
Infrastructure Deployment in Vehicular Communication Networks
Using a Parallel Multiobjective Evolutionary Algorithm

Renzo Massobrio1∗, Jamal Toutouh2, Sergio Nesmachnow1, Enrique Alba2

1Universidad de la República, Herrera y Reissig 565, Montevideo, 11300, Uruguay
2Dept. de Lenguajes y Ciencias de la Computacin, University of Málaga, Málaga, 29071, Spain

This article describes the application of a multiobjective evolutionary algorithm for locating roadside
infrastructure for vehicular communication networks over realistic urban areas. A multiobjective formulation
of the problem is introduced, considering quality-of-service and cost objectives. The experimental analysis
is performed over a real map of Málaga, using real traffic information and antennas, and scenarios that
model different combinations of traffic patterns and applications (text/audio/video) in the communications.
The proposed multiobjective evolutionary algorithm computes accurate trade-off solutions, significantly
improving over state-of-the-art algorithms previously applied to the problem. c© 2016 Wiley periodicals,
Inc.

. . .

KEY WORDS: VANETs, infrastructure placement, multiobjective evolutionary algorithms, smart cities.

1. INTRODUCTION

Vehicular traffic is a major concern in modern cities.14 Several problems related to mobility, traffic
safety, environment, etc. can be efficiently solved by applying smart computational methods. In this
context, the concept of smart cities has emerged as a key issue in modern urbanization. A smart
city applies information technologies to enhance quality, performance, and interactivity of urban
services and/or to reduce costs and resource consumption. Road traffic management is a specific
area that makes use of smart city applications, with the goal of improving the management of urban
flows and allowing for real time responses to challenges that have great impact on the citizens.11

A number of smart city solutions are based on intelligent transport systems (ITS). The main idea
behind these systems consist in sharing information about the traffic conditions with road users and
authorities. A better informed citizen can take better driving decisions, positively influencing the
global traffic safety, efficiency.

Vehicular ad hoc networks (VANETs) emerge as a promising technology to allow continuous data
exchange between vehicles equipped with an on-board unit (OBU). Vehicles can also communicate
with roadside unit (RSU) elements via direct short range communications (DSRC). Depending
on the type of nodes involved, several types of communications can occur in a VANET: vehicle-
to-vehicle (V2V) communications, when the vehicles communicate directly with each other, and
vehicle-to-infrastructure (V2I) communications, when the vehicles exchange data with RSUs.

VANETs allow developing a large set of powerful applications to improve road transport
experience for both drivers and passengers. Typically, these applications are categorized into
safety and non-safety applications. The first ones aim at improving road safety and avoiding
hazardous situations (road accidents), e.g., cooperative driving and intersection collision avoidance

∗Author to whom all correspondence should be addressed: e-mail: renzom@fing.edu.uy

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. XX, XXX-XXX (2016)
c© 2016 Wiley periodicals, Inc.

View this article online at wyleyonlinelibrary.com. DOI: XXXXX/



2 MASSOBRIO, TOUTOUH, NESMACHNOW, AND ALBA

V2V 

V2V 
V2I 

V2I 

RSU 

V2I 

1 
2 

3 

4 

Road traffic analysis and prediction 

Optimized drivers guidance  

Road users instant notification 

… 

Figure 1. Global VANET architecture.

applications. Non-safety applications include a collection of different solutions oriented to
enhancing the traffic efficiency (e.g., travel times, fuel consumption, CO2 emissions, etc.). These
applications also allow improving the comfort and entertainment of passengers.

Safety and traffic efficiency applications, such as Cooperative Vehicle Safety, gather real-time
data from diverse sources (vehicle sensors, information received from other nodes, or both), process
it, and disseminate it to the other nodes. Most of these applications rely on periodic message
broadcasting or beaconing. This kind of applications require very short data delivery times (in terms
of milliseconds),5 since larger delivery times increase the uncertainty on the system and may cause
hazardous situations. Infotainment VANET applications (e.g., audio or video broadcasting, on-line
gaming, etc.) mainly rely on continuous data streams. The real time requirements are lower than for
safety and efficiency applications, but they require larger transmission data rates (in terms of tenths
of kilobytes per second) to keep the quality of the service provided.

In this study, we focus on a specific element of VANET architecture, the RSUs, which are devices
that are usually installed along the roads on the roadside infrastructure elements, e.g., traffic lights.
In addition, they may be fixed along roadside as specific dedicated VANET elements. RSUs include
a network interface to exchange information with other VANET nodes through DSRC. They may
also be equipped with other network interfaces to connect to other networks or to the Internet.
RSUs perform three main functions: i) acting as an information transmitter or receiver in VANET
applications, e.g., warning about of the existence of roadworks, accidents, etc.; ii) extending the
effective communication range by forwarding data to other VANET nodes (OBUs or RSUs) through
multi-hop communications; and iii) providing Internet connectivity to other nodes in the VANET.

Figure 1 illustrates a typical VANET scenario and the importance of including RSUs in the
VANET architecture. In the figure, the coverage of the OBUs is shaded in blue, and represents the
maximum distance in which two vehicles may utilize V2V to communicate with each other (i.e.,
vehicles 2 and 3 and vehicles 1 and 2 are the only ones that are able to exchange information with
each other). The communication range of the RSU is shaded in orange, and therefore, vehicles 2,
3, and 4 can communicate with the RSU via V2I. In the presented example, the ambulance (vehicle
4) is approaching to vehicles 1, 2, and 3. These vehicles are outside the coverage of the OBU
of the ambulance, therefore V2V communications cannot be used. The only way to warn that the
ambulance is approaching is by using a RSU to forward messages to vehicles 2 and 3. Thus, the RSU
extends the effective communication range of the ambulance. In turn, the RSU can inform vehicles
about possible new and more efficient routes, helping to improve the ambulance trip. Furthermore,
all vehicles in the scenario can use the RSU connectivity to access traffic services, Internet, etc.

Consequently, the deployment of a fixed infrastructure of RSUs along the roads is of vital
importance when deploying modern and powerful ITS, which helps to mitigate the serious road
traffic problems that have to be confronted in modern cities.

Deploying the RSU infrastructure for VANETs is a challenge because network designers must
decide about the number, type, and location of RSUs to maximize quality-of-service (QoS) of the
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VANET, while satisfying and/or minimizing the deployment cost requirements. At this point, the
network designers have to take into account that VANETs are used by different types of applications
and services (safety and non-safety), and therefore, the final effective QoS of the network has to
satisfy the requiered transmission data rates and delivery times of such applications.

The RSU Deployment Problem (RSU-DP) consists in placing a set of RSU terminals in a given
area. We study a multiobjective version of the RSU-DP, which proposes maximizing the network
QoS and minimizing the deployment costs. This is a hard-to-solve optimization problem on city-
scaled areas, as the number of possible solutions is very large.31 Heuristics and metaheuristics28 are
promising methods to deal with the RSU-DP; they allow computing good infrastructure designs
in reduced execution times.6, 34 In this article, we propose applying the NSGA-II evolutionary
algorithm13 to design the RSU infrastructure within a city-scaled network in Málaga (Spain). In
order to obtain realistic results, we consider real information about road traffic (road map and traffic
flow), hardware (network capabilities and costs), and VANET applications.

