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Abstract

A CNN model of partial differential equations (PDEs) for image multiscale analysis is proposed. The model
is based on a polynomial representation of the diffusivity function and defines a paradigm of polynomial CNNs,
for approximating a large class of nonlinear isotropic and/or anisotropic PDEs. The global dynamics of space-
discrete polynomial CNN models is analyzed and compared with the dynamic behavior of the corresponding
space-continuous PDE models. It is shown that in the isotropic case the two models are not topologically equivalent:
in particular discrete CNN models allow one to obtain the output image without stopping the image evolution after
a given time (scale). This property represents an advantagewith respect to continuous PDE models and could
simplify some image preprocessing algorithms.

Index Terms

I. INTRODUCTION

Partial Differential Equation (PDE) based models have shown to be useful for image preprocessing
(multiscale analysis) [1], [2], [3], [4]. They can be classified in three main categories: a) linear isotropic
filters; b) nonlinear isotropic filters; c) nonlinear anisotropic filters. Linear isotropic filtering (heat equation)
was proved to be the only linear model that satisfies all the multiscale analysis requirements [2]. However
it presents the disadvantage of blurring important features in image processing, like edges. Nonlinear
isotropic filters (in particular the Perona-Malik filter [5]) were introduced for overcoming the limitations
of linear models and are based on the idea of adapting the diffusivity to the gradient of the evolving image.
They do not exhibit good performances in images containing noisy edges and coherent flow-like structures.
In such cases they can be replaced by anisotropic models [1],that have found significant applications in
medical imaging and computer-aided quality control [1]. The main drawback of PDE based techniques
is that from a computational point of view they are rather time-consuming and therefore they are not
suitable for real-time image processing.

In parallel with the mathematical studies on the application of nonlinear PDEs to image processing, in
the electrical engineering community a new paradigm of neural network, called cellular neural network
(CNN) ([6], [7], [8], [9]), was introduced and shown to be able to solve several complex computational
problems.

As far as the applications are concerned, the implementation of PDE-based algorithms onto CNNs
allows one to afford real-time image processing [10]. From atheoretical point of view, the relationship
between PDE and CNN dynamics has been investigated in several papers. In [11] it was shown that, in
general, CNN dynamics represents a broader class than PDEs.

In this manuscript a CNN model of partial differential equations for image multiscale analysis is
proposed. The model is based on a polynomial representationof the diffusivity function and defines a
paradigm of polynomial CNNs, which approximates a large class of nonlinear isotropic and anisotropic
PDEs, and also some non-PDE models [12]. The global dynamicsof space-discrete polynomial CNN
models is analyzed and compared with the dynamic behavior ofthe corresponding space-continuous PDE
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models. It is shown that in the isotropic case the two models are not topologically equivalent: in particular
discrete CNN models allow one to obtain the output image without stopping the image evolution after
a given time (scale). This property represents an advantagewith respect to continuous PDE models and
could simplify some image preprocessing algorithms.

II. PDE BASED CNN MODELS

According to [1], [2], a gray-level image is defined as a real bounded functionu0(x, y) : R2 → R,
whereu0(x, y) denotes the gray level value at the point(x, y). Introducing an artificial timet, an image
u(t, x, y) is assumed to evolve, according to a PDE of the form:

∂u(t, x, y)

∂t
= F [u(t, x, y)]

u(0, x, y) = u0(x, y) (1)

where F : R → R is an operator that typically depends on the image and on its first and second
order space derivatives and characterizes the given algorithm; u0(x, y) represents the initial condition.
Hereinafter we assume that each imageu(t, x, y) exhibits Neumann type space boundary conditions.

The solution of equation (1), denoted byTt(u0(x, y)) = u(t, x, y), represents the processed image at
the scale (time)t. As shown in [2], the sequence of imagesu(t, x, y), that is the images generated from
u0(x, y) by the operatorTt(·), performs a multiscale analysis satisfying some selected basic principles
(called axioms in [2]).

