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Abstract

We give a self-contained proof that for all positive integers r and all ǫ > 0,
there is an integer N = N(r, ǫ) such that for all n ≥ N any regular multigraph of
order 2n with multiplicity at most r and degree at least (1+ǫ)rn is 1-factorizable.
This generalizes results of Perković and Reed, and Plantholt and Tipnis.

1 Introduction

In 1985 Chetwynd and Hilton [4] made the following conjecture, which is often called
the “1-Factorization Conjecture”:

Conjecture 1. Any regular simple graph of order 2n and degree at least n is 1-

factorizable.

Should this conjecture be true, a pleasant consequence is that for any regular graph
G of even order, at least one of G and its complement is 1-factorizable. A natural gen-
eralization to multigraphs of bounded multiplicity was made subsequently by Plantholt
and Tipnis [8] (see also [7]):

Conjecture 2. Let G be a regular multigraph of order 2n with multiplicity at most r.
If the degree of G is at least rn then G is 1-factorizable.

If true, Conjecture 2 is best possible for every r ≥ 1, at least when n is odd. This
is demonstrated by the following construction. Suppose r and n are positive integers
where n is odd and r > 1. Consider the graph H of order 2n, formed from three graphs

1

http://arxiv.org/abs/1010.5192v1


A B
M

Figure 1: The graph H . A and B are complete graphs on n vertices, and M is a
matching of n edges.

A, B and M . A and B are complete graphs on n vertices each, and M is a matching of
n edges, in which each edge joins a vertex in A with a vertex in B. (See Figure 1.) Let
G be the multigraph obtained from H by replacing each edge of M by r − 1 parallel
edges, and each other edge by r parallel edges.

As A and B each have an odd number of vertices, any 1-factor of G must contain
an edge that joins a vertex in A with a vertex in B. There are only n(r−1) such edges,
so there can be at most n(r − 1) disjoint 1-factors. As G has degree rn − 1, it is not
1-factorizable.

In the case where r = 1, and n is odd, we can take G to be the disjoint union of two
complete graphs on n vertices. G is regular of degree n − 1, and is not 1-factorizable,
as it has no 1-factors at all.

The following approximate resolution of Conjecture 1 was obtained by Häggkvist
(unpublished) and independently by Perković and Reed [6]:

Theorem 3. For any ǫ > 0 there is an integer N = N(ǫ) such that for all n ≥ N any

regular simple graph of order 2n with degree at least (1 + ǫ)n is 1-factorizable.

In this note, we shall prove the following generalization of Theorem 3, which is an
approximate version of Conjecture 2:

Theorem 4. For all positive integers r and all ǫ > 0, there is an integer N = N(r, ǫ)
such that for all n ≥ N any regular multigraph of order 2n with multiplicity at most r
and degree at least (1 + ǫ)rn is 1-factorizable.

In previous work, Plantholt and Tipnis have obtained this result in the special case
where r is even [8]. They employed a method of factorizing a multigraph into simple
graphs, to which they applied Theorem 3. Our approach is different, and does not need
to distinguish between even and odd r. Our proof of Theorem 4 is based on Perković
and Reed’s proof of Theorem 3, although we have simplified the argument in a number
of respects, and so the proof presented here is shorter and simpler.
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2 Preliminaries

We shall begin by giving some definitions. We omit definitions of some of the most
basic concepts in graph theory, which can be found, for example, in [2]. Unless stated
otherwise, all graphs will be multigraphs. By this we mean that they may contain
multiple edges, but do not contain any loops. The vertex set and edge set of a graph
G are denoted V (G) and E(G) respectively. A set of edges is said to be parallel if each
edge joins the same pair of vertices. The multiplicity of a graph G is the maximum size
of a set of parallel edges. A graph of multiplicity 1 is said to be simple. The degree
of a vertex v ∈ V (G) is denoted d(v). In the case that G is regular, d(G) denotes the
degree of every vertex. The maximum and minimum degrees of G are denoted ∆(G)
and δ(G) respectively. Given a set of vertices S and a vertex v ∈ V (G), dS(v) is the
number of edges of the form vs where s ∈ S. The set of vertices that are adjacent to
at least one vertex in S is called the neighbour set of S, denoted N(S). The subgraph
of G induced by S is denoted GS.

