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October 17, 2018

Abstract

A proper k-coloring of a graph G = (V,E) is a function c : V (G) →
{1, . . . , k} such that c(u) 6= c(v), for every uv ∈ E(G). The chromatic
number χ(G) is the minimum k such that there exists a proper k-coloring
of G. Given a spanning subgraph H of G, a q-backbone k-coloring of
(G,H) is a proper k-coloring c of V (G) such that |c(u) − c(v)| ≥ q, for
every edge uv ∈ E(H). The q-backbone chromatic number BBCq(G,H)
is the smallest k for which there exists a q-backbone k-coloring of (G,H).
In this work, we show that every connected graph G has a spanning tree

T such that BBCq(G,T ) = max{χ(G),
⌈

χ(G)
2

⌉

+ q}, and that this value

is the best possible.
As a direct consequence, we get that every connected graph G has

a spanning tree T for which BBC2(G,T ) = χ(G), if χ(G) ≥ 4, or
BBC2(G,T ) = χ(G) + 1, otherwise. Thus, by applying the Four Color
Theorem, we have that every connected nonbipartite planar graph G has
a spanning tree T such that BBC2(G,T ) = 4. This settles a question by
Wang, Bu, Montassier and Raspaud (2012), and generalizes a number of
previous partial results to their question.

1 Introduction

For basic notions and terminology on Graph Theory, the reader is referred to [1].
All graphs in this work are considered to be simple. Because we investigate
the existence of a spanning tree with certain property, we also consider only
connected graphs. However, for disconnected graphs, the statements hold by
replacing “spanning tree” by “spanning forest”. A proper k-coloring of a graph
G is a function c : V (G) → {1, . . . , k} such that c(u) 6= c(v), for every uv ∈
E(G). If G admits a proper k-coloring, we say that G is k-colorable. The
chromatic number of G, denoted by χ(G), is the smallest positive integer k
such that G is k-colorable. Determining the chromatic number of a graph is an
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NP-hard problem on Karp’s list [10] and one of the most studied problems on
Graph Theory [9, 11].

Given a spanning subgraph H of G, and positive integers k and q, a q-
backbone k-coloring of (G,H) is a proper k-coloring c of G such that |c(u) −
c(v)| ≥ q, for every uv ∈ E(H). The q-backbone chromatic number of (G,H),
denoted by BBCq(G,H), is the smallest integer k for which (G,H) admits a
q-backbone k-coloring.

This parameter was first introduced by Broersma et al. [2] as a model for
the frequency assignment problem where certain channels of communication
are more demanding than others. In their seminal work, they only considered
q = 2 and they were interested in finding out how far away from χ(G) can
BBC2(G,H) be in the worst case. Concerning trees, for each positive integer
k, they defined:

Tk = max{BBC2(G, T ) : χ(G) = k and T is a spanning tree of G}.

Note that, if c is a proper χ(G)-coloring of G, then by recoloring each vertex
u with color 2c(u)−1, we obtain a proper (2χ(G)−1)-coloring of G where every
color is odd. Therefore, we get BBC2(G,G) ≤ 2χ(G)− 1. This gives an upper
bound of 2k − 1 for Tk. In [2], they proved that this is actually best possible.

Theorem 1 (Broersma et al.[2]). Tk = 2k − 1, for every positive integer k.

This means that, between all the k-colorable graphs, there is one that attains
this upper bound. However, it does not give any insight on how bad can a tree
backbone be for a given graph G. One could then define T2(G) as the maximum
BBC2(G, T ), where T is a spanning tree of G. This worst case behaviour has
been studied for planar graphs. If G is planar, because χ(G) ≤ 4 and the fact
that BBC2(G,G) ≤ 2χ(G) − 1, we get T2(G) ≤ 7. Broersma et al. [3] give
examples where BBC2(G, T ) = 6, and conjecture that T2(G) = 6. A partial
result for their conjecture has been given in [7]. Note that this parameter can
be generalized for higher values of q. In [8], Havet et al. prove that, if G is a
planar graph, then Tq(G) ≤ q + 6. They also prove that this is best possible if
q ≥ 4, and conjecture that T3(G) ≤ 8.