This article extends our previous conference paper,24 where the problem was first presented and
preliminary results of applying a multiobjective evolutionary algorithm (MOEA) were reported.

The main contributions of the research reported in this article are: i) the multiobjective
formulation of the RSU-DP considers in the QoS evaluation the maximum number of vehicles
that can be simultaneously attended by a given RSU type, extending our previous study that just
took into account the effective radio range of each RSU type; ii) we solve realistic scenarios, larger
than those previously solved in the related literature, and we include here the last new and updated
traffic data published by the Málaga city council for 2015; iii) we model a set of real VANET
applications, considered in the QoS metric applied in the problem formulation to evaluate a set of
potential locations for RSUs (these applications were not present in the previous conference paper);
iv) we adapt two state-of-the-art heuristic methods (deterministic and randomized) for the problem,
to be used as a baseline for the comparison of the proposed MOEA; v) we propose a parallel master-
slave MOEA, including a new initialization operator based on the Randomized Knapsack algorithm
as a novelty regarding our previous study; and vi) we report accurate results for cost and QoS for
the problem instances solved: the proposed NSGA-II is able to improve over the results computed
by the best baseline heuristics up to 24.68% and 52.71% in terms of cost, and up to 34.09% and
39.48% in terms of QoS.

The article is organized as follows. Section 2 introduces the multiobjective version of the RSU-
DP. Section 3 presents a review of works solving the RSU location problem and related radio
network design problems. Section 4 introduces the methods applied to solve the problem. The
specific features of the proposed MOEA to solve the RSU-DP are described in Section 5. Section 6
describes the heuristic methods proposed as a baseline for comparing the results computed using
the proposed MOEA, and reports the experimental evaluation of the proposed method on a set of
realistic scenarios in the city of Málaga, using real infrastructure and VANET applications. Finally,
Section 7 formulates the conclusions and the main lines for future work.

2. THE RSU DEPLOYMENT PROBLEM

The mathematical formulation of the RSU-DP considers the following elements:

• A set of RSUs R = {R1, . . . , Rq} to be installed in a city scenario for providing efficient
VANET communications.

• A set of RSU types T = {t1, t2, . . . , tl}. Each RSU type is characterized by a given
deployment cost and a coverage determined by the transmission power and the antenna gain.
The type of a RSU is given by the function type: R→ T .

• A set of road segments S = {s1, s2, . . . , sn}, which are potential locations for placing RSUs
along the city streets. Each segment si is defined by a pair of points (pj , pk), with pj , pk ∈
P = {p1, p2, . . . , pm}. Each point pj is identified by its geographical coordinates (latitude,
longitude). The length of a given segment si is given by the function len: S → R+. RSUs can
be placed at any location within each segment si.
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• An estimation of the number of vehicles per time period across each segment si, given by
function NV : S → N+, and the average vehicle speed for each segment, given by function
sp: S → R+.

• A cost function C: T → R+, where C(tg) indicates the monetary cost of placing a RSU of
type tg in the deployed infrastructure.

• A set of applicationsA = {A1, A2, . . . , Au} to be used over the VANET. Each application has
specific QoS requirements, given by function Q: A→ N+× N+. Q(Ah) is a vector with two
elements, indicating the QoS requirements for packet delivery ratio (PDR) and end-to-end
delay (E2ED) for application Ah. On a given scenario, Q(Ah) is used to define the maximum
number of users to be served by each RSU, given by function MU : R×A→ N+.

Solutions of the problem are defined by a set of RSUs placed over the road segments of the city,
represented by a set sol = {R1, R2, . . . , Rl}, where l is the number of RSUs (#RSU) in solution sol
(l ≤ n). Each RSU is installed in a specific coordinate within a segment si. The segments covered
by a RSU are given by the function cov: R→ S, and the portion of segment sk covered by RSU Rj

is given by the function cp: R× S → [0, 1].
The multiobjective version of the RSU-DP proposes to find a set of locations and the type of RSU

to deploy in each location, with the goal of maximizing the service time given by the whole RSU
infrastructure, while simultaneously minimizing the total cost of deployment. The service time is
a metric related to the QoS offered to the VANET users. It is related to the number of vehicles
attended by RSUs, the time they are served (considering the coverage and average speed per each
road segment), and the type of applications used in the studied scenario.

Formally, the problem is defined as the simultaneous optimization of two objective functions:
maximize the QoS, given by f1(sol, Ah) (Equation 1) and minimize the cost, given by f2(sol)
(Equation 2). The corresponding values for function MU for each RSU and application type are
computed by simulations (see Section 6.2).

max f1(sol, Ah) =

Rj∈ sol∑
Rj

max

MU(Rj , Ah),
∑

si∈cov(Rj)

NV (si)×
cp(Rj , si)× len(si)

sp(si)

 (1)

min f2(sol) =
Rj∈ sol∑

Rj

C(type(Rj)) (2)

3. RELATED WORK

Including RSUs in the network loop improves the global VANET performance in terms of
connectivity, transmission delays, and communication ranges.20 Deploying a low cost and high
coverage RSU infrastructure is often a capital issue for the success of VANETs in real cities. This
section reviews computational intelligence methods applied to the RSU-DP and related problems.

In the related literature, different studies address the RSU-DP. Most of these works analyze RSU-
DP as a version of the Radio Network Design problem.25 However, as most nodes in VANETs are
vehicles, the design of the roadside platform prioritizes locations taking into account road traffic
information as speed of the vehicles, traffic density, etc.

Both exact methods and heuristics have been applied to solve the RSU-DP and related problems.
Trullols et al.33 defined the Maximum Coverage with Time Threshold Problem (MCTTP) to

maximize the number of vehicles that get in contact with a given number of RSUs for a given amount
of time over a certain area. The authors proposed three greedy algorithms with different knowledge
of the road topology and identity of the vehicles. These approaches were applied over a scenario
with real road and mobility data from Zurich, Switzerland. The results showed that knowledge of
vehicular mobility is the main factor to achieve an almost-optimal roadside deployment. Given such
knowledge, the heuristics successfully planned a deployment capable of informing more than 95%
of vehicles.
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Aslam et al.2 applied the Balloon Expansion Heuristic (BEH) and Binary Integer Programming
(BIP) to minimize the reporting time, installing a fixed number of RSUs in Miami, USA. The
methods used information about speed, traffic density, and likelihood of incidents. BEH performed
better than BIP in the reported experiments.

A Voronoi-based algorithm was applied by Patil and Gokhale30 to optimize packet loss,
communications delays, and network coverage, while minimizing the number of RSUs required
in a deployed vehicular network in an area of Nashville, USA. The algorithm used information
about the speed of vehicles and the traffic density to evaluate the solutions.

Ben Brahim et al.4 solved a variant of the RSU-DP in Doha, Qatar, considering the traffic network
as a graph with weighted links. The weight of the links are computed according to road traffic and
mobility-based parameters, such as road traffic density and average speed. Afterwards, all potential
positions for the RSUs are computed by applying two different approaches: a dynamic algorithm
based on 0-1 Knapsack problem (KP DynAlg) solver and the PageRank algorithm. The KP DynAlg
improved over the results computed by the PageRank method.