A matching in G is a set of edges, no two of which are adjacent. Given a matching
M , if a vertex v ∈ V (G) is incident with an edge of M then v is said to be covered

by M , otherwise v is missed by M . A matching that covers every vertex is called
a 1-factor. A 1-factorization of G is a partition of E(G) into disjoint 1-factors. A
graph with a 1-factorization is said to be 1-factorizable. An edge-colouring of G is an
assignment of colours to the edges of G in which no two adjacent edges are given the
same colour. The set of edges that are given a particular colour is called a colour class.
Since adjacent edges receive different colours, each colour class is a matching. The
chromatic index of G, denoted χ′(G), is the least number of colours needed for an edge-
colouring. For a regular graph G, an edge-colouring with d(G) colours is the same thing
as a 1-factorization, as both are partitions of E(G) into d(G) disjoint matchings. In
fact, in Section 4, we shall show that a graph G is 1-factorizable by giving a procedure
for finding an edge-colouring of G with d(G) colours.

We shall need the following two classical theorems, both in their multigraph versions.
(See e.g. [2].)

Theorem 5. (Vizing’s Theorem) Let G be a graph with multiplicity at most r. Then

the chromatic index χ′(G) is at least ∆(G) and at most ∆(G) + r.

Theorem 6. (König’s Theorem) Let G be a bipartite graph of any multiplicity. Then

χ′(G) = ∆(G).

An edge-colouring of a graph G with k colours is said to be equalized if each colour
class contains either ⌊|E(G)| /k⌋ or ⌈|E(G)| /k⌉ edges. The following was first observed
by McDiarmid [5]:

Theorem 7. Let G be a graph of any multiplicity with chromatic index χ′(G). Then

for all k ≥ χ′(G) there is an equalized edge-colouring of G with k colours.

3



We shall also need Hall’s Theorem [2]:

Theorem 8. Let G be a bipartite graph of any multiplicity, with bipartition (X, Y ).
There is a matching covering every vertex of X if and only if |N(S)| ≥ |S| for all

S ⊆ X.

A standard consequence of Theorem 8 is the following:

Lemma 9. Let G be a bipartite simple graph, with bipartition (X, Y ), where |X| =
|Y | = n. If δ(G) ≥ n/2 then G has a 1-factor.

Proof. Suppose G satisfies the assumptions but does not have a 1-factor. Then by
Theorem 8 there is a set X ′ ⊆ X with neighbour set Y ′ ⊆ Y such that |X ′| > |Y ′|. But
δ(G) ≥ n/2, so |Y ′| ≥ n/2, and so |X ′| > n/2. But then any vertex in Y − Y ′ must be
adjacent to at least one vertex in X ′, which contradicts Y ′ being the neighbour set of
X ′.

We can extend this result to bipartite multigraphs as follows:

Lemma 10. Let G be a bipartite graph of multiplicity at most r, with bipartition (X, Y ),
where |X| = |Y | = n. If δ(G) ≥ rn/2 then G has a 1-factor.

Proof. Let G′ be the simple graph obtained from G by replacing sets of parallel edges
with single edges. As G has multiplicity at most r, δ(G′) ≥ n/2, and so G′ has a 1-factor
by Lemma 9. Since any 1-factor of G′ is also a 1-factor of G, the result follows.

We shall need the following version of the Chernoff bound. (See e.g. Theorem
A.1.16 of [1].)

Theorem 11. Let X1, . . . , Xn be mutually independent random variables that satisfy

E(Xi) = 0 and |Xi| ≤ 1 for all 1 ≤ i ≤ n. Set S = X1 + · · ·+Xn. Then for any a > 0,

Pr(S > a) < e−a2/2n.

Applying Theorem 11 to S and −S we obtain:

Corollary 12. Let X1, . . . , Xn be as in Theorem 11. Then,

Pr(|S| > a) < 2e−a2/2n.
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3 Proof of Theorem 4

The following lemma states that for any fixed r, when n is sufficiently large, the vertices
of a graph G of order 2n with multiplicity at most r can be partitioned into two parts
A and B such that for each vertex v, dA(v) and dB(v) are approximately equal.