Now, observe that it is not clear whether G always has a spanning tree with
a “good” behaviour, i.e., such that BBCq(G, T ) is not much larger than χ(G).
Therefore, it makes sense to define the best case behaviour of BBCq(G, T ). In
[12], Wang, Bu, Montassier and Raspaud asked what is the smallest value β for
which the following holds: if G is a nonbipartite planar graph with girth at least
β, then G has a spanning tree T such that BBC2(G, T ) = 4. Inspired by their
question, we define the following parameter, for a given graph G and a positive
integer q:

Bq(G) = min{BBCq(G, T ) : T is a spanning tree of G}.
Our main result is the following:
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Theorem 2. For every graph G and positive integer q,

Bq(G) = max{χ(G),

⌈

χ(G)

2

⌉

+ q}.

This gives us the following value for bipartite graphs:

Corollary 1. If G is bipartite, then Bq(G) = q + 1.

Considering q ≥ 2, observe that if G has at least one edge and T is a spanning
tree of G, then BBC2(G, T ) ≥ 3, and that BBC2(G, T ) = 3 if, and only if, G is
bipartite. Also, observe that, when G is a nonbipartite planar graph, we get that
max{χ(G), ⌈χ(G)/2⌉+ 2} is always equal to 4. Therefore, the answer to Wang
et al’s question is β = 3, i.e., having high girth is not a necessary condition for
having the desired spanning tree.

Corollary 2. If G is a nonbipartite planar graph and q ≥ 2, then Bq(G) = q+2.
In particular, G always has a spanning tree T for which BBC2(G, T ) = 4.

We mention that this generalizes results in a number of papers: [4, 5, 13, 6,
12]. We also mention that, in [12], Wang et al. wrongly state that β is at least
4 due to the existence of a nonbipartite planar graph G and a spanning tree T
of G such that BBC2(G, T ) = 6. However, they fail to notice that, in order for
β to be at least 4, this should hold for every spanning tree of G.

2 Proof of Theorem 2

Roughly, the idea of the proof is to show that any graph G has a nice proper
k-coloring, where k = max{χ(G), ⌈χ(G)/2⌉ + q}. By nice we mean that the
subgraph of G induced by the edges whose endpoint colors differ by at least q
form a connected spanning subgraph of G. Then, we select among these edges
a spanning tree to form its backbone. Before presenting the main result, let us
recall some definitions, and present some new ones.

Consider a proper k-coloring c of a graph G. For i ∈ {1, . . . , k}, the color

class i of c is the subset ci = {u ∈ V (G) : c(u) = i}. Observe that if H is a
component of G[ci ∪ cj ], a.k.a. Kempe’s chain, then the k-coloring c′ obtained
from c by switching colors i and j in V (H) is also a proper k-coloring of G.
We denote the set of edges {uv ∈ E(G) : u ∈ V (H) and v ∈ V (G) \ V (H)} by
[H,H ]. Given an integer q, and i ∈ {1, . . . , k}, we denote by [i]q the set {j ∈
{1, . . . , k} : |i − j| < q}. The q-subgraph of c, denoted by Gc,q, is the subgraph
(V (G), Ec,q), where Ec,q = {uv ∈ E(G) : |c(u)− c(v)| ≥ q}. Alternatively, one
can see that uv ∈ Ec,q if and only if c(u) /∈ [c(v)]q if and only if c(v) /∈ [c(u)]q.
Our upper bound is obtained as a corollary of the following theorem:

Theorem 3. If G is a connected graph and k ≥ max{χ(G), ⌈χ(G)/2⌉+q}, then
there exists a proper k-coloring c of G such that Gc,q is connected.

3



Proof. Consider k = max{χ(G), ⌈χ(G)/2⌉+ q} and let c be a proper k-coloring
of G that uses the following χ(G) colors: {1, . . . , x, x + k′ + 1, . . . , k}, where
x = ⌈χ(G)/2⌉ and k′ = k−χ(G). Let H be a component of Gc,q with maximum
number of vertices. Suppose, without loss of generality, that c maximizes the
size of H . We claim that such a coloring c satisfies that Gc,q is connected, which
means that H is a spanning subgraph of G.

By contradiction, suppose that V (H) ⊂ V (G), i.e., H does not contain every
vertex of G. Since G is connected, there must be an edge uv ∈ [H,H ]. By the
definition of Gc,q, we know that [c(u)]q ∩ [c(v)]q 6= ∅.

