, by induction, He defined a LSC submeasure τf,h,α, which is similar

to the definition of norm in Tsirelson space to induce the ideals. In this paper, we

do not need to deal with these submeasures. Thus, for more details about them,

please see [8] and [9].

3. Reducibility and non-reducibility

In this section, we will mainly prove Theorem 1.1 and Theorem 1.2. We begin

with the reducibility theorem. The following lemma is trivial but fundamental.

Lemma 3.1. Suppose that {xn} is a basic sequence in X and {uj =
pj+1
∑

pj+1
anxn},

with {an} scalars and p1 < p2 < · · · an increasing sequence of integers, is a block

basis of {xn}, Then E(X, (un)) ≤B E(X, (xn)). In particular, for any subsequence

{xkn} of {xn}, we have E(X, (xkn)) ≤B E(X, (xn)).

Proof. The needed reduction θ from RN to RN can be easily constructed as follows.

For any c ∈ RN:

θ(c)(n) = cj · an if pj < n ≤ pj+1.

�

Then, more propositions about Banach space are needed. for these propositions

we refer to [17]
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Proposition 3.2. ([17, Proposition 1.a.11]) Let X be a Banach space with a

Schauder basis {xn}. Let Y be a infinite dimensional subspace of X . Then there is

a subspace Z of Y which has a basis which is equivalent to a block basis of {xn}.

Using the lemma and the proposition above, we can easily prove the first

part of Theorem 1.1, which is the case that if X is a subspace of Y . However,

this argument only asserts the “existence” of a needed equivalence relation, which

cannot be satisfied to handle. On the other hand, in some special case, like l1, we

can show that if X contains l1 as its closed subspaces, then RN/l1 ≤B E(X, (xn)).

One way to prove it is to use a well-known result of James.

Theorem 3.3 (James [13]). If a normed liner space contains a subspace isomorphic

to l1, then, for any positive number δ, there is a sequence {ui} of members of the

unit ball such that

(1 − δ) ·
∑

|ai| ≤ ‖
∑

aiui‖ ≤
∑

|ai|

for all sequence of numbers {ai}.

In fact, on the condition that X is a Banach space, with a basis {xn}, we can

take {un} a normalized block basis of {xn} (See the proof of Proposition 2.e.3 in

[17]). It implies that {en} in l1 is equivalent to a normalized block basis of {xn} in

X . Now, using the lemma above, we have RN/l1 ≤B E(X, (xn)).

The next one is known as the Bessaga-Pelczynski selection principle.

Proposition 3.4. ([17, Proposition 1.a.12]) Let {xn} be a Schauder basis of a

Banach space X . Let yk =
∞
∑

n=0
an,kxn, k = 1, 2 . . ., be a sequence of vectors such

that:

(1) lim sup
k

‖yk‖ > 0,

(2) lim
k

an,k = 0.

Then there is a subsequence {ykj} of {yk} such that it is equivalent to a block

basis of {xn}

Using Bessaga-Pelczynski selection principle, we can say more when X is a

subspace of Y . If a Banach space X , with a normalize basis {xn} which weakly

converges to 0, is a subspace of Y with a normalized basis {yn}, then, for any k, there

is a sequence of scalars {an,k} such that xk =
∞
∑

n=0
an,kyn. By Proposition 3.4, there

is a subsequence {xkn} of {xn} which is equivalent to a block basis {un} of {yn}.

Thus, we have E(X, (xkn)) ≤B E(Y, (yn)). That is E([xkn ], (xkn)) ≤B E(Y, (yn)).

Combining these arguments, we are ready to complete the proof of Theorem

1.1 as follows:
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Proof. (Theorem 1.1) We can assume that {xn} is a normalized unconditional basis

of X , is a subspace of Y . When {xn} is subsymmetric, It is well known that either

{xn} is equivalent to the unit vector basis {en} of l1, or {xn} weakly converges to

0 (see [3]). Thus, no matter which case happens, E(X, (xn)) ≤B E(Y, (yn)). �

For any Banach spaces, using Theorem 1.1, we can obtain following corollaries.

Corollary 3.5. LetX be a Banach space, which admits a normalized subsymmetric

basis {xn}. Then E(X, (xn)) is a minimal element, in the order of the ≤B, of the

set {E(X, (yn)) : {yn} is a basis of X}.

The corollary above actually implies that any two Schauder equivalence rela-

tions generated by different subsymmetric bases are Borel equivalent to each other.

On the other hand, if we consider all Schauder equivalence relations generated by

all basic sequences in a Banach space X , the corollary above is wrong. We can see

counterexamples in Corollary 3.15.

Let X be a Banach space with a Schauder basis {xn}. For any n ∈ ω, the linear

functional x∗
n on X is defined by x∗

n(
∞
∑

i=0

aixi) = an is a bounded linear functionals.

Actually, ‖x∗
n‖ ≤ 2K/‖xn‖ where K is the basis constant of {xn}. We call {xn}

shrinking if {x∗
n} form a Schauder basis of X∗ (see Proposition 1.b.1 in [17] ). For

another corollary, we need following theorem due to James.