A. Isotropic diffusion based CNN models

It is well known that the simplest multiscale analysis is obtained by using linear isotropic diffusion,
i.e. by exploiting the following PDE (heat equation):

∂u

∂t
= div [∇u] =

∂2u

∂x2
+

∂2u

∂y2
. (2)

To overcome the drawbacks of linear diffusion, Perona and Malik [5] proposed the following PDE
describing a nonlinear isotropic diffusion:

∂u

∂t
= div

[
g(‖∇u‖2)∇u

]
(3)

where the original imageu(0, x, y) = u0(x, y) is used as initial condition,∇u and ‖∇u‖ denote the
image gradient and its magnitude respectively andg(·) represents the diffusivity function. The following
diffusivity functions were proposed by Perona and Malik [5]:

g(‖∇u‖2) = e−( ‖∇u‖
k )

2

, g(‖∇u‖2) =

[
1 +

(‖∇u‖
k

)2
]−1

(4)

wherek is a scalar parameter.
Finite difference approximations of Perona-Malik equation (3) have been investigated in several papers

([1], [13], and [14]).
Let us suppose that the continuous space domain is composed by N ×M points arranged on a regular

grid and let us denote the position of a point with two indexes(i, j); uij represents the pixel value,
obtained by sampling the imageu(t, x, y) at the point(xi, yj) = (h i, h j), whereh is the grid size. It
turns out that among the many approaches for solving PDEs, the finite difference method is the most
suited to obtain a system of coupled ordinary differential equations, that can be mapped onto a CNN
structure.
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Fig. 1. Basis functionf(z) for m = 5.

By using a finite difference approximation, a consistent semidiscrete version of the Perona-Malik model
(3) can be written as [1] (1 ≤ i ≤ N and1 ≤ j ≤ M):

d uij(t)

d t
=

∑

(kl)∈Nij

gkl + gij

2 h2
(ukl − uij) (5)

whereNij = {(i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1)} and gkl and gij are evaluated by approximating
the image gradient through the central difference around the points(xk, yl) and (xi, yj) respectively. As
an example,gij = g(‖∇̃ui,j‖2) with

‖∇̃ui,j‖2 =

(
ui+1,j − ui−1,j

2 h

)2

+

(
ui,j+1 − ui,j−1

2 h

)2

. (6)

In order to implement (5) in a general feasible polynomial CNN architecture, let us consider the
following basis function (see Fig. 1):

f(z) = 1 −
∣∣∣∣
1

2

(∣∣∣
z

m
+ 1

∣∣∣ −
∣∣∣
z

m
− 1

∣∣∣
)∣∣∣∣ (7)

and let us approximate theg(·) functions (4) with the following expression:

g(z) ∼= γ(z) =

Q∑

p=1

cpf
p(z) (8)

It is worth observing thatf(z) is different from zero only on the finite domainz ∈ (−m, m); this
allows us to control the nonlinear diffusion process according to the thresholdm. Hence, this property is
also valid forγ(z).

The parameterm depends on the admissible errorê betweeng(·) and γ(·) at the pointz = m. This
allows us to rewritem as m = k2 δ(ê), whereδ(ê) = − ln(ê) or δ(ê) = ((ê)−1 − 1) for the functions
reported in (4).

The parametersc1, ..., cQ, Q and m are chosen in such a way thatγ(z) interpolatesg(z) in a set of
Q uniform spaced points within the interval[−m, m]. It follows that γ(z) and g(z) exhibit the same
properties, i.e.γ(z) is constrained to be a positive and bounded function (0 ≤ γ(z) ≤ 1); these conditions
ensure that:

gij
∼= γij =

Q∑

p=1

cpf
p(‖∇̃ui,j‖2) (9)
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By replacinggij and gkl in (5) with the approximate expressionsγij and γkl, we obtain a general,
nonlinear PDE based, polynomial CNN model (PCNNs):

d uij(t)

d t
=

∑

(kl)∈Nij

Γkl (ukl − uij) (10)

whereΓkl is reported below

Γkl =

Q∑

p=1

cp

2h2

[
f p

(
‖∇̃uk,l‖2

)
+ f p

(
‖∇̃ui,j‖2

)]
. (11)

and defines the following nonlinear template, whose structure is identical for each processing cell:



0 Γi−1,j 0

Γi,j−1 0 Γi,j+1

0 Γi+1,j 0




(12)

B. Anisotropic diffusion based CNN models

In nonlinear isotropic filters, the diffusion process only depends on the gradient magnitude. In certain
applications [1] better performances are achieved if the diffusivity is not identical in all the directions.
This requirement can be fulfilled, by introducing a suitablediffusion matrix, that changes the orientation
of the gradient.

