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Abstract

A CNN model of partial differential equations (PDEs) for igeamultiscale analysis is proposed. The model
is based on a polynomial representation of the diffusivitgdtion and defines a paradigm of polynomial CNNs,
for approximating a large class of nonlinear isotropic andinisotropic PDEs. The global dynamics of space-
discrete polynomial CNN models is analyzed and comparet thie dynamic behavior of the corresponding
space-continuous PDE models. It is shown that in the is@trcgse the two models are not topologically equivalent:
in particular discrete CNN models allow one to obtain thepatiimage without stopping the image evolution after
a given time (scale). This property represents an advantdiiperespect to continuous PDE models and could
simplify some image preprocessing algorithms.

Index Terms

. INTRODUCTION

Partial Differential Equation (PDE) based models have shtwbe useful for image preprocessing
(multiscale analysis) [1], [2], [3], [4]. They can be cldgsil in three main categories: a) linear isotropic
filters; b) nonlinear isotropic filters; ¢) nonlinear anisgic filters. Linear isotropic filtering (heat equation)
was proved to be the only linear model that satisfies all thiiseale analysis requirements [2]. However
it presents the disadvantage of blurring important featuneimage processing, like edges. Nonlinear
isotropic filters (in particular the Perona-Malik filter }Sjere introduced for overcoming the limitations
of linear models and are based on the idea of adapting thesdliffy to the gradient of the evolving image.
They do not exhibit good performances in images containmgyredges and coherent flow-like structures.
In such cases they can be replaced by anisotropic modelthHt]have found significant applications in
medical imaging and computer-aided quality control [1]eTiain drawback of PDE based techniques
is that from a computational point of view they are rathereioonsuming and therefore they are not
suitable for real-time image processing.

In parallel with the mathematical studies on the applicatd nonlinear PDEs to image processing, in
the electrical engineering community a new paradigm of alenetwork, called cellular neural network
(CNN) ([6], [7], [8], [9]), was introduced and shown to be alib solve several complex computational
problems.

As far as the applications are concerned, the implementatfoPDE-based algorithms onto CNNs
allows one to afford real-time image processing [10]. Frommeoretical point of view, the relationship
between PDE and CNN dynamics has been investigated in $@agars. In [11] it was shown that, in
general, CNN dynamics represents a broader class than PDEs.

In this manuscript a CNN model of partial differential eqoas for image multiscale analysis is
proposed. The model is based on a polynomial representafidine diffusivity function and defines a
paradigm of polynomial CNNs, which approximates a largesslaf nonlinear isotropic and anisotropic
PDEs, and also some non-PDE models [12]. The global dynaoficpace-discrete polynomial CNN
models is analyzed and compared with the dynamic behavitireoforresponding space-continuous PDE



models. It is shown that in the isotropic case the two modesat topologically equivalent: in particular

discrete CNN models allow one to obtain the output image authstopping the image evolution after

a given time (scale). This property represents an advameéferespect to continuous PDE models and
could simplify some image preprocessing algorithms.

[I. PDE BASED CNN MODELS

According to [1], [2], a gray-level image is defined as a realifded functionug(z,y) : R*> — R,
whereuy(z, y) denotes the gray level value at the pofmty). Introducing an artificial time, an image
u(t, x,y) is assumed to evolve, according to a PDE of the form:

ou(t,z,y)
o - F lu(t,z,y)]

U(O,Ji,y) = Uo(l’,y) (1)

where F : R — R is an operator that typically depends on the image and onris dnd second
order space derivatives and characterizes the given Higuri,(z,y) represents the initial condition.
Hereinafter we assume that each image x,y) exhibits Neumann type space boundary conditions.

The solution of equation (1), denoted By(uo(x,y)) = u(t,z,y), represents the processed image at
the scale (time}. As shown in [2], the sequence of imageg, =, y), that is the images generated from
uo(x,y) by the operatorl;(-), performs a multiscale analysis satisfying some selectsiclprinciples
(called axioms in [2]).

A. Isotropic diffusion based CNN models

It is well known that the simplest multiscale analysis isaded by using linear isotropic diffusion,
i.e. by exploiting the following PDEheat equatiojh

ou , Pu  O%*u
E—dw[VU]—@+a—y2. 2)

To overcome the drawbacks of linear diffusion, Perona andikM8&] proposed the following PDE
describing a nonlinear isotropic diffusion:

Ju ,

= = div [g(IVul*) V] 3)
where the original image.(0, z,y) = wuo(z,y) is used as initial conditionV« and ||Vu|| denote the
image gradient and its magnitude respectively atd represents the diffusivity function. The following

diffusivity functions were proposed by Perona and Malik [5]
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wherek is a scalar parameter.

Finite difference approximations of Perona-Malik equat{8) have been investigated in several papers
([1], [13], and [14]).