Theorem 3.6. ([17, Theorem 1.c.9]) Let X be a Banach space with an uncondi-

tional basis {xn}. Then {xn} is shrinking if and only if X does not have a subspace

isomorphic to l1

It can be easily checked that any shrinking basis weakly converge to 0. For

any X , we denote AX for the class, which contains all equivalence relations of the

form E(X, (xn)), where {xn} is a basic sequence in X . Then we arrive following

corollary now.

Corollary 3.7. Let X be a Banach space having unconditional bases, then for any

two unconditional bases {xn} and {yn}, E(X, (xn)) and E(X, (yn)) are compatible

in AX .

Proof. If X contains a copy of l1, Then both RN/l1 ≤B E(X, (xn)) and RN/l1 ≤B

E(X, (yn)) hold. If not, {xn} is shrinking and thus there is a subsequence {xkn} of

{xn} which is equivalent to a block basis {un} of {yn}. Thus we haveE(X, (xkn)) ≤B

E(X, (yn)). Together with E(X, (xkn)) ≤B E(X, (xn)), the conclusion is arrived.

�
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Based on the corollary above, a question arises naturally. The following one is

asked by Liu:

Question 3.8 (Rui Liu). Whether there is a Banach space X with two uncon-

ditional bases {xn} and {yn} such that E(X, (xn)) and E(X, (yn)) are not Borel

equivalent?

For a kind of natural generalization of Theorem 1.1 for the case that X is a

subspace of Y , one may want to see what will happen if {xn} is not necessarily

unconditional. Here we mention a famous result of Rosenthal. It may be helpful

to clarify the situation to some extent. We say a sequence {xn} weak Cauchy if for

any function x∗ ∈ X∗, we have lim
n→∞

x∗(xn) exists.(see [21])

Theorem 3.9 (Rosenthal [21]). Let {xn} be a bounded sequence in a Banach space

X. Then, {xn} has a subsequence {xni} satisfying one of the two mutually exclusive

alternatives:

(1) {xni} is equivalent to the unit vector basis of l1.

(2) {xni} is a weak Cauchy sequence.

Now, we work in the case that X is a subspace of Y , with a conditional nor-

malized basis {xn} in X . It is clear that the proof of Theorem 1.1 highly depend

on Proposition 3.4, which deals with the situation that {xn} weakly converges to

0. In the meantime, James’s result allows us to handle the space l1. By applying

theorem 3.9 we can pass {xn} to one of its subsequences, and the last case that

we need to find out is when {xni} is a weak Cauchy sequence but not weakly con-

verges to 0 (i.e. non-trivial weak Cauchy, see [22]). The typical example is c with

its summing basis. Thus if one answer the following question, Theorem 1.1 in the

case of conditional basis will be completed easily.

Question 3.10. Let Y be a Banach space, with {yn} being a Schauder basis. If

X , with a normalized non-trivial weak Cauchy basic sequence {xn}, is a subspace

in Y , Whether there is a subsequence {xbn} of {xn}, such that E(X, (xbn)) ≤B

E(Y, (yn))?

Now, we address Theorem 1.2. One of a standard approach to address this kind

of theorem is involved. This approach was firstly used by Louveau and Velickovic

(see [18]) and developed by Dougherty and Hjorth (see [7]). Given a reduction θ

from E to F , one can reorganize it to obtain another reduction θ′ which is not only

continuous but “modular”. It means that the sequence in the range of θ′ are built

by finite blocks, each of which depends on only one coordinate of the argument to

the function. In this case, we call that θ′ witness that E ≤A F . Before we give the
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proof of Theorem 1.2, we would like to provide a definition, which is initiated in

[7].

Definition 3.11. ([7, Definition 2.1]) Let ~ǫ = (ǫi)i<ω, let Z(~ǫ) denote the set of all

x ∈ RN such that x(n) is an integer multiple of ǫn for all n ∈ ω.

We can easily see that Z(~ǫ) and Z(~ǫ) ∩ [−1, 1]N are both Polish spaces. Now

we are ready to prove Theorem 1.2.

Proof. (Theorem 1.2) we also assume that both {xn} and {yn} are normalized basis

and just need to check there is no such reduction θ from Z(~ǫ)∩[−1, 1]N → RN. Here,

the value of ~ǫ can be interpreted by ǫi = 2−i.

The following steps (claim 1-4) is modified from the proof of [7], Theorem 2.2

claim (1-4).

Claim 1. ∀j, k ∈ N, ∃l ∈ N and s∗ with s∗(i) = mǫk+i for some m ∈ Z such

that |mǫk+i| ≤ 1 for all i < len(s∗) and a comeager set D j Z(~ǫ) ∩ [−1, 1]N s.t.

for all u, û ∈ D, if u = rs∗w and û = r̂s∗w for some r, r̂ ∈ Rk and y ∈ RN, then:

‖
∞
∑

i=l+1

(θ(u)(i)− θ(û)(i))yi‖ < 2−j.