In [1] the following anisotropic PDE equation was proposed:

∂u

∂t
= div [D ∇u] (13)

whereD is a positive definite2× 2 matrix, depending on the gradient. It is easily derived thatlinear and
nonlinear isotropic diffusion can be obtained withD = I andD = g(‖∇u‖2)I respectively (whereI
denotes the identity matrix).

Usually, the matrixD ∈ R2×2 is chosen to be a function of∇u (see [1]):

D = SΛ(‖∇u‖)ST (14)

whereΛ(‖∇u‖) = diag(λ1(‖∇u‖), λ2(‖∇u‖)) is a diagonal matrix containing the eigenvaluesλ1, λ2

andS is a 2 × 2 matrix whose rows are the two corresponding eigenvectorsv1, v2.
The main drawback of isotropic models (like Perona-Malik’s) is that they might be not robust in presence

of noise. In order to remove the noise at the edges it is necessary to rotate the flux according to the edge
direction, in order to allow the diffusion along the edges and to prevent it perpendicularly. This can be
obtained by choosing the matricesS andΛ reported below:

S =




∂u

∂x

∂u

∂y

∂u

∂y
−∂u

∂x


 Λ =

(
g(‖∇u‖2) 0

0 1

)
(15)

that give rise to the following matrixD

D =

(
a(x, y) b(x, y)
b(x, y) c(x, y)

)
(16)
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a(x, y) = g
(
‖∇u‖2

) (
∂u

∂x

)2

+

(
∂u

∂y

)2

b(x, y) =
[
g

(
‖∇u‖2

)
− 1

] ∂u

∂x

∂u

∂y
(17)

c(x, y) = g
(
‖∇u|2

) (
∂u

∂y

)2

+

(
∂u

∂x

)2

.

A standard space discretization scheme for equation (13), when the matrixD shown in (16) is exploited,
allows one to obtain the following semi-discrete model:

d uij(t)

d t
=

∑

(kl)∈ bNij

Γkl (ukl − uij) (18)

where, the parametersΓkl (with (kl) ∈ N̂ij = {(k, l) 6= (i, j) : |k − i| ≤ 1
∧

|l − j| ≤ 1}) define the
following nonlinear template, whose structure is identical for each processing cell(i, j):




bi−1,j + bi,j−1 ai−1,j + ai,j −(bi−1,j + bi,j+1)
ci,j−1 + ci,j 0 ci,j+1 + ci,j

−(bi+1,j + bi,j−1) ai+1,j + ai,j bi+1,j + bi,j+1




In the above expressionai,j, bi,j and ci,j, represent the polynomial approximation of the functions
a(x, y), b(x, y) andc(x, y) respectively, according to the following expressions:

ai,j = γi,j

(
ui+1,j − ui−1,j

2 h

)2

+

(
ui,j+1 − ui,j−1

2 h

)2

bi,j = (γi,j − 1)

(
ui+1,j − ui−1,j

2 h

)(
ui,j+1 − ui,j−1

2 h

)

ci,j = γi,j

(
ui,j+1 − ui,j−1

2 h

)2

+

(
ui+1,j − ui−1,j

2 h

)2

.

whereγi,j is given by (9).

III. COMPARISON BETWEENPERONA-MALIK AND POLYNOMIAL CNN MODELS

Dynamical properties of Perona-Malik based filters (5) are summarized in [1] and [14]. It is well-known
that system (5) converges toward a constant steady state solution, representing the average value of the
initial image, becausegij and gkl are always different from zero. In order to obtain a non trivial output
image, the system evolution has to be stopped after a finite time (usually called scale). In the most general
case, the scale depends on the objects and on the characteristics of the input image, and hence there is
no a priori known time for stopping image processing.