Let us suppose that the continuous space domain is compgs&d<b)/ points arranged on a regular
grid and let us denote the position of a point with two indexeg); u;; represents the pixel value,
obtained by sampling the imaget, =, y) at the point(z;,y;) = (h ¢, h j), whereh is the grid size. It
turns out that among the many approaches for solving PDIesfinite difference method is the most
suited to obtain a system of coupled ordinary differentgiaions, that can be mapped onto a CNN
structure.

g(IvulP?) = (Y g(vul?) =




f(2)
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Fig. 1. Basis functionf(z) for m = 5.

By using a finite difference approximation, a consistentidesorete version of the Perona-Malik model
(3) can be written as [1]I(<i < N and1 < j < M):

d UZ + )
J Z gkl g J U”) (5)

(KL)EN;;

where N;; = {(i —1,7),(¢ +1,7),(¢,j — 1), (¢, + 1)} and g, andg,;; are evaluated by approximating
the image gradient through the central difference arouedptbints(zy, y;) and (z;, y;) respectively. As
an exampleg,-j = g(||Vuw||2) with

2 2
=~ 9 Uit1,5 — Wi-1j Ugj+1 — Wi -1
Gy || = ( Yirhs ~ izt Gig ~ i) 6

In order to implement (5) in a general feasible polynomial NCldrchitecture, let us consider the
following basis function (see Fig. 1):

1 /12 z
f<Z>=1—‘§<a+1\—\a—1D )
and let us approximate thg-) functions (4) with the following expression:
Q
9(2) =(2) =) epf?(2) (8)
p=1

It is worth observing thatf(z) is different from zero only on the finite domain € (—m,m); this
allows us to control the nonlinear diffusion process acewydo the thresholdn. Hence, this property is
also valid forv(z).

The parametefn depends on the admissible er@betweeng(-) and~(-) at the pointz = m. This
allows us to rewritem asm = k? 6(¢), whered(e) = —1In(e) or §(¢) = ((e)~* — 1) for the functions
reported in (4).

The parameters,, ..., cg, @ andm are chosen in such a way thatz) interpolatesy(z) in a set of
@ uniform spaced points within the interval-m,m]. It follows that v(z) and g(z) exhibit the same
properties, i.ey(z) is constrained to be a positive and bounded functibs (y(z) < 1); these conditions
ensure that:

Q
9 = v = ef ([ Vui*) 9)

p=1



By replacingg;; and gy, in (5) with the approximate expressions; and v, we obtain a general,
nonlinear PDE based, polynomial CNN model (PCNNSs):

TJ;) = Z Fkl (ukl — uij) (10)
(K)EN;;
wherel';; is reported below
Q . B B
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Cu=3 5 7 (19ueal) + 17 (1Vu)12) | (11)
and defines the following nonlinear template, whose strecisi identical for each processing cell:
0 Tiy; O
Fi,j—l 0 Fz’,j+1 (12)
0 Ty O

B. Anisotropic diffusion based CNN models

In nonlinear isotropic filters, the diffusion process onkpeénds on the gradient magnitude. In certain
applications [1] better performances are achieved if thiiglvity is not identical in all the directions.
This requirement can be fulfilled, by introducing a suitathifusion matrix, that changes the orientation
of the gradient.

In [1] the following anisotropic PDE equation was proposed:

ou ,
% div [D Vul] (13)

where D is a positive definite x 2 matrix, depending on the gradient. It is easily derived timear and
nonlinear isotropic diffusion can be obtained with = I and D = ¢(||Vul||*)I respectively (wherel
denotes the identity matrix).

Usually, the matrixD € R?*? is chosen to be a function 6fu (see [1]):

D = SA(||Vul)S" (14)

where A(||Vul|) = diag(A\(||Vul]), \2(||Vu]])) is a diagonal matrix containing the eigenvaluas X,
and S is a2 x 2 matrix whose rows are the two corresponding eigenveatgr®s.

The main drawback of isotropic models (like Perona-Malikssthat they might be not robust in presence
of noise. In order to remove the noise at the edges it is nape$s rotate the flux according to the edge
direction, in order to allow the diffusion along the edgesl 4o prevent it perpendicularly. This can be
obtained by choosing the matricésand A reported below:

o ou
| 9z Oy _( g(IVul*) ©
S — o ou A_< ) X (15)
dy ox

that give rise to the following matrixD

o= (e ) ®



az.y) = g(IVul?) (%)* (g_y)

o) = [o(IValP?) ~1] 5o 5 a7

) = a(%e) (2) (2

A standard space discretization scheme for equation (I8&nvwhe matrixD shown in (16) is exploited,
allows one to obtain the following semi-discrete model:

d uij (t)

T Z U (wgr — wij) (18)

(kl)ENij

where, the parametenrs,; (with (k) € N,-j = {(k,)) # (4,5) : [k—i <1 A\ |l —j| <£1}) define the
following nonlinear template, whose structure is ideritfoa each processing cell, j):

bic1j+bij-1 oy +ai; —(bic; +biji)
Cijj—1 7+ Cij 0 Cijj+1+ Cij
—(bir1y +bij—1) it +ai; by +biin

In the above expression, ;, b;; and c; ;, represent the polynomial approximation of the functions
a(z,y), b(z,y) andc(z, y) respectively, according to the following expressions:

2 2
Uit1,j — Ui—15 Wij+1 — Uij—1
N R Gy
WUit1,j — Wi-1 Wij+1 — Uij-1
bi,j = (f}/l,j - 1) ( J2 h J) ( ’ 2h ’ )

2 2
1,7 - 2y 2h 2h *

where~, ; is given by (9).