Proof. (Claim 1.) For each l ∈ N, define Fl from Z(~ǫ) ∩ [−1, 1]N to RN by:

Fl(u) = max
z,ẑ

‖
∞
∑

i=l+1

(θ(z)(i)− θ(ẑ)(i))yi‖,

where z, ẑ are elements of Z(~ǫ) ∩ [−1, 1]N s.t. ∀i ≥ k z(i) = ẑ(i). since z − ẑ ∈

coef(X, (xn)), θ(z) − θ(ẑ) ∈ coef(Y, (yn)). Thus,∀ǫ ∃N ∀n > N ‖
∞
∑

i=l+1

(θ(z)(i) −

θ(ẑ)(i))yi‖ < ǫ. Thus, lim
l→∞

‖
∞
∑

i=l+1

(θ(z)(i) − θ(ẑ)(i))yi‖ = 0 and lim
l→∞

Fl(u) = 0 for

all u. Therefore, for ∀j, we have ∀u ∃l Fl(u) < 2−j . If we denote Kl = {u : Fl(u) <

2−j},
⋃

Kl = Z(~ǫ) ∩ [−1, 1]N. Thus, there is a l such that Kl is not meager and

then there are some finite sequence t s.t. Nt  Kl. We can also extends t s.t.

len(t) ≥ k. Take t = r∗s∗ where len(r∗) = k. Consider f : Nr∗ → Nr where

len(r∗) = len(r) = k. by f(u) = û s.t. u(i) = û(i) for i ≥ len(r) = k. By the

definition of Fl(u), u ∈ Kl iff f(u) ∈ Kl. and then we have ∀r s.t. len(r) = k,

Nrs∗  Kl. At last, take D = Z(~ǫ) ∩ [−1, 1]N −
⋃

r(Nrs∗ −Kl). �

We fix a dense Gδ set C j Z(~ǫ) ∩ [−1, 1]N on which θ is continuous.

Claim 2. ∀j, k, l ∈ N, ∃s∗∗ with s∗∗(i) = mǫk+i for some m ∈ Z such that

|mǫk+i| ≤ 1 for all i < len(s∗∗) s.t. ∀u, û ∈ C, if x = rs∗∗w and x̂ = rs∗∗ŵ for some

r ∈ Rk and w, ŵ ∈ RN, then ‖
l
∑

i=0

(θ(u)(i) − θ(û)(i))yi‖ < 2−j
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Furthermore, if G is dense open in Z(~ǫ) ∩ [−1, 1]N, then s∗∗ can be chosen s.t.

Nrs∗∗ j G for all r ∈ Rk s.t. r(i) = mǫi for some m such that |mǫi| ≤ 1

Proof. (Claim 2.) we enumerate such r by r0, r1.....rV . By induction, define t0 = ∅.

suppose we have tm as C is comeager, there is a z ∈ Nrmtm∩C. since θ is continuous

on C, there is a neighborhood O of z s.t. for ∀x, x̂ ∈ C ∩O,
l
∑

i=0

|θ(u)(i)− θ(û)(i)| <

2−j. Thus, ‖
l
∑

i=0

(θ(u)(i) − θ(û)(i))yi‖ <
l
∑

i=0

|θ(u)(i) − θ(û)(i)| < 2−j. this O can

be taken as Nrm t̃m s.t. tm j t̃m, and we can extends t̃m to be tm+1 such that

Nrmtm+1 j G as G is dense open. At last take s∗∗ = tV .

Then x = rms∗∗y and x̂ = rms∗∗ŷ imply that x, x̂ are in Nrms∗∗ j Nrmtm ,

then ‖
l
∑

i=0

(θ(u)(i)− θ(û)(i))yi‖ < 2−j �

By repeating apply claim 1 and claim 2 to define number sequences b0 <

b1 < b2...., l0 < l1 < l2....., finite sequences s0, s1, s2... and dense open sets Dj
i j

Z(~ǫ) ∩ [−1, 1]N i, j ∈ N. Let b0 = l0 = 0,suppose we have bj , lj and Du
i for u < j.

Using claim 1 for the j with k = bj + 1 to get lj+1, a finite sequence s∗j and a

comeager set Dj . we can assume that lj+1 > lj and Dj j C.

Let Dj
0 k Dj

1 k Dj
2..... be dense open sets of Z(~ǫ)∩ [−1, 1]N s.t.

⋂∞
i=0 D

j
i j Dj .

Now apply claim 2 with j,k = bj + 1 + len(s∗j ), l = lj+1 and G =
⋂j

j′=0 D
j′

j to

obtain s∗∗j .

Let sj = s∗js
∗∗
j and bj+1 = bj + len(sj) + 1 let C′ be the set of all u ∈

Z(~ǫ) ∩ [−1, 1]N of the form 〈a0〉s0〈a1〉.... Easily we have ∀u, û ∈ C′

(1) if u(bi) = û(bi) for all i ≥ j +1, then ‖
∞
∑

i=lj+1

(θ(u)(i)− θ(û)(i))yi‖ < 2−j.