Some studies have proposed applying evolutionary algorithms (EAs) for solving variants of the
RSU-DP, in order to obtain accurate solutions while consuming reasonable computational resources.
An early approach studied applying a genetic algorithm (GA) that uses a VANET simulator to
evaluate the QoS of the computed solutions in a given area of 16×16 km2 in the city of Brunswick,
Germany, with about 500 km of roads and 10000 vehicles.21 The authors introduce a domain
aggregation scheme to minimize the required overall bandwidth for the VANET and propose a GA
to locate static roadside units (called supporting units) to deal with a highly partitioned VANET in
an early deployment stage. The proposed GA was useful to improve the travel time savings achieved
by a given vector of active SU locations.

Cavalcante et al.6 compared GA against the greedy approach proposed by Trullols et al.33 to
solve the MCTTP, taking into account real data form four different regions: Zurich downtown,
Winterthur, Baden, and Baar. The proposed GA uses a greedy method to initialize the population.
The results showed that the GA solutions obtained better vehicle coverage: up to 11% better than
those computed by the greedy approach.

Another GA proposal is by Cheng et al.,9 who used geometry-based coverage information about
the roads (without vehicles mobility related data) of Yukon Territory, Canada, for the solution
evaluation. The GA computed the fitness in terms of the ratio between the covered road area and
the whole road area, computed using a square grid of 1m× 1m. This approach improved the results
computed by the α–coverage algorithm, which proposes placing the RSUs in the center of the
junctions.

A summary of the main related works about heuristics and computational intelligence methods
(following evolutionary and non-evolutionary approaches) to solve the RSU-DP and related
problems is presented in Table I.

Table I. Summary: related work about heuristics and computational intelligence methods applied to the
RSU-DP.

author year problem method scenario
non-evolutionary approaches

Trullols et al.33 2010 vehicle maximization greedy algorithms Zurich, Switzerland
Aslam et al.2 2012 RSU installation BEH, BIP Miami, USA
Patil and Gokhale30 2013 RSU optimization Voronoi-based algorithm Nashville, USA
Ben Brahim et al.4 2014 mobility/traffic based Knapsack, PageRank Doha, Qatar

evolutionary approaches
Lochert et al.21 2008 supporting units location GA Brunswick, Germany
Cavalcante et al.6 2012 MCTTP–RSU-DP GA Switzerland cities
Cheng et al.9 2013 geometry-based coverage GA Yukon territory
Massobrio et al.23, 24 2015 multiobjective RSU-DP MOEA Málaga, Spain
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Our previous works23, 24 were the first studies that applied an explicit multiobjective approach
to solve the RSU-DP. Our proposal was oriented to maximize the coverage, in terms of the time
that vehicles are connected to the RSUs, and minimize the deployment cost. We consider real
information concerning both traffic (speed, traffic density, and road map) and hardware (costs
and capabilities) for the case of urban locations in Málaga, Spain. The proposed MOEA obtained
significantly better results than ad hoc greedy approaches, but the computed solutions did not cover
the map properly, focusing on streets with high number of vehicles instead.

In this article, we extend our previous work24 by considering a more realistic QoS model that
includes a set of different VANET applications, which are taken into account to compute the
maximum number of vehicles that can be simultaneously attended by a given RSU type. A more
comprehensive experimental analysis is performed, including updated traffic data and modeling
real VANET applications. Finally, the results are compared against those computed using specific
heuristics, adapted from the work of Ben Brahim et al.,4 in terms of cost, QoS, and multiobjective
optimization metrics.

4. METAHEURISTICS AND EVOLUTIONARY COMPUTATION

This section introduces the methods applied to solve the problem: metaheuristics, evolutionary
algorithms and multiobjective evolutionary algorithms.

4.1. Metaheuristics
Metaheuristics are strategies to define algorithmic frameworks that allow designing efficient
techniques to find approximate solutions for search, optimization, and learning problems.15 They
define high-level, heuristic-based, soft computing methods that can be applied to solve different
optimization problems, by instantiating a generic resolution procedure.28

In practice, many optimization problems arising in nowadays real-world applications from
science and technology are NP-hard and intrinsically complex. A lot of computing effort is
demanded to solve them, due to a number of reasons: they have very large-dimension search
spaces, they include hard constraints that make the search space very sparse, they are multimodal
or multiobjective problems taking into account hard-to-evaluate optimization functions, or they
manage very large volumes of data. This is the case for the problem solved in this article: the
deployment of roadside infrastructure for VANETs, which is a variant of the well-known Radio
Network Design problem.25

Metaheuristics provide efficient and accurate methods for solving realistic instances of the
problem, that often cannot be solved using exact optimization methods that are extremely time-
consuming. In this article, we apply a multiobjective evolutionary metaheuristic to solve the RSU-
DP. The main features of EAs and their multiobjective variants are described next.

4.2. Evolutionary algorithms
EAs are non-deterministic methods that emulate the evolutionary process of species in nature to
solve optimization, search, and other related problems.3, 16 In the last thirty years, EAs have been
successfully applied for solving problems underlying many real and complex applications.

Algorithm 1 shows the generic schema of an EA. It is an iterative technique (each iteration
is called a generation) that works by applying stochastic operators on a set of individuals (the
population P) in order to improve their fitness, a measure that evaluates how good is a solution to
solve the problem. Every individual in the population encodes a candidate solution for the problem.
The initial population is generated by a random method or by using a specific heuristic for the
problem (line 2 in Algorithm 1). An evaluation function associates a fitness value to every individual
(line 4). The search is guided by a probabilistic selection-of-the-best technique (for both parents and
offspring) to tentative solutions of higher quality (line 5). Iteratively, solutions are modified by the
probabilistic application of variation operators (line 6), including the recombination of parts from
two individuals or random changes (mutations) in their contents, which are applied for building new
solutions during the search.
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The stopping criterion usually involves a fixed number of generations or execution time, a quality
threshold on the best fitness value, or the detection of a stagnation situation. Specific policies are
used to select the groups of individuals to recombine (the selection method) and to determine which
new individuals are inserted in the population in each new generation (the replacement criterion).
The EA returns the best solution ever found in the iterative process, taking into account the fitness
function.

Algorithm 1 Generic schema for an EA.

1: t← 0 . Generation counter
2: initialize(P (0))
3: while not stopcriterion do
4: evaluate(P (t))
5: parents← selection(P (t))
6: offspring← variation operators(parents)
7: P (t+1)← replacement(offspring, P (t))
8: t← t + 1
9: end while

10: return best solution ever found

One of the most popular variants of EA in the literature is the genetic algorithm (GA), which has
been extensively used to solve optimization problems mainly due to its simplicity and versatility.

The classic GA formulation was presented by Goldberg.16 Based on the generic schema of an EA,
a GA defines selection, recombination and mutation operators, applying them to the population of
potential solutions in each generation. In a classic application of a GA, the recombination operator
is mainly used to guide the search (by exploiting the characteristics of suitable individuals), while
the mutation is used as the operator aimed at providing diversity for exploring different zones of the
search space.

Parallel models for metaheuristics and EAs have been proposed to speed up the computing time
required for the search when dealing with complex objective functions and hard search spaces.1 In
this work, we apply a master-slave model for parallelization, in order to reduce the execution time
of computing the QoS objective when solving the RSU-DP problem (see details in Section 5).