Lemma 13. For all positive integers r, there is an integer N∗ = N∗(r) such that for

all n ≥ N∗ the vertex set of any graph G of order 2n with multiplicity at most r can be

partitioned into two equal parts A and B such that for any vertex v we have

|dA(v)− dB(v)| < n2/3. (1)

First, two remarks:

1. It is possible to replace n2/3 with
√
n logn.

2. The case r = 1 follows from a hypergeometric version of the Chernoff bound given
by Chvátal [3].

Proof of Lemma 13. Let G be a graph of order 2n with multiplicity at most r. We
shall show that provided n is large enough, there is a method for randomly choosing a
partition of V (G) into two equal parts A and B, such that with positive probability,
(1) holds for every v ∈ V (G).

Suppose we have partitioned V (G) into n pairs in an arbitrary way. We then assign
one vertex of each pair to A and the other to B uniformly at random. Suppose the pairs
are (a1, b1), . . . , (an, bn). Fix a vertex v, and define the random variables X1, . . . , Xn by
the rule that

Xi =
m(vai)−m(vbi)

r
,

where m(vx) denotes the number of edges between v and x. Then X1, . . . , Xn are
mutually independent, and for all 1 ≤ i ≤ n, E(Xi) = 0 and |Xi| ≤ 1. Let S =
X1 + · · ·+Xn. Then

dA(v)− dB(v) = rS.

By Corollary 12,

Pr(|dA(v)− dB(v)| > n2/3) = Pr(|S| > r−1n2/3)

< 2e−
1
2n

(r−1n2/3)2

= 2e−
1
2
r−2n1/3

.

5



There are 2n vertices, so the probability p that there is a vertex v for which (1) does
not hold is less than

4ne−
1
2
r−2n1/3

,

which tends to 0 as n → ∞. Hence if n is large enough, we can be certain that p < 1,
and so there must be some partition of V (G) into two equal parts A and B such that
(1) holds for every v ∈ V (G).

The proof of the following lemma will be deferred until Section 4:

Lemma 14. Let G be a regular graph of order 2n with multiplicity at most r, where
n5/6 > 3r. If the vertex set can be partitioned into two equal parts A and B such that

every vertex v has dA(v) > rn/2 + 14rn5/6 and dB(v) > rn/2 + 14rn5/6, and where

max{∆(GA),∆(GB)} −min{δ(GA), δ(GB)} < n2/3,

then G is 1-factorizable.

Note that Lemma 14 is a purely deterministic result, which applies to every graph
satisfying the conditions. Indeed, our proof gives a deterministic algorithm for finding
a 1-factorization of such a graph.

Proof of Theorem 4. Let r be a positive integer and ǫ > 0. Let n be large enough so
that n5/6 > 3r, n ≥ N∗(r) of Lemma 13 and

(1 + ǫ)rn > (1 + 29n−1/6)rn = rn+ 29rn5/6. (2)

Suppose G is a regular graph of order 2n with multiplicity at most r and degree at least
(1 + ǫ)rn. By Lemma 13 we can partition the vertex set of G into two equal parts A
and B such that for every vertex v we have

|dA(v)− dB(v)| < n2/3.

Since G is regular of degree d = d(G), and for every vertex v, dA(v) + dB(v) = d, we
have

d− n2/3

2
< dA(v) <

d+ n2/3

2
and so

d− n2/3

2
< δ(GA) ≤ ∆(GA) <

d+ n2/3

2
.

Since the same is true of GB, we have

max{∆(GA),∆(GB)} −min{δ(GA), δ(GB)} < n2/3.

By (2), d(G) > rn+ 28rn5/6 + n2/3, and so for every vertex v, we have

dA(v) > rn/2 + 14rn5/6 and dB(v) > rn/2 + 14rn5/6.

Thus G is 1-factorizable by Lemma 14.
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4 Proof of Lemma 14

In the course of the proof of Lemma 14 we shall be considering graphs where some of the
edges are coloured and some are not. A path whose edges alternate between uncoloured
edges and edges coloured c, for some colour c, will be called an alternating path. To
exchange an alternating path P means to uncolour the edges of P that were previously
coloured c, and to colour with c the edges of P that were previously uncoloured.