(2) if u(bi) = û(bi) for all i ≤ j, then ‖
lj+1
∑

i=0

(θ(u)(i)− θ(û)(i))yi‖ < 2−j

As {xbn} does not dominate the {yn}, it implies that there is a sequence

{δi} such that
∑

δixbi converges but
∑

δiyi diverges. Here, as
∑

δixbi converges,

lim
i→∞

δi = 0. Then, we can assume that |δi| < 1/2. we can also assume that for

any i, |δi| > ǫbi = 2−bi by adding ǫbi to the original |δi|. Then we obtain that

ǫbi < |δi| < 1

Now define a function g from Z(~δ) ∩ [−1, 1]N to Z(~ǫ) ∩ [−1, 1]N as follows:

Firstly, we set that g(x) is of the form 〈a0〉s0〈a1〉.... Then, we just need to

define the value of g(x) in bi as follows.

g(x)(bi) = qiǫbi if x(bi) = piδi such that |qi| is the max number s.t. |piδi −

qiǫbi | < 2−bi .
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The function is well-defined. As |δi| > ǫbi = 2−bi . if δi > 0, by the induction

of p ∈ N, we can easily prove that for all p ∈ N, there is a q ∈ N such that

pδi = qǫbi + µ, where, µ < ǫbi . For the case that δi < 0, the same method works.

It is easy to check that g(u) ∈ C′ and we need to further check that u − û ∈

coef(X, (xbn)) iff g(u) − g(û) ∈ coef(X, (xn)). As mi = |g(u)(bi) − g(û)(bi) −

(u(i) − û(i))| < 2−bi+1,
∑

mi converges. Consequently,
∑

(g(u)(bi) − g(û)(bi))xbi

converges iff
∑

(u(i)− û(i))xbi converges.

Then we have followings:
∑

(g(u)(i) − g(û)(i))xi converges iff
∑

(g(u)(bi) −

g(û)(bi))xbi converges iff
∑

(u(i)− û(i))xbi converges.

Now,define θ′ : Z(~δ)∩ [−1, 1]N → RN by for all j and all m such that lj < m ≤

lj+1, define

θ′(u)(m) = θ(g(ej(u)))(m) where

ej(u)(i) =

{

u(j) if i = j

0 if i 6= j

In fact, we can take θ′(u) of the form f0(u(0))
af1(u(1))

af2(u(2))..., where

fj(a) = θ(g(〈0, 0, ...0, a, 0....〉))|(lj , lj+1]

Claim 3. ∀u, û ∈ Z(~δ) ∩ [−1, 1]N, u − û ∈ coef(X, (xbn)) iff θ′(u) − θ′(û) ∈

coef(Y, (yn)).

Proof. (Claim 3.) we need to show θ′(u)− θ(g(u)) ∈ coef(Y, (yn))

Define

e′j(u)(i) =

{

u(j) if i ≤ j

0 if i > j

by the claim 1,2 we have followings:

‖
lj+1
∑

i=0

(θ(g(u))(i)− θ(g(e′j(u)))(i))yi‖ < 2−j and

‖
∞
∑

i=lj+1

(θ(g(e′j(u)))(i)− θ(g(ej(u)))(i))yi‖ < 2 · 2−j

As the condition 2 of {yn} implies {yn} is unconditional, we have ‖
lj+1
∑

i=lj+1

(θ(g(e′j(u)))(i)−

θ(g(ej(u)))(i))yi‖ < R‖
lj+1
∑

i=0

(θ(g(e′j(u)))(i)− θ(g(ej(u)))(i))yi‖ for some R.

Therefore, we have ‖
lj+1
∑

i=lj+1

((θ(g(u))(i)− θ′(u)(i))yi‖ < (R+ 2) · 2−j .

Thus, ∀ǫ, for sufficient large j the followings hold.

‖
∞
∑

i=lj+1

((θ(g(u))(i)− θ′(u)(i))yi‖ ≤
∞
∑

n=j

‖
lj+1
∑

i=lj+1

((θ(g(u))(i)− θ′(u)(i))yi‖ < ǫ.

Thus, θ′(u)− θ(g(u)) ∈ coef(Y, (yn)). �
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Claim 4. There are C ∈ R+, N ∈ ω such that ∀j > N , ∀u ∈ dom(fj)

s.t.|u| > 1
2 , ‖

lj+1
∑

i=lj+1

(fj(u)(i)− fj(0)(i))yi‖ > C.

Proof. (Claim 4.) Assume not, ∀n, Nn = max{n, jn−1}, ∃jn > Nn and ∃un ∈

dom(fjn) s.t. |un| >
1
2 s.t.

‖
ljn+1
∑

i=ljn+1

(fjn(un)(i)− fjn(0)(i))yi‖ < 2−n

Take û = ~0 and u s.t.

u(i) =

{

un if i = jn

0 otherwise

u − û = x 9 0. However, for sufficient large m, ‖
∞
∑

i=ljm+1

(θ′(u)(i) − θ′(û)(i))yi‖ ≤

∞
∑

n=m
‖

ljn+1
∑

i=ljn+1

(fjn(un)(i)− fjn(0)(i))yi‖ ≤
∞
∑

n=m
2−n ≤ ǫ.