4.3. Multiobjective evolutionary algorithms and NSGA-II

Multiobjective evolutionary algorithms (MOEAs)10, 13 are specific evolutionary optimization
methods conceived to solve problems with many conflicting objective functions. MOEAs have
obtained accurate results when used to solve difficult real-life optimization problems in many
research areas.

Unlike many traditional methods for multiobjective optimization, MOEAs find a set with several
solutions in a single execution, since they work with a population of tentative solutions. MOEAs
are designed to fulfill two goals at the same time: i) approximate the Pareto front, and ii) maintain
diversity, instead of converging to a section of the Pareto front. A Pareto-based evolutionary search
leads to the first goal, while the second is accomplished using specific techniques from multi-modal
function optimization (e.g., sharing, crowding, etc.).

In this work, we apply NSGA-II (Non-dominated Sorting Genetic Algorithm, version II),12 a
popular state-of-the-art MOEA that has been successfully applied in many areas. A schema of
NSGA-II is presented in Algorithm 2 (where N is the population size). The fitness calculation
is based on Pareto dominance, building fronts of solutions. The evolutionary search on NSGA-II
improves over the previous version (NSGA), using: i) a non-dominated, elitist sorting that reduces
the complexity of the dominance check; ii) a crowding technique for diversity preservation; and iii)
a fitness assignment that considers crowding distance values.

The NSGA-II algorithm proposed in this work has been engineered to compute accurate solutions
for the RSU-DP. The main implementation details are presented in the next section.
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Algorithm 2 Schema of the NSGA-II algorithm.

1: t← 0 . Generation counter
2: offspring← ∅
3: initialize(P (0))
4: while not stopcriterion do
5: evaluate(P (t))
6: R← P (t) ∪ offspring
7: fronts← non-dominated sorting(R))
8: P (t+1)← ∅
9: i← 1

10: while |P (t+ 1)|+ |fronts(i)| ≤ N do
11: crowding distance (fronts(i))
12: P (t+1)← P (t+1) ∪ fronts(i)
13: i← i+1
14: end while
15: sorting by distance (fronts(i))
16: P (t+1)← P (t+1) ∪ fronts(i)[1:(N - |P (t+1)|)]
17: selected← selection(P (t+1))
18: offspring← variation operators(selected)
19: t← t + 1
20: end while
21: return computed Pareto front

5. THE PROPOSED NSGA-II ALGORITHM FOR THE RSU-DP

This section presents the details of the proposed NSGA-II evolutionary algorithm for the RSU-DP.

5.1. Solution encoding

In the proposed NSGA-II, solutions are represented as vectors of real numbers, having length
n = #S (the number of elements in the set of road segments S). Each position on the vector
contains the information about the RSU to install (if any) on the corresponding segment: i) the
type of the RSU is given by the integer part of the real number (0 stands for the absence of RSU
in the considered segment, and integers 1 . . . k represent types t1 . . . tk, respectively); and ii) the
condidate location to install the RSU within the segment is given by the fractional part of the real
number, mapping the interval [0, 1) to points in the segment [pj , pi).

Figure 2 shows an example encoding for a scenario consisting of four segments, where three
RSUs are placed. For instance, the value 1.50 in position 2 of the vector indicate that the solution
proposes to install a RSU of type 1 (integer part of 1.50) at the middle (fractional part of 1.50 =
0.50) of segment s2 = (p2, p3). The same holds for value 2.16 in the first position of the vector,
corresponding to segment s1, where a RSU of type 2 is installed at 0.16×len(s1) within segment
s1 = (p1, p2). Finally, the value 0.33 in the fourth position of the vector indicates that the solution
proposes not installing a RSU in segment s4 = (p1, p4) (the fractional part of the value encoded is
irrelevant in this case). In fact, considering the covering radios of the RSUs placed in the map in
Figure 2, we see that it could be a wise decision, because segment s4 is fully covered by RSUs t2
and t3 (of course, this decision reduces the installation cost, but the QoS for users might be reduced,
depending on the number of vehicles and the applications used in the considered scenario).

5.2. Evolutionary operators

The proposed MOEA applies different evolutionary operators and a parallel model to efficiently
address the RSU-DP problem. This section describes such operators and parallel model.
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Figure 2. Encoding for RSU-DP solutions.

5.2.1. Initialization Instead of starting from a random set of solutions, we decided to seed the
initial population with the solutions computed by the Randomized Knapsack heuristic, explained
in Section 6.3. This decision allows focusing the evolutionary search on a subspace of good
quality solutions. The Randomized Knapsack is a constructive method, providing a range of partial
solutions that are useful to generate the initial population of the MOEA. Particularly, we employ
solutions with a high number of RSUs, since we are not interested in exploring the areas of the
Pareto front with negligible values for QoS (this region has configurations that are not useful in
practice, in a real-world scenario).

5.2.2. Selection The selection operator used is the tournament selection, as originally proposed in
the NSGA-II algorithm.13 The tournament size is two individuals and the fittest individual survives.

5.2.3. Exploitation: recombination The recombination operator used is the well-known two-point
crossover (2PX), where offspring are generated by swapping genes in the parents’ chromosomes
that fall between two randomly selected cutting points.

5.2.4. Exploration: mutation We designed an ad-hoc mutation operator in order to provide enough
diversity to the search, avoiding NSGA-II to get stuck in a specific region of the Pareto front. The
mutation operator probabilistically applies three variations on solutions. This variations work as
follows:

1. With probability πA, the mutation operator changes the integer part of the selected gene value
to 0, thus removing the RSU (if any) from the corresponding segment (see Figure 3a).

2. With probability πB , the mutation operator changes the integer part of the selected gene value
for a different one randomly picked in [1, k], thus changing the type of the RSU (or adding
one if there was none) to a random type picked uniformly in T (see Figure 3b).

3. With probability 1− πA − πB , the variation applied corresponds to a Gaussian Mutation with
a standard deviation of σ to the selected gene value, thus changing the position of the RSU
within the segment (see Figure 3c).

5.2.5. Parallel model We apply a master-slave parallel model for metaheuristics1 to reduce the
execution time demanded to evaluate the objective functions for each individual in the population.
The decomposition approach allows NSGA-II to efficiently compute the objective functions for the
set of candidate solutions in the population, as described in the next subsection.
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(a) Mutation applied with probability πA (remove RSU).

(b) Mutation applied with probability πB (modify RSU type).

(c) Mutation applied with probability πC (modify RSU location within segment).

Figure 3. Variations applied by the mutation operator.

5.3. Computing the objective functions

In order to compute the two objective functions to be optimized in RSU-DP, two functions were
evaluated: the installation cost and the quality of service. These two functions are presented next.

5.3.1. Installation cost The total installation cost is simply computed by adding the cost of each
RSU placed in the solution, taking into account the corresponding RSU type.
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5.3.2. Quality of service For computing the QoS, we consider the distances and values shown in
the diagram in Figure 4 (intersection of streets A and B). The RSU placed in the point “×” covers
the subsegments c1 (in s1), c2 (in s2), both in street A, and c3 (in s3), and c4 (in s4), both in street B.
The number of effective vehicles attended is computed by

∑i=4
i=1NV (si)× ci

sp(si)
. The computation

requires finding the intersections between the road segments and the circle defining the coverage of
the RSU. Given that the distances involved are relatively small, we use straight lines in the latitude-
longitude space as an estimation, with negligible error. This approximation makes the computation
faster, improving the overall performance of the algorithm.