Proof of Lemma 14. Suppose we have a regular graph G of order 2n and a partition of
its vertex set into two equal parts A and B such that the conditions in the statement
of the lemma are satisfied. The subgraphs of G induced by A and B will be denoted
GA and GB. Let C be the subgraph of G consisting of the edges that are not in GA or
GB. So C is a bipartite graph containing the edges of G that join a vertex in A with a
vertex in B.

To prove the lemma, we shall show that it is possible to find an edge-colouring
of G with d(G) colours. In fact, we shall give a procedure for finding such an edge-
colouring. The procedure is a little technical, so we shall first give an overview of the
steps involved. We are not interested in efficiency, merely in the fact that the procedure
can be carried out. At the start of the procedure, all the edges of G are assumed to be
uncoloured.

Step 1. We shall find equalized edge-colourings of GA and GB with k colours, where
k = max{∆(GA),∆(GB)} + r. In this partial edge-colouring of G, we shall
insist that each colour misses the same number of vertices in A as it does in B,
and that the number of vertices missed in each part is less than 2n2/3 + 3.

Step 2. We shall modify the partial edge-colouring of G obtained in Step 1 by exchang-
ing alternating paths. Once this step has been completed, each of the k colour
classes will be a 1-factor of G. During the course of Step 2, we shall colour
a few of the edges of C, and we shall uncolour a few of the edges of GA and
GB that were coloured in Step 1. We shall ensure that after Step 2 has been
completed, the following three conditions hold:

(i) GA and GB contain the same number of uncoloured edges, and this num-
ber is less than 2n5/3.

(ii) If RA and RB denote the subgraphs of GA and GB respectively consisting
of the uncoloured edges, both RA and RB have maximum degree less than
n5/6 + 1.

(iii) Each vertex is incident with fewer than 3n5/6 coloured edges of C.

Step 3. We shall find equalized edge-colourings of RA and RB with exactly j = ⌈n5/6⌉+
r + 1 colours. We shall then colour some of the uncoloured edges of C with
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these j colours, so that each of the j colour classes is a 1-factor of G. At the
end of Step 3, all the edges in GA and GB will be coloured, and so will a few
of the edges of C. Each of the k + j colour classes will be a 1-factor of G.

Step 4. At the start of Step 4, all of the edges that remain uncoloured belong to C.
Also, each colour class is a 1-factor, so the subgraph of G consisting of the
uncoloured edges is regular, of degree d(G)− k− j. This subgraph is bipartite,
so by Theorem 6 (König’s Theorem) we can colour its edges with d(G)− k− j
colours.

At the conclusion of Step 4, all the edges of G will have been coloured, with d(G)
colours. We shall now describe the steps in detail.

Step 1.

Let k = max{∆(GA),∆(GB)}+r. By Theorem 5, χ′(GA) and χ′(GB) are at most k,
so by Theorem 7, we can find equalized edge-colourings of GA and GB using k colours
c1, . . . , ck. Note that k > δ(GA) > rn/2.

As G is regular, GA has the same number of edges as GB, which we shall suppose is
m. As the edge-colourings of GA and GB are equalized, each colour appears on either
⌊m/k⌋ or ⌈m/k⌉ edges. In our edge-colourings, we shall insist that each colour appears
the same number of times on edges of GA as it does on edges of GB. We can do this
because, as GA and GB each has m edges, the number of colours that appear on ⌊m/k⌋
edges of GA equals the number of colours that appear on ⌊m/k⌋ edges of GB (and
similarly for the number of colours that appear on ⌈m/k⌉ edges).

It follows from the assumption that

max{∆(GA),∆(GB)} −min{δ(GA), δ(GB)} < n2/3

that the number of colours that miss a given vertex in A is always less than n2/3 + r.
So the average number of vertices in A that a colour misses is less than

n(n2/3 + r)

k
<

n(n2/3 + r)

rn/2
≤ 2n2/3 + 2.

As any two colour classes differ in size by at most one, in our partial edge-colouring of
G, each colour misses fewer than 2n2/3 + 3 vertices in A. (And clearly the same holds
for vertices in B.)

Step 2.

We shall show that by exchanging alternating paths we can increase the size of the
colour classes until each colour class is a 1-factor of G. During the course of Step 2,
we shall uncolour some of the edges of GA and GB, and we shall colour some of the
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a1

a2

b1

b2

A B

Figure 2: The alternating path P . Dashed lines indicate uncoloured edges, and solid
lines indicate edges coloured ci.

edges of C. We shall denote by RA and RB the subgraphs of GA and GB consisting of
their uncoloured edges. During the course of Step 2 the graphs RA and RB will change.
They will initially be empty, but each time we exchange an alternating path, one edge
will be added to each of RA and RB.