A contradiction. �

As
∑

δixbi converges, then, δj → 0. Thus, for N occurs in the claim 4,

there is a M ≥ N such that j > M implies that |δj | < 1/2. In the case that

j > M , let kj ∈ ω satisfies that γj = kjδj such that |γj | ∈ [ 12 , 1]. By claim

4, ‖
lj+1
∑

i=lj+1

(fj(γj)(i) − fj(0)(i))yi‖ > C for some C. Then ‖
lj+1
∑

i=lj+1

(fj(δj)(i) −

fj(0)(i))yi‖+ ....+ ‖
lj+1
∑

i=lj+1

(fj(γj)(i)− fj((ki − 1)δj)(i))yi‖ > C.

Therefore, there is some number ni ≤ ki s.t. ‖
lj+1
∑

i=lj+1

(fj((nj + 1)δj)(i) −

fj(njδj)(i))yi‖ ≥ C/kj = Cδj/γj .

Define a block basis of {yn} by Sj =
lj+1
∑

i=lj+1

(fj((nj + 1)δj)(i) − fj(njδj)(i))yi.

If j > M , then ‖Sj‖ ≥ Cδj/γj .

set u s.t.u(i) = (ni + 1)δi and û s.t. û(i) = niδi. Then
∑

(u(i) − û(i))xbi =
∑

δixbi converges. Take {sj = Sj/‖Sj‖} to be a normalized block bases of {yj}.

Undoubtedly,
∑

Sj converges iff
∑∞

j=M ‖Sj‖sj converges. Then, as {yj} are lower

semi-homogeneous,
∑∞

j=M ‖Sj‖sj converging implies that
∑∞

j=M ‖Sj‖yj converges.

As ‖Sj‖ ≥ Cδj/γj ≥ Cδj for j > M and {yj} lower semi-homogeneous im-

plying that it is unconditional, the following holds by applying proposition 2.6:
∑

Sj converging implies that
∑∞

j=M δjyj converges. Now, as
∑∞

j=M δjyj diverges,
∑

(θ′(u)(i)− θ′(û)(i))yi =
∑

Sj diverges. It means that θ′ is not a reduction.

A contradiction to claim 3. �
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Using Theorem 1.2 we can also arrive a lot of interesting corollaries. Some

known results about classical sequence Banach spaces, due to Dougherty and Hjorth,

can be arrived by this theorem. The proof is easy if we notice the difference of two

spaces and all natural basis of these space are subsequence equivalent and perfectly

homogeneous, thus lower semi-homogeneous.

Corollary 3.12 (Dougherty and Hjorth, [7],[12]). For classical sequences Banach

spaces lp, where p ≥ 1 and c0, we have c0 �B lp for any p ≥ 1 and lq �B lp if p < q.

On the other hand, Tsirelson’s space T and its dual T ∗, which is actually the

original space constructed by Tsirelson (see [3] and [24]) serve to solve a well-known

question in Banach space theory that whether there is a Banach space contains no

isomorphic copies of c0 and lp for p ≥ 1. The natural analogous question, asked by

Ding, that whether there is a equivalence relation of the form E(X, (xn)) witnessing

that neither, for some p ≥ 1, RN/lp ≤ E(X, (xn)) nor RN/c0 ≤ E(X, (xn)). In this

section we only solve the case of RN/lp for p > 1 and RN/c0. This partly prove

Theorem 1.3. For the case l1, Please see the last section of this paper. The following

proposition is essentially due to Casazza, Johnson and Tzafriri (see Lemma 4 in [2]

and Corollary 2.2 in [3]).

Proposition 3.13 (Casazza, Johnson and Tzafriri, [2]). The natural basis {tn} in

Tsirelson space T is lower semi-homogeneous.

Corollary 3.14. For any p > 1, Neither RN/lp nor RN/c0 Borel reducible to

E(T, (tn)).

Proof. By the proposition above, we know that the sequence of unit vectors {tn}

is lower semi-homogeneous in T . Thus as the unit vector basis {en} in both lp and

c0 are subsymmetric (actually symmetric), we just need to show that {en} does

not dominate the {tn}. It is easily to see that the sequence ( 1n )
∞
n=1 witnesses that

∞
∑

n=0

1
n+1 tn diverges in T , while

∞
∑

n=0

1
n+1en converging in both lp and c0. �

Now, we give some corollaries concerning Schauder equivalence relations gen-

erated by Lorentz sequence spaces and Orlicz sequence spaces. It is easy to see

that E(d(w, p), (en)) is just the equivalence relation RN/d(w, p) and E(hM , (en)) is

RN/hM , similarly.

Firstly, We know that lp is a proper subspace of d(w, p) (see Proposition 4.e.3

in [17]). Thus, by Theorem 1.1 and Theorem 1.2, we have the following corollary.

Corollary 3.15. For any p ≥ 1, RN/lp <B RN/d(w, p)
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For Orlicz spaces, we just study hM as unit vectors {en} form a symmetric

basis of it. If M satisfies ∆
′

condition, {en} then in hM is lower semi-homogeneous.