Figure 4. Calculation of the vehicles attended by a RSU.

In order to avoid situations where the fitness function computations take into account several
times the same area (i.e., some vehicles in that area are counted multiple times), it is necessary to
keep track of the number of vehicles that each installed RSU has already served. That number of
vehicles depends on the type of the data streams that the RSU is providing (data, voice or video),
since the minimum QoS required by each type of stream limits the maximum number of vehicles
that can be simultaneously attended by a given RSU type.

6. EXPERIMENTAL ANALYSIS

This section presents the details of the experimental analysis performed to evaluate the proposed
NSGA-II to solve the RSU-DP.

6.1. Development and execution platform

The proposed MOEA was implemented using the ECJ library, a Java-based evolutionary
computation research system developed at ECLab Evolutionary Computation Laboratory, George
Mason University.35 ECJ includes easily modifiable classes for solving multiobjective optimization
problems using the NSGA-II algorithm.

The experimental analysis was performed over an AMD Opteron 6172 2.10 GHz server, with 24
cores and 24 GB RAM at Cluster FING, the High Performance Computing facility at Universidad
de la República, Uruguay.27

Since computing the fitness of an individual is highly CPU-intensive, the evaluation of the
population is performed in parallel using 24 Java-threads. Thus, each thread evaluates 3 individuals
of the population.

For each probem instance (map, traffic, and application), we performed 30 independent
executions of the proposed MOEA. For the heuristics used as a baseline for the results comparison,
we performed one execution for the PageRank algorithm (deterministic) and 30 independent
executions for the Knapsack algorithm (randomized). Including the parameter setting and validation
experiments, we performed a total number of 1080 executions of NSGA-II and 279 executions of
the heuristic algorithms.
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6.2. Problem instances

In order to evaluate the proposed MOEA, we defined a real world problem scenario that is relevant
for our community. We included real information for a number of elements: a real map of the city
of Málaga, real road traffic data from the Málaga Council, real RSU network interfaces/antennas,
and real applications to be executed over the VANET. The main details about these elements are
presented next.

6.2.1. Map Figure 5 shows the map of Málaga considered in the experimental analysis. The map
covers an area of 42557 km2 in the city, including a total number of 106 points, which define
128 segments with lengths between 55.5 and 1248.2 m, and an average length of 483.9 m. All
major traffic ways, including avenues and important streets in Málaga are sampled. Some important
avenues with large traffic volume define multiple segments in the map (e.g., Avenida de Andalucı́a,
Avenida de Velázquez, Avenida de Valle Inclán and Paseo Marı́timo Pablo Ruiz Picasso, all of them
with more than six segments defined in the map).

Figure 5. Segments defined over the real map of Málaga.

6.2.2. Road traffic data The traffic data used in our experiments are based on the information
collected by the Málaga City Council using a set of sensors located along the roads. These sensors
returned the total number of vehicles that circulated during the first six months of 2015. The
information is publicly available at the Málaga Council Mobility website.26

We used the traffic information to define the normal traffic pattern in our RSU-DP scenario. In
addition, we applied two probabilistic multiplicative factors over the normal pattern, to define a low
pattern, reducing the traffic randomly in [0–20%] and a high pattern, increasing the traffic randomly
in [0–20%]. These patterns represent situations with low and high road traffic density, respectively,
according to the real data from the Málaga City Council (in fact, studying the traffic statistics for
peak hours provided by the Council, we verified that that the number of vehicles for all main roads
are about 20% higher than in a normal traffic scenario).

6.2.3. RSUs The initial effort to standardize the DSRC radio technology took place in the
ASTM 2313 working group in the U.S. This effort migrated to the IEEE 802.11 standard group that
proposed IEEE 802.11p, which stands for wireless access in vehicular environments (WAVE).18

Following these specifications, the RSUs considered in our study are equipped with a real world
IEEE 802.11p commercial network interface. This hardware configures a realistic scenario and
allows computing useful results from the point of view of both the research and technological
communities.
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Each network interface is connected to an external antenna to improve the communication
capabilities, according to a given antenna gain. The gain, measured in decibels (dBi), is a measure
of the power of the radio signal radiating from the antenna. Generally, the higher the gain of an
antenna, the longer the radio range that can be obtained, and the better the QoS provided by the
infrastructure.

The RSUs analyzed in the problem instances solved in the experimental analysis differ in the
antenna connected. Three different commercial omni-directional antennas, which can be found in
online shops (e.g., Cetacea7), are considered. The antennas differ in the gain offered and the cost. A
summary of the main features of such antennas is presented in Table II. Our study does not exclude
the possibility of incoporating new communication devices (network interfaces and antennas) for
the city infrastructure. The proposed algorithms do not depend on the type or features of the RSUs
considered.

Table II. General information about the used antennas to define different RSU.

type commercial model gain cost

t1 Echo Series Omni Site 6dBi 6 dBi $121.70
t2 Echo Series Omni Site 9dBi 9 dBi $139.20
t3 Echo Series Omni Site 12dBi 12 dBi $227.50

One of the main features that defines a given RSU is its effective radio range (ERR). EER
indicates the farthest distance at which the RSU may exchange data packets with the vehicles, and
it is a relevant metric to evaluate the performance of the communications provided by the VANET
infrastructure. In fact, ERR is one of the components we evaluate in the fitness function to compute
the QoS provided by each RSU deployed in the studied scenario.

To determine the ERR metric for each studied RSU, we performed realistic VANET simulations
evaluating the PDR at different distances (from 0 to 650 m). The experiments were performed
by using the ns-2 simulator29 to evaluate the communications. The simulated VANET scenario is
defined by a given RSU and 10 moving cars at 40 Km/h (11.11 m/s) that utilize IEEE 802.11p
network devices in a urban area. During the simulations, the RSU sent continuous data streams
at 256 Kbps to the vehicles. The probabilistic Nakagami radio propagation model32 was used
to represent the channel fading characteristics of urban scenarios. Each scenario was simulated
15 times to obtain robust average PDR values. In order to ensure a realistic QoS that guarantees
reliable communications, we defined the ERR of each RSU as the distance at which the average PDR
is equal or higher than 66.67% (i.e., less than one packet lost for each three packets transmitted).
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Figure 6. ERR experimental results.
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Figure 6 reports the experimental results of the simulations to obtain the ERR for each RSU type.
According to the PDR threshold defined, the ERR for the RSU type t1 is 243.12 m, for RSU type t2
is 338.70 m, and for RSU type t3 is 503.93 m (see the values at the bottom of Figure 6).

