1511.05398v1 [cs.DM] 17 Nov 2015

arxXiv

On the Existence of Tree Backbones that Realize
the Chromatic Number on a Backbone Coloring

J. Araujo and A. A. Cezar and A. Silva
ParGO Group - Parallellism, Graphs and Optimization
Departamento de Matematica
Universidade Federal do Ceard, Fortaleza, Brazil

October 17, 2018

Abstract
A proper k-coloring of a graph G = (V, E) is a function ¢ : V(G) —
{1,...,k} such that c(u) # c(v), for every wv € E(G). The chromatic
number (@) is the minimum k such that there exists a proper k-coloring
of G. Given a spanning subgraph H of GG, a g-backbone k-coloring of
(G, H) is a proper k-coloring ¢ of V(@) such that |c(u) — c¢(v)| > g, for
every edge uwv € E(H). The g-backbone chromatic number BBC, (G, H)
is the smallest k for which there exists a g-backbone k-coloring of (G, H).
In this work, we show that every connected graph G has a spanning tree
T such that BBC,(G,T) = max{x(G), [@—‘ + ¢}, and that this value
is the best possible.
As a direct consequence, we get that every connected graph G has
a spanning tree T for which BBC>(G,T) = x(G), if x(G) > 4, or
BBC>(G,T) = x(G) + 1, otherwise. Thus, by applying the Four Color
Theorem, we have that every connected nonbipartite planar graph G has
a spanning tree 7' such that BBC>(G,T) = 4. This settles a question by
Wang, Bu, Montassier and Raspaud (2012), and generalizes a number of
previous partial results to their question.

1 Introduction

For basic notions and terminology on Graph Theory, the reader is referred to [1].
All graphs in this work are considered to be simple. Because we investigate
the existence of a spanning tree with certain property, we also consider only
connected graphs. However, for disconnected graphs, the statements hold by
replacing “spanning tree” by “spanning forest”. A proper k-coloring of a graph
G is a function ¢ : V(G) — {1,...,k} such that c(u) # c(v), for every uv €
E(G). If G admits a proper k-coloring, we say that G is k-colorable. The
chromatic number of G, denoted by x(G), is the smallest positive integer k
such that G is k-colorable. Determining the chromatic number of a graph is an
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NP-hard problem on Karp’s list [I0] and one of the most studied problems on
Graph Theory [9, [TT].

Given a spanning subgraph H of G, and positive integers k£ and ¢, a g-
backbone k-coloring of (G, H) is a proper k-coloring ¢ of G such that |c(u) —
c(v)| > g, for every uv € E(H). The g-backbone chromatic number of (G, H),
denoted by BBC,(G, H), is the smallest integer k for which (G, H) admits a
g-backbone k-coloring.

This parameter was first introduced by Broersma et al. [2] as a model for
the frequency assignment problem where certain channels of communication
are more demanding than others. In their seminal work, they only considered
¢ = 2 and they were interested in finding out how far away from x(G) can
BBC5(G, H) be in the worst case. Concerning trees, for each positive integer
k, they defined:

T = max{BBC(G,T) : x(G) = k and T is a spanning tree of G}.

Note that, if ¢ is a proper x(G)-coloring of G, then by recoloring each vertex
u with color 2¢(u) — 1, we obtain a proper (2x(G) —1)-coloring of G where every
color is odd. Therefore, we get BBCs(G,G) < 2x(G) — 1. This gives an upper
bound of 2k — 1 for Ty. In [2], they proved that this is actually best possible.

Theorem 1 (Broersma et al.[2]). T = 2k — 1, for every positive integer k.

This means that, between all the k-colorable graphs, there is one that attains
this upper bound. However, it does not give any insight on how bad can a tree
backbone be for a given graph G. One could then define 73(G) as the maximum
BBC5(G,T), where T is a spanning tree of G. This worst case behaviour has
been studied for planar graphs. If G is planar, because x(G) < 4 and the fact
that BBC3(G,G) < 2x(G) — 1, we get T2(G) < 7. Broersma et al. [3] give
examples where BBC5(G,T) = 6, and conjecture that 72(G) = 6. A partial
result for their conjecture has been given in [7]. Note that this parameter can
be generalized for higher values of ¢. In [8], Havet et al. prove that, if G is a
planar graph, then 7,(G) < g + 6. They also prove that this is best possible if
q > 4, and conjecture that 73(G) < 8.