Consider uj =
pj+1
∑

n=pj+1
anen is a normalized block basis of {en}. We can easily

check that
pj+1
∑

i=pj+1

M(|ai|) = 1. For any scalar sequence {bn} ∈ RN, if
∞
∑

j=0

bjuj

converges, then
∞
∑

j=0

pj+1
∑

i=pj+1

M(|aibj|) < ∞. As M satisfies ∆
′

condition,

∞
∑

j=0

pj+1
∑

i=pj+1

M(|aibj|) ≥
∞
∑

j=0

cM(|bj|)

pj+1
∑

i=pj+1

M(|ai|) = c

∞
∑

j=0

M(|bj |).

It means that
∞
∑

j=0

bjej converges. Thus, {en} in hM is lower semi-homogeneous.

Thus, For Orlicz spaces hM and hN , Theorem 1.2 has following special form:

Corollary 3.16. M and N are Orlicz functions. If two following conditions hold:

(1) hM * hN , and

(2) N satisfies ∆
′

conditions,

then RN/hM �B RN/hN .

We would like to provide more application of Theorem 1.1 and Theorem 1.2

in the next section to study the boundaries of the Schauder equivalence relations.

4. Boundaries of Schauder equivalence relations

In the last two sections, we will study some structural properties of the class

of the Schauder equivalence relations. We denote A for the class, of all equiva-

lence relations of the form E(X, (xn)) and AU the subset of A such that {xn} is

unconditional. Firstly, we prove that A and AU have boundaries to some extent.

For any Banach space X with a normalized basic sequence {xn}, it is easy to

see that l1 ⊂ coef(X, (xn)) ⊂ c0. It seems that RN/l1 and RN/c0 are special ones

in A. Indeed they are. We claim that RN/c0 and RN/l1 are minimal incomparable

ones in A in the order of ≤B by proving the following proposition.

Remark 4.1. For the part of l1. we can use Theorem 2.1. As we can check directly

that every E(X, (xn)) is turbulent, then RN/l1 is minimal in A. To be self-contained

in this paper, we can use Theorem 1.2 to prove the minimality of RN/l1.

Proposition 4.2. If c0 (resp. l1) can not be embedded into X with a basis {xn},

then E(X, (xn)) �B RN/c0 (resp. RN/l1).

Proof. Firstly, we can assume that {xn} is normalized. Then, we use Theorem 1.2

to prove the minimality of RN/l1. l1 with {en} is perfectly homogeneous, thus lower
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semi-homogeneous. Given coef(X, (xn)), for any subsequences {xkn} of {xn}, as

l1 can not being embedded into X , {en} can not be equivalent to {xkn}. Thus,

l1 $ coef(X, (xkn)). Now, Theorem 1.2 applies.

The case for c0 is a little different. Given coef(X, (xn)), we will use the first

three claims of the proof of Theorem 1.2 instead of itself. Then, similar to the case

of l1, we have for a subsequence {xbn} of {xn}, coef(X, (xkn)) $ c0. It means that

there is a sequence (δi) such that ǫbi < |δi| < 1 with |δi| → 0 but
∑

δixbi diverging.

In the same way in Theorem 1.2, we thus can obtain a “modular” reduction θ′ wit-

nesses that E(X, (xkn)) ≤A c0 with the form θ′(u) = f0(u(0))
af1(u(1))

af2(u(2))....

As
∑

δixbi diverging, an = ‖fn(δn) − fn(0)‖c0 9 0 holds. In fact we can

assume that there is a ǫ0 such that an = ‖fn(δn)− fn(0)‖c0 > ǫ0 as we can always

choose a subsequence {ank
} of {an} such that ank

> ǫ0 as an 9 0 for some ǫ0 and

use {ank
} to replace {an}. In this case, there is no subsequence {ank

} of {an} such

that ank
→ 0. However, As |δi| → 0, we can choose a subsequence {δpi} of {δi}

such that {δpi} ∈ l1 forces that
∑

δpixbpi
converges. Define δ′ as follows.

δ′n =

{

δpk
if n = pk

0 otherwise

.

In this case, as θ′ is a reduction, apn = ‖fpn(δpn) − fpn(0)‖c0 → 0. A contra-

diction. �

This proposition, together with Theorem 1.1 and the result of same type about

l1. We can show the minimality of RN/c0 and RN/l1.

Theorem 4.3. If E(X, (xn)) ≤B RN/c0 ( resp. RN/l1 ) , then E(X, (xn)) ∼B

RN/c0 ( resp. RN/l1 ).