First, suppose that there exists j ∈ {1, . . . , k} \ ([c(u)]q ∪ [c(v)]q), and let H ′

be the component of G[cj∪cc(v)] containing v. We claim that V (H ′)∩V (H) = ∅.
Suppose otherwise and let v′ ∈ V (H ′) ∩ V (H) be closest to v in H ′; also, let
w ∈ NH′ (v′) \ V (H) (it exists by the choice of v′). By the definition of H ′,
we know that {c(v′), c(w)} = {j, c(v)}. This contradicts the construction of H
since wv′ /∈ Ec,q and j /∈ [c(v)]q. Now, let c′ be obtained from c by switching
colors j and c(v) in H ′. Because V (H ′) ∩ V (H) = ∅, nothing changes in H ;
additionally, c′(v) /∈ [c′(u)]q, which means that uv ∈ Ec′,q and that there is a
component in Gc′,q that strictly contains H , a contradiction to the choice of c.

Now, suppose that

[c(u)]q ∪ [c(v)]q = {1, . . . , k}, for all uv ∈ [H,H]. (1)

Recall that c uses the colors that are in the set {1, . . . , x, x + k′ + 1, . . . , k},
where k = max{χ(G), ⌈χ(G)/2⌉ + q}, x = ⌈χ(G)/2⌉ and k′ = k − χ(G). We
want to prove that 1 /∈ [i]q, for every i ∈ {x+ k′ + 1, . . . , k}, and that k /∈ [i]q,
for every i ∈ {1, . . . , x}. We analyse the cases below.

• q ≥ ⌊χ(G)/2⌋: in this case, k = x + q. If i ∈ {1, . . . , x}, then k − i ≥
k − x = x + q − x = q. In case, i ∈ {x + k′ + 1, . . . , k}, then i − 1 ≥
x+ k′ + 1− 1 = x+ k − χ(G) = x+ x+ q − χ(G) ≥ q.

• q < ⌊χ(G)/2⌋: observe that k = χ(G) and k′ = 0. If i ∈ {1, . . . , x}, then
k−i ≥ k−x = χ(G)−x = ⌊χ(G)/2⌋ > q. Similarly, if i ∈ {x+k′+1, . . . , k},
then i− 1 ≥ x+ k′ + 1− 1 = x > q.

Now, consider any edge uv ∈ [H,H ]. Suppose that c(u) ≤ x, in which case k /∈
[c(u)]q; if this is not the case, we get 1 /∈ [c(u)]q and the argument is analogous.
By Equation 1, we get k ∈ [c(v)]q , and therefore c(v) ≥ x + k′ + 1. Let H ′ be
the component of G[ck ∪ cc(v)] containing v. We claim that V (H ′)∩ V (H) = ∅.
Suppose otherwise, and let v′ ∈ V (H ′)∩ V (H) be the closest to v in H ′ and let
w ∈ NH′(v′)\V (H). By the choice ofH ′, we know that {c(v′), c(w)} = {c(v), k},
in which case 1 /∈ [c(v′)]q ∪ [c(w)]q , contradicting Equation 1. Finally, the
theorem follows by the same argument used on the previous case.

It remains to prove that this is also a lower bound. Our proof actually holds
for any spanning backbone that does not contain isolated vertices.
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Lemma 1. If G is a graph and H is a spanning subgraph of G such that δ(H) ≥
1, then, for every positive integer q the following holds:

BBCq(G,H) ≥ max{χ(G),

⌈

χ(G)

2

⌉

+ q}.

Proof. Let H be any spanning subgraph of G with δ(H) ≥ 1, and let k =
BBCq(G,H). Furthermore, let c be a q-backbone k-coloring of G. Since any
q-backbone coloring of (G,H) is also a proper coloring of G, we have that
k ≥ χ(G). Now, if either q ≤ ⌊χ(G)/2⌋, or q ≥ ⌈χ(G)/2⌉ and k ≥ 2q, we are
done. So, suppose q ≥ ⌈χ(G)/2⌉ and k < 2q, and let k′ = 2q − k. We claim
that [i]q = {1, . . . , k}, for every i ∈ {q − k′ + 1, . . . , q}. Because dH(u) ≥ 1, we
know that none of these k′ colors can be used on u, for every u ∈ V (G), and
the following holds:

k − k′ = k − 2q + k ≥ χ(G).

This inequality implies that:

k ≥

⌈

χ(G)

2

⌉

+ q.

It remains to prove our claim. So, let i be any color in {q − k′ + 1, . . . , q}. It
suffices to show that {1, k} ⊆ [i]q. Clearly, 1 ∈ [i]q, since i ≤ q. Also, since
k = 2q− k′ and i ≥ q− k′ +1, we get k− i ≤ 2q− k′ − q+ k′ − 1 = q− 1. Thus,
k ∈ [i]q and the lemma follows.
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