6.2.4. Applications As we introduced in Section 1, VANET communications comprise mainly
three types of applications: road safety, traffic efficiency, and infotainment. The two first types of
applications rely on the exchange of small data packets with very short communication delays.
The infotainment applications comprise a wide variety of applications that are principally based on
receiving audio/voice and video streams.5, 17

One of the main contributions of the study reported in this article is that we defined problem
instances taking into account the requirements of the different types of VANET applications. This
analysis allows the designers to prioritize the applications’ constraints in the final RSU deployment.
Thus, for each RSU type, the computed QoS metric takes into account the maximum number
of vehicles that can be served while fulfilling the requirements for each VANET application
type (MU ). The QoS constraints for each VANET application type evaluated in this study are
summarized in Table III, based on the study by Chantaksinopas et al.8

Table III. QoS requirements of VANET applications taken into account in this study (Q(Ai)).

application type packet size (bytes) generated data flow QoS requirements

data (A1) 238 bytes 19 kbps (10 packets/s) E2ED<100 ms & PDR=100%
voice/audio (A2) 238 bytes 25 kbps E2ED<400 ms & PDR>16%
video (A3) 791 bytes 384 kbps E2ED<400 ms & PDR>8.33%

In order to evaluate the MU function described in Section 2, we defined an iterative procedure
based on performing realistic urban VANET simulations for each RSU (Ri) and application (Aj).

The procedure consists in simulating a given scenario that includes a RSU of a given type Ri

and different number of vehicles spread through a circular area with radio ERR(Ri). In these
simulations, the VANET nodes generate data flows (traffic) according to the Ai application (see
the third column on Table III). Therefore, the VANET scenario is defined according three different
parameters (n, Ri, Aj).

The evaluation procedure starts by simulating the scenario with one vehicle (1, Ri, Aj) and
computing the two relevant QoS metrics defined for the problem (PDR and E2ED). After that,
a new vehicle is added and the new configuration is simulated. The iterative method stops when
the computed QoS metrics do not accomplish the requirements defined in Q(Ai) function. Finally,
MU(Ri, Aj) is the number of vehicles previous to the last one that was simulated. The computed
results for each RSU and application type are summarized in Table IV.

Table IV. Number of vehicles that can be served for each RSU and application types.

RSU type application type
safety voice/audio video

t1 45 34 31
t2 45 44 34
t3 46 52 37

According to the results presented in Table IV, for example, all RSUs equipped with an antenna
type t2 can provide an adequate QoS to 34 vehicles executing a video stream application, and so on.

6.3. Heuristic methods used as a baseline for the comparison

In order to evaluate the quality of the solutions computed by the proposed NSGA-II, we
implemented two versions of well-known heuristic methods to solve a different variant of the
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RSU location problem, originally proposed by Ben Brahim et. al:4 the PageRank heuristic and the
Knapsack algorithm.

6.3.1. Constructive PageRank heuristic PageRank is a voting algorithm, initially developed to
compute the importance of web pages in the Internet by taking into account the number of inbound
and outbound links from and to other web pages.19

The PageRank algorithm has been previously applied to solve the RSU deployment problem by
Ben Brahim et al..4 In that study, the authors applied the PageRank version for weighted graphs to
rank the potential locations for RSUs (road intersections) according to mobility-related information
(e.g., traffic density, average speed of vehicles). The road traffic network is modeled as a graph with
weighted links, which represent roads (segments), and vertices, which represent the intersections.
The weight of each link is given by mobility-related information (e.g., density, average speed).

The weighted PageRank is applied to a given directed graph G = (V,E) defined by a set of
vertices V , and a set of edges E, The algorithm starts by setting the PageRank value of all vertices
vi to a fixed value d: PRW (vi) = d, ∀vi ∈ V . d is known as the dumping parameter and its
default value is 0.85. Then, an iterative process is performed until a stop condition is reached (the
convergence value is below a given threshold or a maximum number of iterations performed). In
this iterative process, for a given vertex vi, PRW (vi) is computed by

PRW (vi) = (1− d) + d×

 ∑
vj∈In(vi)

wij ×
PRW (vj)∑

vk∈Out(vj)

wjk

 (3)

where In(vi) is the set of vertices that point to it (predecessors), and Out(vi) is the set of vertices
that vi points to (successors), and wij is the weight that for the edge that connects vi and vj .

In our study, we consider all the road segments as potential locations to install the RSUs, and not
just the intersections as proposed by Ben Brahim et al..4 Therefore, we adapt the weighted PageRank
algorithm with the purpose of sorting the segments (the edges of the graph) according to the rank
value, and after that, applying a constructive heuristic over the sorted vector of segments.

The weighted graph G = (V,E) is defined by the set of points P and the set of segments S in the
RSU-DP formulation (V =P and E=S); The weight of each edge wjk is given by the weight of the
represented segment W (si), si = (pj , pk), defined by Equation 4.

wjk =W (si) = NV (si)×
len(si)

sp(si)
(4)

The rank value for each segment si = (pj , pk) is computed as the sum of the PageRank values of pj
and pk, i.e., SRW (si) = PRW (pj) + PRW (pk). Thus, the segments are ranked in a sorted vector
SPR in which sPR

i , sPR
j ∈ S, i < j ⇔ SRW (sPR

i ) > SRW (sPR
j ).

Once the segments are sorted in SPR, a constructive heuristic is applied to select and locate the
RSUs. The heuristic iterates over the sorted vector SPR starting by the first segment (sPR

1 ), which is
the best ranked one. For each segment sPR

i ∈ SPR, the different QoS provided for each one of the
three RSU types when installing them in one of 10 different equidistant points within the segment
that are located in positions n× 0.1× len(sPR

i ), n ∈ [0, 9], are computed. Thus, the constructive
algorithm evaluates the QoS of 30 different possible configurations (3 RSU types × 10 locations)
in each segment. It considers the configuration (RSU type and location) that provides the best QoS,
if the whole QoS increases at least 1% regarding the previous segment. Otherwise, the constructive
PageRank heuristic does not locate any RSU in the current segment sPR

i .

6.3.2. Randomized Knapsack algorithm The 0-1 Knapsack problem22 is a well-known optimization
problem that assumes having a bag with a capacity W and a set of objects characterized by their
benefit value pi and their wight wi. The goal of the 0-1 Knapsack problem is to find the optimal
subset of objects to include in the bag, maximizing the benefit P without exceeding the capacity W .

The RSU-DP problem can be reduced to a 0-1 Knapsack problem, which can be solved applying
a dynamic programming algorithm. In this work, we adapt the Knapsack algorithm by Ben Brahim
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et. al4 to solve the RSU-DP following a non-deterministic dynamic programming approach, the
Randomized Knapsack (RandKS) presented in Algorithm 3.

Algorithm 3 Schema of the RandKS(B,SS,C,n,Ksol).

1: if (n==0 or B ≤0) then
2: Ksol← ∅ . No more segments or budget
3: return 0
4: else
5: for k←1 to K do . For all RSU types
6: if B < C(tk) then . No budget enough
7: covk = RandKS(B,SS,C,n-1,Ksol)
8: else
9: loc← random ∈ [0,1)

10: covk ← coverage((sn, tk, loc),Ksol) + RandKS(B-C(tk),SS,C,n-1,Ksol)
11: end if
12: rsu index← getIndex(max(covi))
13: if not rsu index==0 then
14: Ksol← Ksol ∪ (sn, tk, location)
15: end if
16: end for
17: end if

The Randomized Knapsack algorithm defines the set SS, which stores all the possible pairs of
road segments and RSU types (S ×R), i.e., SS = {(s1, t1), (s1, t2), ..., (s1, tK), ..., (sn, tK)}. The
elements of SS are the ones to include in the Knapsack bag when building a RSU infrastructure for
a VANET. The final solution is stored in the set Ksol, which stores tuples that include information
about the installed RSUs: the road segment si, the RSU type tk, and the location of the RSU in the
segment, i.e., Ksol includes (si, tk, location) tuples.