Proof. We just show the case of c0, as the case of l1 shares the same proof. If

E(X, (xn)) ≤B RN/c0, by the proposition above, we must have c0 can be embedded

in X . By Theorem 1.1, we have that RN/c0 ≤B E(X, (xn)). Thus E(X, (xn)) ∼B

RN/c0. �

For the upper boundaries of A and AU . we appeal to the universal separable

Banach spaces U1 and U2 constructed by Pelczynski[20] (see also [23]). U1 has

an unconditional basis {ui} such that every unconditional basic sequence (in an

arbitrary separable Banach space) is equivalent to a subsequence of {ui}. For U2,

similarly, has a Schauder basis {vn} such that every basic sequence is equivalent to

one of its subsequence. Thus, we can easily see the following theorem.
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Theorem 4.4. For any E(X, (xn)) in AU , E(X, (xn)) ≤B E(U1, (un)) and for

any E(X, (xn)) in A, E(X, (xn)) ≤B E(U2, (vn)).

5. Bases of Schauder equivalence relations

In this section, Farah’s conclusion of Tsirelson ideals are used to prove all kinds

of non-reducibility concerning the Tsirelson space. We mainly prove Proposition 1.3

and Theorem 1.4. Similar to the argument of Farah, Theorem 1.4 leads Corollary

1.5 naturally. For any unconditional normalized basic sequence {xn} in X , we

denote IX(xn),f
for the ideal I = {A ∈ P (N) :

∑

n∈A

f(n)xn converges}. For this kind

of ideals, we can define following submeasure:

ϕ(A) =











‖|
∑

n∈A

f(n)xn‖| if
∑

n∈A

f(n)xn converges

sup
m

‖|
∑

n∈A
⋂
[0,m)

f(n)xn‖| otherwise,

where ‖| ·‖| is the norm which is equivalent to the original norm ‖·‖ on [xn]
∞
n=0

but makes {xn} monotone. It is easy to see that ϕ(A) is a LSC submeasure and

IX(xn),f
= Exhϕ. Thus, by Theorem 2.8 and Remark 2.9 following it, IX(xn),f

is

turbulent if and only if f(n) → 0. The following lemma is fundamental.

Lemma 5.1. For X is a Banach space having no subspaces isomorphic to c0. Y is

also a Banach space. Assume E(X, (xn)) ≤B E(Y, (yn)) with {xn} and {yn} being

unconditional and monotone, respectively, then there are functions f, g : N → R+

with f(n), g(n) → 0, subsequence {xbn} of {xn}, and a normalized block basis {sj}

of {yn} such that IX(xbn ),f = IY(sn),g.

Proof. Using the proof of Theorem 1.2 (claim 1-3), After finding a subsequence

{xbn} of {xn}, we need to construct the “modular” reduction. Now, we do not

need the difference between the coef(X, (xbn)) and coef(Y, (yn)). Thus we follow

the original step of Dougherty and Hjorth [7] by taking δi = ǫbi and g(u)(bi) =

u(i). We thus can obtain a “modular” reduction θ′ witnesses that E(X, (xkn)) ≤A

E(Y, (yn)) with the form θ′(u) = Ta

1 (u(1))aT2(u(2))
aT3(u(3)).... we can assume

that θ′(~0) = ~0 by define another reduction θ′′(a) = θ′(a) − θ′(0). In this case, for

any n, Tn(0) = ~0.

As X does not contain c0, there is a function f : N → R+ such that
∑

f(n)xbn

diveges but f(n) → 0 (see [17, Propostion 2.e.4] and the remark following it).

Furthermore, we can asumme that for each n, f(n) = knδn for some kn ∈ N.

For any such a function f , we can define φ from 2N to Z(~δ) ∩ [−1, 1]N by

φ(a)(i) = f(i) · a(i). Thus by combining θ′ and φ, we can define a reduction ϕ
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witness that 2N/IX(xbn),f ≤A E(Y, (yn)) by:

ϕ(a) = T1(f(1)a(1))
aT2(f(2)a(2))

aT3(f(3)a(3))...

As Tn(0) = ~0 holds, we in fact have following formula:

ϕ(a) = a(1) · T1(f(1))
aa(2) · T2(f(2))

aa(3) · T3(f(3))...

Take the block basis Sj =
lj+1
∑

i=lj+1

(Tj(f(j))(i))yi and sj = Sj/‖Sj‖. We define

g(j) = ‖Sj‖. We can easily check following holds for any a, b ∈ 2N:

a△b ∈ IX(xbn ),f iff
∑

a(i) 6=b(i)

f(i)xbi converges iff φ(a) − φ(b) ∈ coef(X, (xbn)) iff

θ′(φ(a)) − θ′(φ(b)) ∈ coef(Y, (yn)) iff
∞
∑

j=1

|a(j) − b(j)| · ‖Sj‖sj converges iff a△b ∈

IY(sn),g
Thus IX(xbn ),f = IY(sn),g. As f(n) → 0, IX(xbn ),f is turbulent. Then g(n) → 0. �

The following lemma concerning Tsirelson space is due to Casazza, Johnson

and Tzafriri.

Proposition 5.2. Let {yj} in T of the form yj =
pj+1
∑

pj+1
antn, with {an} scalars, is a

normalized block basic sequence of {tn}, Then for every choice of natural numbers

pj < kj ≤ pj+1, and every sequence of scalars {bn}, we have:

1

3
‖
∑

j

bjtkj‖ ≤ ‖
∑

j

bjyj‖ ≤ 18‖
∑

j

bjtkj‖

.