This problem can be overcome, by approximating the functions g(·), reported in equation (4)), (that
are different from zero in the whole domain) with the expression γ(·) given by (8), that is different from
zero for |z| = ‖∇̃ui,j‖2 < m (see Section II). This presents the advantage of stopping the evolution of the
image when the approximated gradient magnitude‖∇̃ui,j‖2 (for all (i, j)) is greater than the threshold
m. As consequence, the output image exhibits a segmented structure.

The above behavior is possible because the set of equilibrium points of a PCNN system (10) is larger
than that of the discretized Perona-Malik model. Such equilibrium points should satisfy at least one of
the following two conditions:

1) uij = ukl for all (k, l) ∈ Nij and for all (i, j)
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2) Γkl = 0 for all (k, l) ∈ Nij and for all (i, j)
Condition 1 identifies those equilibrium points, that also the discretized Perona-Malik model possesses.

Condition 2 identifies the set of equilibrium points that thediscretized Perona-Malik model does not
exhibit. It is derived that Condition 2 is equivalent to the constraints given by the following Proposition:

Proposition 1 : The conditionΓkl = 0 for all (k, l) ∈ Nij and for all(i, j) is satisfied if and only if:

‖∇̃ui,j‖2 ≥ m ∀(i, j) (19)

‖∇̃uk,l‖2 ≥ m ∀(i, j) and∀(k, l) ∈ Nij . (20)

Proof : By noting that the coefficientΓkl, shown in equation (11), is written as sum of nonnegative
terms, it can be easily obtained thatΓkl = 0 for all (k, l) ∈ Nij and for all (i, j) if and only if:

f p
(
‖∇̃ui,j‖2

)
= 0 ∀(i, j) (21)

f p
(
‖∇̃uk,l‖2

)
= 0 ∀(i, j) and∀(k, l) ∈ Nij . (22)

The conditions above are verified if and only if the argument of the functionf(·) (see equation (7)) is
greater thanm, that is:

‖∇̃ui,j‖2 ≥ m ∀(i, j) (23)

‖∇̃uk,l‖2 ≥ m ∀(i, j) and∀(k, l) ∈ Nij . (24)

Q. E. D.

Note that ifm is chosen in such a way that only one of the above constraints (19), (20) is verified, then
Γkl is always different from zero. This implies that both systems converge toward the only equilibrium
point represented by the average value of the input image.

In order to show the influence ofm on PCNN dynamics, we consider the very simple case of one-
dimensional images composed by N pixels (denoted byui, 1 ≤ i ≤ N). We denote withi = ı a generic
index and define the average value of the left and of the right side of the input imageu0

i (with respect to
index ı) as follows:

〈ul(ı)〉 =
1

ı

ı∑

i=1

u0
i , 〈ur(ı)〉 =

1

N − ı

N∑

i=ı+1

u0
i (25)

The following Proposition holds:

Proposition 2 : Let us consider an input image such that:
(a) u0

1 = ... = u0
ı−1 = u0

ı = 〈ul(ı)〉
(b) u0

ı+1 = u0
ı+2 = ... = u0

N = 〈ur(ı)〉
If |〈ul(ı)〉 − 〈ur(ı)〉| ≥ 2h

√
m, then the input image represents an equilibrium point for the PCNN system

defined by (10). If|〈ul(ı)〉−〈ur(ı)〉| < 2h
√

m, then the input image converges toward an equilibrium point
corresponding to its average value.

Proof : In case of one-dimensional images, PCNN system (10) becomes:

u̇i = Γi−1 (ui−1 − ui) + Γi+1 (ui+1 − ui)
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Owing to input image conditions, it is derived that only the following derivatives might be different
from zero at the initial instantt = 0:

(u̇ı)|t=0 = Γ0
ı+1 (u0

ı+1 − u0
ı ) (26)

(u̇ı+1)|t=0 = Γ0
ı (u0

ı − u0
ı+1) (27)

where the coefficients, defined in (11),Γ0
ı = γ0

ı + γ0
ı+1 andΓ0

ı+1 = γ0
ı+1 + γ0

ı are identical.
The necessary and sufficient conditions in order that(u̇ı)|t=0 and(u̇ı+1)|t=0 be null is that bothγ0

ı and
γ0

ı+1 be zero, that is:

γ0
ı = 0 ⇐⇒

∣∣u0
ı−1 − u0

ı+1

∣∣ ≥ 2h
√

m

γ0
ı+1 = 0 ⇐⇒

∣∣u0
ı − u0

ı+2

∣∣ ≥ 2h
√

m (28)

It turns out that if the above conditions (28) are satisfied, then the input imageu0
i is an equilibrium

point. Since conditions (28) are equivalent to|〈ul(ı)〉 − 〈ur(ı)〉| ≥ 2h
√

m, this proves the first part of the
Proposition.