Now, observe that it is not clear whether G always has a spanning tree with
a “good” behaviour, i.e., such that BBC,(G,T') is not much larger than x(G).
Therefore, it makes sense to define the best case behaviour of BBC,(G,T). In
[12], Wang, Bu, Montassier and Raspaud asked what is the smallest value f for
which the following holds: if G is a nonbipartite planar graph with girth at least
B, then G has a spanning tree T" such that BBC5(G,T) = 4. Inspired by their
question, we define the following parameter, for a given graph G and a positive
integer g:

B,(G) = min{ BBC,(G,T) : T is a spanning tree of G}.

Our main result is the following:



Theorem 2. For every graph G and positive integer q,

B,(6) = max{x(@), | X2 | 4 .

This gives us the following value for bipartite graphs:
Corollary 1. If G is bipartite, then By(G) = ¢+ 1.

Considering g > 2, observe that if G has at least one edge and T is a spanning
tree of G, then BBC>(G,T) > 3, and that BBC(G,T) = 3 if, and only if, G is
bipartite. Also, observe that, when G is a nonbipartite planar graph, we get that
max{x(G), [x(G)/2] + 2} is always equal to 4. Therefore, the answer to Wang
et al’s question is § = 3, i.e., having high girth is not a necessary condition for
having the desired spanning tree.

Corollary 2. If G is a nonbipartite planar graph and g > 2, then B4(G) = q+2.
In particular, G always has a spanning tree T for which BBC2(G,T) = 4.

We mention that this generalizes results in a number of papers: [4] [5 [13] [6]
[I2]. We also mention that, in [I2], Wang et al. wrongly state that 3 is at least
4 due to the existence of a nonbipartite planar graph G and a spanning tree T'
of G such that BBCy(G,T) = 6. However, they fail to notice that, in order for
[ to be at least 4, this should hold for every spanning tree of G.

2 Proof of Theorem

Roughly, the idea of the proof is to show that any graph G has a nice proper
k-coloring, where k = max{x(G), [x(G)/2] + ¢}. By nice we mean that the
subgraph of G induced by the edges whose endpoint colors differ by at least ¢
form a connected spanning subgraph of G. Then, we select among these edges
a spanning tree to form its backbone. Before presenting the main result, let us
recall some definitions, and present some new ones.

Consider a proper k-coloring ¢ of a graph G. For i € {1,...,k}, the color
class i of ¢ is the subset ¢; = {u € V(G) : ¢(u) = i}. Observe that if H is a
component of G[¢; U ¢j], a.k.a. Kempe’s chain, then the k-coloring ¢’ obtained
from ¢ by switching colors ¢ and j in V(H) is also a proper k-coloring of G.
We denote the set of edges {uv € E(G) :w € V(H) and v € V(G) \ V(H)} by
[H, H]. Given an integer ¢, and i € {1,...,k}, we denote by [i], the set {j €
{1,...,k} : |i — j] < ¢}. The g-subgraph of ¢, denoted by G 4, is the subgraph
(V(G), E.q), where E. , = {uv € E(G) : |c(u) — c(v)] > ¢q}. Alternatively, one
can see that uv € E. 4 if and only if c(u) ¢ [c(v)]q if and only if ¢(v) ¢ [c(u)]q.
Our upper bound is obtained as a corollary of the following theorem:

Theorem 3. If G is a connected graph and k > max{x(G), [x(G)/2]+q}, then
there exists a proper k-coloring c of G such that G 4 is connected.



Proof. Consider k = max{x(G), [x(G)/2] + ¢} and let ¢ be a proper k-coloring
of G that uses the following x(G) colors: {1,...,z,z + Kk + 1,...,k}, where
z = [x(G)/2] and k' = k—x(G). Let H be a component of G, , with maximum
number of vertices. Suppose, without loss of generality, that ¢ maximizes the
size of . We claim that such a coloring c satisfies that G 4 is connected, which
means that H is a spanning subgraph of G.

By contradiction, suppose that V(H) C V(G), i.e., H does not contain every
vertex of G. Since G is connected, there must be an edge uv € [H, H|. By the
definition of G. 4, we know that [c(u)]q N [c(v)]q # 0.