We shall ensure that, after Step 2 has been completed, the following three conditions
hold:

(i) GA has the same number of uncoloured edges as GB, and this number is less than
2n5/3.

(ii) ∆(RA) and ∆(RB) are less than n5/6 + 1.

(iii) Each vertex is incident with fewer than 3n5/6 coloured edges of C.

With condition (ii) in mind, we say that an edge is good if it is not in RA or RB,
and both its ends have degree less than n5/6 in RA or RB. Thus we may add a good
edge to RA or RB without violating condition (ii).

Our strategy is as follows. We shall consider the k colours c1, . . . , ck in turn. Each
colour misses the same number of vertices in A as it does in B. So for a given colour ci,
where 1 ≤ i ≤ k, we can partition the vertices that miss ci into pairs, with one vertex
from each pair belonging to A and the other belonging to B. We shall exchange exactly
one alternating path for each such pair. Suppose (a, b) is one of our pairs, where a ∈ A,
b ∈ B, and both vertices miss the colour ci. We shall exchange an alternating path P
from a to b, consisting of five edges, where the first, third and fifth edges are uncoloured
and the second and fourth edges are good edges coloured ci. (See Figure 2.) After P is
exchanged, a and b will be incident with edges of colour ci, and one good edge will be
added to each of RA and RB.
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Before demonstrating how such paths can be found, we shall show that at the end of
Step 2, we can be sure that conditions (i), (ii) and (iii) will hold. After Step 1 has been
completed, each vertex is missed by fewer than n2/3 + r colours, so there will always
be fewer than n(n2/3 + r) < 2n5/3 edges in each of RA and RB. Therefore at the end
of Step 2, condition (i) will hold. And as we only ever add good edges to RA and RB,
condition (ii) will also hold.

We shall now show that condition (iii) will also hold. Let v be a vertex, which,
without loss of generality, we assume belongs to A. After Step 2 has been completed,
the number of coloured edges of C that are incident with v will be equal to the number
of alternating paths containing v that have been exchanged. The number of such
alternating paths of which v is the first vertex will be equal to the number of colours
that missed v at the end of Step 1, which is less than n2/3+r. The number of alternating
paths in which v is the fourth or fifth vertex will be equal to the degree of v in RA, and
so will be less than n5/6+1. Hence the number of coloured edges of C that are incident
with v will be less than

(n2/3 + r) + (n5/6 + 1) < 3n5/6.

This applies to all vertices in G, and so condition (iii) will be satisfied.
We shall now describe how the paths can be found. Suppose (a, b) is one of our

pairs, where a ∈ A, b ∈ B, and both vertices miss the colour ci. Let NB be the set
of vertices in B that are joined with a by an uncoloured edge and are incident with a
good edge coloured ci. Likewise, let NA be the set of vertices in A that are joined with
b by an uncoloured edge and are incident with a good edge coloured ci.

There are fewer than 2n5/3 edges in RB, so there are fewer than 4n5/6 vertices of
degree at least n5/6 in RB, and hence there are fewer than 8n5/6 vertices in B that are
incident with a non-good edge coloured ci. In addition, there are fewer than 2n2/3 + 3
vertices in B that are missed by the colour ci. So the number of vertices in B that are
not incident with a good edge coloured ci is less than

8n5/6 + 2n2/3 + 3 < 11n5/6.

By symmetry, the same holds for vertices in A.
So for any vertex v ∈ V (G), the number of edges that join v with a vertex w in the

other part, where w is incident with a good edge coloured ci, is more than

rn/2 + 14rn5/6 − 3n5/6 − 11rn5/6 ≥ rn/2.

In particular, there are more than rn/2 edges joining a with vertices in NB, and more
than rn/2 edges joining b with vertices in NA. And because G has multiplicity at most
r, it follows that |NA| > n/2 and |NB| > n/2.

Let MB be the set of vertices in B that are joined with a vertex in NB by an edge
of colour ci, and let MA be the set of vertices in A that are joined with a vertex in NA
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by an edge of colour ci. Note that MB will have the same size as NB, but some vertices
may be in both (similarly with MA and NA).