It is worthy noting that all theorems above also hold in Tα. see notes and

remarks in X.A in [3]. Due to Farah, start from Tsirelson space Tα, Tsirelson ideals

can be defined:

Tf,h,α = Exh(τf,h,α) = IT(th(n)),f
.

. When α is 1/2, we write Tf,h,1/2 to be Tf,h. Farah studied this type of ideals

thoroughly to refute a conjecture of Mazur and Kechris. Furthermore, He proved

that every basis of turbulent orbit equivalence relations induced by continuous

Polish group actions on Polish spaces is of size continuum. Here we only mentions

his two propositions. For more details, please see [8] and [9].

Proposition 5.3 (Farah [9]). Each ideal Tf,h is different from I1/n.

Based on the lemma and the propositions above, we can proved that RN/l1 �B

E(T, (tn)). With Corollary 3.14, we finished the proof of Proposition 1.3.
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Proof. (Proposition 1.3) If RN/l1 ≤B E(T, (tn)), by the lemma above, we can find

a f , with f(n) → 0, such that I1/n = I l1(en),f = IT(sn),g for some g with g(j) → 0, and

a normalized block basis {sj =
lj+1
∑

i=lj+1

aiti}. From Proposition 5.2, we know that

{sj} is equivalent to {tkj} for any lj < kj ≤ lj+1. Thus, I1/n = IT(tkn ),g = Tk,g. A

contradicition to Proposition 5.3. �

Now we are ready to prove Theorem 1.4. The following proposition is also due

to Farah.

Theorem 5.4 (Farah [8]). If both Tf1,h1,α and Tf2,h2,β, with α 6= β, are turbulent,

then they are different.

Proof. (Theorem 1.4) If there is a E(X, (xn)) Borel reducible to E(Tα, (t
α
n)) and

E(Tβ, (t
β
n)) with α 6= β. We know that X does not contain c0, as RN/c0 �B

E(Tα, (t
α
n)) Then as in the proof of lemma 5.1, we can find a subsequence {xbn} of

{xn} and a reduction θ1 of the “modular” form θ1(u) = Ta

1 (u(1))aT2(u(2))
aT3(u(3))...,

witnesses that E(X, (xbn)) ≤A E(Tα, (t
α
n)). From {xbn} we can repeat this steps

to find one of its subsequence {xbdn } and a reduction θ2 of the “modular” form

witnessing that E(X, (xbdn )) ≤A E(Tβ, (t
β
n)). Using the lemma 5.1 and the proof

above, we have for some f there is a g1 and k1 such that IX(xbdn
),f = Tk1,g1,β, which

is turbulent.

In addition, consider the domain of θ1 in coordinate bdn , we can construct a

reduction θ′1 from 2N as follows:

θ′1(a) = ~0⌢~0⌢ . . . a(1) · Td1(f(1))
⌢~0⌢ . . . a(2) · Td2(f(2))

⌢ . . . .

In fact, for any a, b ∈ 2N , we can check that a△b ∈ IX(xbdn
),f iff

∑

a(i) 6=b(i)

f(i)xbdi
con-

verges iff φ(a)−φ(b) ∈ coef(X, (xbdn )) iff θ′1(a)−θ′1(b) ∈ coef(Tα, (t
α
n)) iff

∞
∑

j=1

|a(j)−

b(j)| · ‖Sj‖sj converges iff a△b ∈ ITα

(sn),g2
, where Sj =

ldj+1
∑

i=ldj+1

(Tdj (f(j))(i))t
α
i ,

sj = Sj/‖Sj‖ and g2(j) = ‖Sj‖.

Similar to the proof of Proposition 1.3, we can get any subsequences {tkj},

with ldj < kj ≤ ldj + 1, equivalent to {sj}. Choose such a subsequence and define

k2(j) = kj . Thus, we have IX(xbdn
),f = Tk2,g2,α and then Tk1,g1,β = Tk2,g2,α. Both

of them are turbulent.

A contradiction to theorem 5.4.

�
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Then we are ready to prove Corollary 1.5. Comparing to Farah’s Theorem, as

every E(X, (xn)) being turbulent, Corollary 1.5 shows that the same argument also

holds for a subclass of the turbulence equivalence relations induced by continuous

actions. In fact, his proof also holds in our setting for Corollary 1.5. See the proof

of Theorem 1.2 in [9]. However, to be self-contained, we would like to provide the

proof here.

Proof. (Corollary 1.5) As there are only continuum many Borel equivalence re-

lations, it suffices to prove that if E(Xξ, (x
ξ
n)), where ξ < λ < 2ω, are equiv-

alence relations in A, then there is some equivalence relation E in A such that

E(Xξ, (x
ξ
n)) �B E for all ξ < λ. Based on Theorem 1.4, we know that for every ξ,

there is at most one αξ such that E(Xξ, (x
ξ
n)) ≤B E(Tαξ

, (t
αξ
n )). Fix a α,which is

different from all αξ. Then, take the equivalence relation E to be E(Tα, (t
α
n)). �
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