The location loc of the RSU in the segment is a real number in the range [0,1), that represents the
relative value of the position in the segment, as explained for the solution encoding in NSGA-II in
Section 5.1. In the original (deterministic) Knapsack algorithm by Ben Brahim et. al,4 the location
of RSU is limited to the corners of the streets, i.e., the extremes of each segment. In our Randomized
Knapsack algorithm, the location of the RSU is picked randomly within each segment, because we
are working with a set of infinite possible locations, which cannot be explored one by one.

Two new functions are defined for the RandKS algorithm: i) coverage((sn, tk, loc),sol), which
computes the complete coverage provided by the RSUs stored in sol plus the RSU located in the
segment sn defined by (sn, tk, loc); and ii) getIndex(max(covi)), which returns the index of the RSU
type that obtained the best (maximum) coverage.

6.4. Multiobjective optimization metrics

A large number of metrics have been proposed in the literature to evaluate MOEAs.10, 12 In this work,
we apply two relevant metrics in order to evaluate the results obtained by the NSGA-II algorithm:
hypervolume and relative hypervolume (RHV). These two metrics allows evaluating, in terms of
both convergence and correct sampling, the set of non-dominated solutions of the problem.

The hypervolume measures the volume (in the objective functions space) covered by the
computed Pareto front. The relative hypervolume is the ratio between the volumes (in the objective
functions space) covered by the computed Pareto front and the true Pareto front. The ideal RHV
value is 1.

The true Pareto front—which is unknown for the problem instances studied—is approximated by
the set of non-dominated solutions found for each problem instance solved, in each one of the 30
execution of the proposed MOEA.10, 12
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6.5. Parametric configuration

Due to the stochastic nature of EAs, a parameter configuration is mandatory prior to the
experimental analysis. For this purpose, we performed an experimental analysis to configure two
important parameters of the NSGA–II algorithm: the crossover probability (pc) and the mutation
probability (pm).

For the parameter setting, we use a set of problem instances which is different from the real-
world problem instance, in order to avoid bias in the experimental analysis. We considered a smaller
region of the map of Málaga, comprised of 74 segments, and we defined 3 different instances over
this region corresponding to each type of application (data, voice, and video). For the parameter
configuration we considered the scenario with normal traffic. For each parameter, three candidate
values were tested: pc ∈ {0.5, 0.7, 0.9}, and pm ∈ {0.1, 0.01, 0.001}.

We performed 30 independent executions of 10000 generations over each problem instance
using each one of the different combinations of the candidate parameter values, thus totalling 810
executions of the proposed MOEA.

Table V reports the hypervolume achieved using each parameter configuration on the scenario
involving a video application, which is representative of the set of scenarios used in the parameter
tuning. The mean, median, and standard deviation (σ) are shown along with the minimum (min)
and maximum (max) values achieved. Furthermore, the p-value corresponding to the Shapiro-Wilk
test for normality is displayed as well as the Friedman rank values corresponding to each parameter
configuration.

The results from the Shapiro-Wilk test did not allow to confidently state whether the results
samples follow a normal distribution (in six out of nine instances, the p-value was larger than
0.05). Therefore, the non-parametric Friedman rank test was used in order to compare the different
parameter configurations against each other. The p-values for the Friedman rank test did not allow to
state whether there is one configuration that outperforms all the others with statistical significance.
Therefore, we decided to use the configuration pC = 0.7; pM = 0.1, which achieved the best mean
and median hypervolume values.

Table V. Parameter configuration results for the scenario with a video application.

pc pm
hypervolume (×106) p-value Friedman

mean median σ min max S-W Rank

0.5
0.001 9.27 9.27 0.04 9.18 9.36 0.99 148.00

0.01 9.27 9.28 0.05 9.16 9.36 0.86 160.00
0.1 9.26 9.27 0.05 9.11 9.34 0.04 147.00

0.7
0.001 9.27 9.29 0.06 9.14 9.38 0.15 143.00

0.01 9.28 9.27 0.05 9.21 9.40 0.15 149.00
0.1 9.29 9.30 0.05 9.20 9.38 0.76 171.00

0.9
0.001 9.25 9.26 0.07 9.07 9.36 0.34 134.00

0.01 9.25 9.28 0.06 9.10 9.34 0.01 134.00
0.1 9.28 9.28 0.04 9.14 9.35 0.03 164.00

6.6. Numerical results
This subsection reports the numerical results achieved in the experimental evaluation of the
proposed NSGA-II algorithm for the RSU-DP. The results shown are those corresponding to the
30 independent executions performed on each of the 9 problem instances studied: 3 different
applications (data, voice, video), each with 3 different traffic levels (normal, high, low) for the
proposed NSGA-II and the baseline heuristics (PageRank/Knapsack).

The RHV metric is used to compare the solutions computed by NSGA-II against the one
computed sing the baseline heuristics. RHV is a good indicator of both convergence towards an
ideal Pareto front and diversity among the set of non-dominated solutions. The ideal Pareto front for
a given problem instance is approximated with the set of non-dominated solutions computed by all
algorithms on every independent execution of that instance.
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In order to compare the RHV values achieved by each algorithm we used two statistical tests.
We first performed the Shapiro-Wilk test to assess normality over the RHV values obtained by
each algorithm on each problem instance. In seven out of nine instances, the results from the
Shapiro-Wilk test did not allow to state whether the samples follow a normal distribution or not.
Therefore, the Friedman Rank test was used to assess whether the results achieved by one algorithm
outperformed the others.

Table VI reports the RHV values achieved by NSGA-II, Knapsack and PageRank on all 9 problem
instances. The mean, standard deviation (σ), and best (max) values were computed over the 30
independent executions performed for each algorithm. In addition, the table also reports the p-value
from the Shapiro-Wilk test (S-W), the rank from the Friedman test (Rank), and the p-value from the
Friedman test.