If |〈ul(ı)〉 − 〈ur(ı)〉| < 2h
√

m, then (26) and (27) are different from zero. In this case it can be readily
shown that the PCNN system described by (26) evolves to a solution given by the average value of the
input image.

Q. E. D.

Remark : Proposition 2 shows that the PCNN model exhibits an infiniteset of equilibrium points
satisfying conditions(a) and (b), in addition to the set of equilibria (corresponding to the average value
of the input image) that also the discretized Perona-Malik model possesses. As a result the two models
are not topologically equivalent. The consequence of this different dynamic behavior is that the output
image of a PCNN model is obtained without stopping the systemevolution after a given time (scale).
This could represent a significant advantage for implementation of image preprocessing algorithms, as
shown in the following example.

Example: Without losing any generality we assume that a Gaussian noise with zero mean value
and unknown variance is added to a given standard image (see Fig. 2). Similar considerations hold by
considering different noise models (e.g. speckle or salt and pepper noise).

The upper and the lower part of Fig. 3 show the dynamic behavior of the Perona-Malik (5) and of the
polynomial CNN model (10) respectively . In particular, a second order approximation of the exponential
diffusivity function is exploited (see equation (4)). The parameterm is set to0.04 and the input gray-
level image (bounded function between[−1, +1], where−1 and+1 correspond to white and black pixels
respectively) with Gaussian noise, is given as initial condition. It is readily verified that the steady-state
output of the Perona-Malik model is the average value of the input image, while the PCNN converges to
an equilibrium point, corresponding to an image, where the noise has been removed.

It is worth remarking that in case of model (5), the correct scale at which the evolution should be
stopped, cannot be accurately estimated because no a-priori information is available for the Gaussian
noise variance.

In order to compare the two processes it is useful to compute the classicalsignal to noise ratiodefined
as:

SNR(t) = 10 Log

∑
i,j(ui,j(t))

2

∑
i,j(u

id
i,j(0) − ui,j(t))2

(29)

whereuid(0) is the original input image without noise andui,j(t) is the processed image. It is well known
that this parameter can be used when the original image is available and the elaboration is performed on
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Fig. 2. Left: Original Image, Right: Image with Noise.

Fig. 3. Top: Perona-Malik model. Bottom: Polynomial CNN. From left to right: Output images at the scalest = 0.1, t = 1, t = 10,
t = 100 and t = 500.

static images. Table I presents the SNR values evaluated at the scales corresponding to the images shown
in Fig. 3.

It is worth observing that the SNR, obtained by using the Perona-Malik model, becomes very low for
large values of the scale because the output image corresponds to the average value of the noisy input
image. On the other hand, by considering the PCNN model, the SNR tends to an higher constant value
for the reason that the output image is one equilibrium pointof the system.

IV. NON-PDE BASED CNN MODELS

The CNN models proposed in Section II are derived from nonlinear PDE based filtering processes.
Recently a novel non-PDE based approach has been proposed (see [12] and [15]), in order to deal with
images corrupted by non-Gaussian noise.

This model is described by the following equation (see [12]):

SNR t = 0.1 t = 1 t = 10 t = 100 t = 500
Perona-Malik model 23.73 23.27 22.07 19.31 11.32

PCNN 23.81 23.00 22.15 20.70 19.35

TABLE I

SIGNAL TO NOISE RATIO EVALUATED AT THE SCALES t = 0.1, t = 1, t = 10, t = 100 AND t = 500 FOR THEPERONA-MALIK AND THE

PCNNMODELS.
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d uij(t)

d t
= Ji,j−1 (ui,j−1 − ui,j) + Ji,j+1 (ui,j+1 − ui,j) +

Ji−1,j (ui−1,j − ui,j) + Ji+1,j (ui+1,j − ui,j) (30)

where the coefficientsJi,j−1, Ji,j+1, Ji−1,j, andJi+1,j represent the local variances defined as:

Ji,j−1 =




∑

l=j+1,|k−i|≤1

(uk,l − ui,j)
2



 (1 − e−
Vij

λ )

Vt

+ 0.25 e−
Vt
λ

Ji,j+1 =




∑

l=j−1,|k−i|≤1

(uk,l − ui,j)
2


 (1 − e−

Vij

λ )

Vt

+ 0.25 e−
Vt
λ

Ji−1,j =




∑

k=i+1,|l−j|≤1

(uk,l − ui,j)
2



 (1 − e−
Vij

λ )

Vt

+ 0.25 e−
Vt
λ (31)

Ji+1,j =




∑

k=i−1,|l−j|≤1

(uk,l − ui,j)
2


 (1 − e−

Vij

λ )

Vt

+ 0.25 e−
Vt
λ

andVij = Ji,j−1 + Ji,j+1 + Ji−1,j + Ji+1,j.
As reported in [12], the model (30) is not very sensitive to the parameterλ for a large range of values.

It is shown in [12] that piecewise linear signals are better reconstructed by non-PDE based models in
presence of heavy noise corruption. The implementation of (30) onto the CNN Universal Chip (see [12])
requires space-variant linear template programming, in order to evaluate the coefficientsJi,j−1, Ji,j+1,
Ji−1,j, andJi+1,j.

It is easily seen that equation (30) can be approximated through the polynomial CNN model (10), by
only exploiting space invariant templates.

In fact, the coefficientsJi,j−1, Ji,j+1, Ji−1,j, andJi+1,j can be estimated as:

Ji,j−1 =




∑

l=j+1,|k−i|≤1

(uk,l − ui,j)
2



 γ1(Vij) + 0.25 γ2(Vij)

Ji,j+1 =




∑

l=j−1,|k−i|≤1

(uk,l − ui,j)
2


 γ1(Vij) + 0.25 γ2(Vij)

Ji−1,j =




∑

k=i+1,|l−j|≤1

(uk,l − ui,j)
2



 γ1(Vij) + 0.25 γ2(Vij) (32)

Ji+1,j =




∑

k=i−1,|l−j|≤1

(uk,l − ui,j)
2


 γ1(Vij) + 0.25 γ2(Vij)

whereγ1(·) andγ2(·) are given by equation (8) andVij has the following expression:

Vij
∼=




∑

|k−i|≤1,|l−j|≤1

(uk,l − ui,j)
2


 . (33)
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Finally, by posingγ1(Vij) = γ2(Vij)/λ andγ2(Vij) = γij, the following nonlinear template, whose structure
is identical for each processing cellcij , is obtained:




0 Γi−1,j 0

Γi,j−1 0 Γi,j+1

0 Γi+1,j 0




(34)

where

Γi,j−1 =








∑

l=j+1,|k−i|≤1

(uk,l − ui,j)
2


 + 0.25 λ





γij

λ

Γi,j+1 =








∑

l=j−1,|k−i|≤1

(uk,l − ui,j)
2



 + 0.25 λ





γij

λ

Γi−1,j =








∑

k=i+1,|l−j|≤1

(uk,l − ui,j)
2



 + 0.25 λ





γij

λ

Γi+1,j =









∑

k=i−1,|l−j|≤1

(uk,l − ui,j)
2


 + 0.25 λ





γij

λ
.

V. CONCLUSIONS

In this study we have proposed a class of CNN models for approximating isotropic (Perona-Malik)
and anisotropic diffusion equations, based on a polynomialapproximation of the diffusivity function.
Such models present the advantage of defining a paradigm of polynomial CNNs, that is also useful for
approximating some non-PDE based models.

The dynamic of the original Perona-Malik model and that of the polynomial CNN have been compared.
It has been shown that polynomial CNNs have more than one stable equilibrium point and for each initial
image, the output image corresponds to one of these equilibria. This property (implying that the Perona-
Malik and the polynomial CNN model are not topologically equivalent) could be exploited for some
image preprocessing tasks.
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