First, suppose that there exists 7 € {1,...,k}\ ([e(uw)]qU[c(v)]q), and let H’
be the component of G[c;Uc,(,,)] containing v. We claim that V/(H')NV (H) = ().
Suppose otherwise and let v € V(H') N V(H) be closest to v in H'; also, let
w € Ny/(v')\ V(H) (it exists by the choice of v'). By the definition of H’,
we know that {c(v'),c(w)} = {4, c(v)}. This contradicts the construction of H
since wv’ ¢ E. 4 and j ¢ [c(v)]y. Now, let ¢ be obtained from ¢ by switching
colors j and ¢(v) in H'. Because V(H') N V(H) = (), nothing changes in H;
additionally, ¢/(v) ¢ [¢/(u)]4, which means that uwv € E. , and that there is a
component in G 4 that strictly contains H, a contradiction to the choice of c.

Now, suppose that

[c(u)]g Ule(v)]q = {1,...,k}, for all wo € [H, H]. (1)

Recall that ¢ uses the colors that are in the set {1,...,x,2 + k' + 1,...,k},
where k = max{x(G), [x(G)/2] + ¢}, z = [x(G)/2] and k¥’ = k — x(G). We
want to prove that 1 ¢ [i]g, for every i € {x + k" +1,...,k}, and that k ¢ [i],,
for every i € {1,...,2}. We analyse the cases below.

e ¢ > |x(G)/2]: in this case, k = x4+ q. If i € {1,...,2}, then k — ¢
k—x=xz+4+q—2x=gq Incase,i € {x +k" +1,...,k}, then i —1
24+ kK +1-1=s+k—x(G)=z+z+q—x(G) >q.

>
>

e ¢ < [x(G)/2]: observe that k = x(G) and ¥’ = 0. If i € {1,...,2}, then
k—i>k—x = x(G)—z = |x(G)/2] > q. Similarly, if i € {z+k'+1,...,k},
theni—1>z+k +1—-1=2x>q.

Now, consider any edge uv € [H, H|. Suppose that c(u) < x, in which case k ¢
[e(u)]g; if this is not the case, we get 1 ¢ [c(u)], and the argument is analogous.
By Equation [l we get k € [c(v)]q, and therefore c(v) > = + k' + 1. Let H' be
the component of Gcx U ¢, (,] containing v. We claim that V(H') NV (H) = 0.
Suppose otherwise, and let ' € V(H') NV (H) be the closest to v in H" and let
w € Ny (v')\V(H). By the choice of H', we know that {c(v'), c(w)} = {c(v), k},
in which case 1 ¢ [c(v)]q U [c(w)]q, contradicting Equation [l Finally, the
theorem follows by the same argument used on the previous case. O

It remains to prove that this is also a lower bound. Our proof actually holds
for any spanning backbone that does not contain isolated vertices.



Lemma 1. If G is a graph and H is a spanning subgraph of G such that 6(H) >
1, then, for every positive integer q the following holds:

BBC,(G, H) > max{x(G), {@—‘ +q}.

Proof. Let H be any spanning subgraph of G with §(H) > 1, and let k =
BBC,(G, H). Furthermore, let ¢ be a g-backbone k-coloring of G. Since any
g-backbone coloring of (G, H) is also a proper coloring of G, we have that
kE > x(G). Now, if either ¢ < |x(G)/2], or ¢ > [x(G)/2] and k > 2¢, we are
done. So, suppose ¢ > [x(G)/2] and k < 2¢, and let k' = 2¢ — k. We claim
that [i|, = {1,...,k}, for every i € {¢ — k' +1,...,q}. Because dg(u) > 1, we
know that none of these k' colors can be used on u, for every u € V(G), and
the following holds:

k—k =k—2q+k>x(G).
This inequality implies that:

o219,

It remains to prove our claim. So, let ¢ be any color in {¢ — k" +1,...,q}. Tt
suffices to show that {1,k} C [i],. Clearly, 1 € [i],, since ¢ < g. Also, since
k=2¢—k andi>qg—k'+1, weget k—i <2¢—k'—q+k"—1=¢q—1. Thus,
k € [i]; and the lemma follows. O
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