Table VI. Relative hypervolume values achieved by NSGA-II, Knapsack, and PageRank.

normal high low
data voice video data voice video data voice video

max
NSGA-II 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Knapsack 0.82 0.85 0.95 0.8 0.84 0.96 0.83 0.86 0.95
PageRank 0.73 0.82 0.73 0.7 0.81 0.71 0.76 0.83 0.74

mean
NSGA-II 0.98 0.98 0.98 0.99 0.95 0.98 0.99 0.99 0.98
Knapsack 0.8 0.84 0.94 0.79 0.82 0.94 0.82 0.85 0.94
PageRank 0.73 0.82 0.73 0.7 0.81 0.71 0.76 0.83 0.74

σ (×10−3)
NSGA-II 3.72 2.83 3.00 2.73 176 3.79 3.74 3.65 3.33
Knapsack 5.57 4.57 7.77 5.88 6.81 6.43 7.26 6.53 8.05
PageRank 0 0 0 0 0 0 0 0 0

S-W
NSGA-II 0.93 0.17 0.6 0.1 0 0.25 0.3 0.11 0.35
Knapsack 0.49 0.91 0.6 0.29 0.88 0.94 0.33 0.37 0.15
PageRank 1 1 1 1 1 1 1 1 1

Rank
NSGA-II 90 90 90 90 88 90 90 90 90
Knapsack 60 60 60 60 60 60 60 60 60
PageRank 30 30 30 30 32 30 30 30 30

p-value Friedman <10−6 <10−6 <10−6 <10−6 <10−6 <10−6 <10−6 <10−6 <10−6

Table VII. NSGA-II improvements over Knapsack and PageRank algorithms.

improvement in QoS (%) improvement in cost (%)
cost=$10000 cost=$15000 QoS=2500

Knapsack Pagerank Knapsack Pagerank Knapsack Pagerank

normal
data 22.37 44.89 - - 31.37 39.48
voice 19.06 29.76 - - 25.34 28.93
video 2.58 49.97 5.97 24.63 6.46 31.18

high
data 24.68 52.71 - - 30.17 42.4
voice 22.11 33.82 - - 22.35 28.26
video 0.83 52.55 6.42 34.13 1.84 34.18

low
data 18.44 35.61 - - 34.09 33.52
voice 17.83 25.78 - - 33.75 25.51
video 6.91 46.89 5.04 14.03 15.06 28.53

The results in Table VI demonstrate that NSGA-II is able to achieve significantly better RHV
values than the two baseline heuristics adapted from the literature, both in average and in the best
case. The Friedman rank test allows to state with statistical confidence that NSGA-II is able to
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outperform both Knapsack and PageRank algorithms in all problem instances (p-value < 10−6 in
all comparisons). This fact suggests that NSGA-II accurately computes fronts that converge towards
an ideal Pareto front of the problem while simultaneously maintaining diversity among the set of
non-dominated solutions.

Table VII reports the improvements achieved by NSGA-II over Knapsack and PageRank
heuristics. The reported improvements are those achieved when comparing specific (realistic)
solutions from the global Pareto fronts computed by each algorithm (i.e., combining the results
of all 30 independent executions performed), as usual in the MOEA literature.10, 12

In Table VII, the improvements regarding each problem objective are evaluated by comparing the
values of QoS/cost computed by each studied algorithm when considering a fixed cost/QoS used as a
reference value, respectively. The improvements in QoS are measured comparing the values of QoS
achieved by each algorithm with a fixed cost of $10000 (all cost values are expressed in US dollars).
This cost is a reasonable value for the budget to invest in order to deploy a RSU infrastructure
for VANET in a city scaled area, just like in the case of Málaga. In addition, in the scenarios
corresponding to video applications, the QoS improvements with a fixed cost of $15000 are also
reported, since the deployment costs for infrastructures that support this type of applications tend to
be more expensive. Following a similar approach, the improvements in cost are reported comparing
the cost values of solutions achieved by each algorithm with a fixed QoS of 2500.

In any case, since the proposed algorithm solves the problem following a multiobjective approach,
a human decision-maker will always have the last word about the solution to implement: the
decision-maker from the City Council will be in charge of selecting one solution of the set of non-
dominated ones for the real implementation over the city.

The results in Table VII clearly state that NSGA-II is able to improve the solutions computed
by both Knapsack and PageRank algorithms in all scenarios. In terms of QoS, the maximum
improvements are of 24.68% over Knapsack and 52.71% over PageRank, both in the instance with
high traffic and a data application. The improvements of costs are of up to 34.09% over Knapsack
(instance with low traffic and a data application) and 39.48% over PageRank (instance with normal
traffic and a data application).

In order to provide a better insight into the main advantages of the proposed NSGA-II algorithm,
Figure 7 shows the global Pareto fronts achieved by each algorithm on each problem instance. It
can be observed that NSGA-II is able to compute accurate Pareto fronts with good convergence
and diversity properties. The improvements of NSGA-II on both QoS and cost are clear for data
and voice applications, in all three traffic patterns studied. When considering a more demanding
application (video), the improvements of NSGA-II over Knapsack are observed for large values of
QoS (i.e., QoS > 2500). The PageRank algorithm was consistently the worst method to solve the
RSU-DP in all problem instance studied.

7. CONCLUSIONS AND FUTURE WORK

This article reports the application of a multiobjective evolutionary approach to solve the problem
of locating roadside infrastructure for vehicular networks over realistic urban areas.

A multiobjective formulation of the problem was introduced, considering the QoS and cost
objectives. A specific NSGA-II evolutionary algorithm was designed, by including a problem-
related encoding and ad-hoc mutation operators to explore the set of possible locations. A parallel
model was applied in order to efficiently perform the evaluation of solutions in the proposed MOEA.

The NSGA-II algorithm was evaluated on a city-scaled area using the real map and up-to-
date (year 2015) traffic information from the city of Málaga, in Spain. The problem instances
were built considering three different types of commercial antennas and a set of realistic VANET
parameterizations that could ease the use of demanding applications related to data, voice, and video
communications. The scenarios used for the experimental evaluation considered three different
traffic patterns and three different types of applications, each one with different infrastructure
requirements.
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(a) Normal traffic, data app. (b) Normal traffic, voice app. (c) Normal traffic, video app.

(d) High traffic, data app. (e) High traffic, voice app. (f) High traffic, video app.

(g) Low traffic, data app. (h) Low traffic, voice app. (i) Low traffic, video app.

Figure 7. Global Pareto fronts.

Two heuristics were implemented to solve the problem, based on related works from the literature:
a Randomized Knapsack algorithm and a constructive PageRank heuristic. These traditional
methods for RSU planning were used as a reference baseline to compare the solutions computed by
the proposed NSGA-II algorithm. In the experiments performed, the proposed MOEA has shown
good problem solving capabilities, computing accurate Pareto fronts for the problem. NSGA-II also
allows improving over the two baseline heuristics, regarding the multiobjective optimization metrics
evaluated and the two problem objectives.

According to the results from the experimental analysis, NSGA-II was able to consistently
compute better results than the baseline heuristics. In the best case, NSGA-II was able to outperform
the Randomized Knapsack algorithm up to 24.68% and the PageRank heuristic up to 52.71%
in terms of QoS. The improvements in cost were up to 34.09% and 39.48% over Knapsack and
PageRank, correspondingly. The computed Pareto fronts indicate that NSGA-II provides better and
more robust solutions to the problem, especially for those scenarios considering data and voice
applications. The experimental analysis also demonstrates that when considering a more realistic
scenario (including real applications, real traffic information, etc.) the evolutionary approach is able
to achieve larger improvements over the heuristics than those reported in previous related works.
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The main lines for future work are related to extend the experimental analysis to consider other
real areas from cities in other countries. Right now, we are working on building a real RSU-DP
scenario for VANETs in the city of Montevideo, Uruguay, using real data from the local authorities
and GPS information from the public transport. We also plan to extend the problem formulation
to consider additional information from important events in vehicular networks (such as accidents,
traffic jams, etc.) in order to model a more realistic scenario for the problem.
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