Suppose we choose a vertex b1 ∈ NB. Let b2 ∈ MB be the vertex joined with b1 by
an edge of colour ci. As each vertex in MB is joined with more than n/2 vertices in
A by uncoloured edges, and the size of MA is more than n/2, we must be able to find
a vertex a2 ∈ MA that is joined with b2 by an uncoloured edge. Let a1 ∈ NA be the
vertex joined with a2 by an edge of colour ci. Then P = ab1b2a2a1b is an alternating
path of five edges, where the first, third and fifth edges are uncoloured and the second
and fourth edges are good edges coloured ci.

If we exchange P , the colour ci appears on edges incident with a and b. By finding
such paths for all pairs of vertices (a, b) that miss ci, we can increase the number of
edges coloured ci until the colour class is a 1-factor of G. By doing this for all colours,
we can make each of the k colour classes a 1-factor of G.

Step 3.

Each of the colour classes for the colours c1, . . . , ck is now a 1-factor of G. We shall
now consider the graphs RA and RB that consist of the uncoloured edges of GA and GB

respectively. RA and RB each have fewer than 2n5/3 edges and maximum degree less
than n5/6 + 1. Let j = ⌈n5/6⌉ + r + 1. By Theorems 5 and 7, we can give RA and RB

equalized edge-colourings with j colours, ck+1, . . . , ck+j. As with the edge-colourings we
found in Step 1, we shall insist that in the edge-colourings of RA and RB, each colour
appears on the same number of edges in RA as it does in RB. We can do this because
RA and RB have the same number of edges.

There are fewer than 2n5/3 edges in each of RA and RB, and j > n5/6, so each of
the colours ck+1, . . . , ck+j appears on fewer than

2n5/3

j
+ 1 < 3n5/6

edges in each of RA and RB. We shall now colour some of the edges of C with the j
colours ck+1, . . . , ck+j so that each of these colour classes becomes a 1-factor of G.

We shall perform the following procedure for each of the j colours in turn. Given a
colour ci, where k + 1 ≤ i ≤ k + j, we let Ai and Bi be the sets of vertices in A and
B respectively that are incident with edges coloured ci. Note that Ai and Bi have the
same size, and as RA and RB each contain fewer than 3n5/6 edges coloured ci, Ai and
Bi contain fewer than 6n5/6 vertices each. Let Ci be the subgraph of C obtained by
deleting the vertex sets Ai and Bi and removing all coloured edges.

Each vertex in G is incident with fewer than

3n5/6 + (⌈n5/6⌉ + r) < 5n5/6

edges of C that are coloured, since fewer than 3n5/6 were coloured in Step 2 and at
most ⌈n5/6⌉+ r have been coloured already in Step 3. And each vertex has fewer than
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6rn5/6 edges that join it with a vertex in Ai or Bi. So the minimum degree of Ci is
more than

rn/2 + 14rn5/6 − 6rn5/6 − 5n5/6 > rn/2,

and so Ci has a 1-factor F by Lemma 10. If we colour the edges of F with the colour
ci, then every vertex in G is incident with an edge of colour ci, and so the colour class
is now a 1-factor of G.

We repeat this procedure for each of the colours ck+1, . . . , ck+j. After this has been
done, each of these j colour classes is a 1-factor of G. So at the conclusion of Step 3,
all of the edges in GA and GB are coloured, some of the edges of C are coloured, and
each of the k + j colour classes is a 1-factor of G.

Step 4.

Let R be the subgraph of G consisting of the remaining uncoloured edges. These
edges all belong to C, so R is a subgraph of C and hence is bipartite. As each of the
k+ j colour classes is a 1-factor of G, R is regular of degree d(R) = d(G)− k− j. Note
that since

k < d(G)− (rn/2 + 14rn5/6) + r,

and j < 2n5/6, d(R) > rn/2. By Theorem 6 (König’s Theorem) we can colour the
edges of R with d(R) colours ck+j+1, . . . , cd(G). Clearly each of these colour classes is a
1-factor of G.

This completes our edge-colouring of G with d(G) colours. Each of the colour classes
is a 1-factor, so G is 1-factorizable.
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