IIl. COMPARISON BETWEENPERONA-MALIK AND POLYNOMIAL CNN MODELS

Dynamical properties of Perona-Malik based filters (5) amamarized in [1] and [14]. It is well-known
that system (5) converges toward a constant steady statBosplrepresenting the average value of the
initial image, because;; and g, are always different from zero. In order to obtain a non &liautput
image, the system evolution has to be stopped after a finie usually called scale). In the most general
case, the scale depends on the objects and on the chataxdesisthe input image, and hence there is
no a priori known time for stopping image processing.

This problem can be overcome, by approximating the funstigh), reported in equation (4)), (that
are different from zero in the whole domain) with the expi@ss(-) given by (8), that is different from
zero for|z| = || Vu,||* < m (see Section II). This presents the advantage of stoppmegublution of the
image when the approximated gradient magnitlj§e., ;||* (for all (i, j)) is greater than the threshold
m. As consequence, the output image exhibits a segmentextsu

The above behavior is possible because the set of equitibpioints of a PCNN system (10) is larger
than that of the discretized Perona-Malik model. Such dajuiim points should satisfy at least one of
the following two conditions:

1) u;j = uy for all (k,1) € N;; and for all (4, j)



2) 'y, =0 for all (k,1) € N;; and for all (4, j)

Condition 1 identifies those equilibrium points, that alse tiscretized Perona-Malik model possesses.
Condition 2 identifies the set of equilibrium points that ttiiscretized Perona-Malik model does not
exhibit. It is derived that Condition 2 is equivalent to thenstraints given by the following Proposition:

Proposition 1 : The condition’;;, = 0 for all (k,[) € N;; and for all(7, j) is satisfied if and only if:

[Vui ;|2 >m  Y(,7) (19)
[Vuea|? > m (i, j) andV(k,1) € N;;. (20)

Proof: By noting that the coefficient'y;, shown in equation (11), is written as sum of nonnegative
terms, it can be easily obtained thay, = 0 for all (k,1) € N;; and for all (7, j) if and only if:

7 (Vi) =0 ¥(i. ) (21)

17 (IVugdl2) =0 V(. j) andv(k, 1) € Ny (22)

The conditions above are verified if and only if the argumethe function f(-) (see equation (7)) is
greater thann, that is:

IVui |> = m V(. j) (23)
IVug||> > m V(i) andV(k,1) € (24)
Q.E.D.

Note that ifm is chosen in such a way that only one of the above constrdifis (20) is verified, then
Iy, is always different from zero. This implies that both systeoonverge toward the only equilibrium
point represented by the average value of the input image.

In order to show the influence ofi on PCNN dynamics, we consider the very simple case of one-
dimensional images composed by N pixels (denotedihy < i < N). We denote withi =7 a generic
index and define the average value of the left and of the riiglet of the input image:? (with respect to
index7) as follows:

ul(z - Zuz 3 ur(z - 3 Z (25)

The following Proposition holds:

Proposition 2 : Let us consider an input image such that:

(@ u)= ... =ud | =ul = ()

(0) i =wp= ... = u?v (ur@)

If |(w@) — (ur@)| > 2hy/m, then the input image represents an equilibrium point ferRCNN system
defined by (10). () — (ur@))| < 2h+y/m, then the input image converges toward an equilibrium point
corresponding to its average value.

Proof: In case of one-dimensional images, PCNN system (10) bezome

Ui =T (wio1 — ) + T (Ui — w)



Owing to input image conditions, it is derived that only tre@ldwing derivatives might be different
from zero at the initial instant = 0:

(ui)hﬁ:o = Fio-i-l (ug—H - uzg) (26)

(ui+1)|t:0 = 17 (up — U70+1) (27)
where the coefficients, defined in (11} = 2 +2,, andI¥ , =2, + 2 are identical.

P

The necessary and sufficient conditions in order thiat,_, and (u:+1),,_, be null is that both? and
7., be zero, that is:

W o=0 <= |u4—uiy|>2hv/m
Vo =0 = |u—ul,| >2hv/m (28)

It turns out that if the above conditions (28) are satisfibéntthe input image! is an equilibrium
point. Since conditions (28) are equivalent|ta,s) — (u,@)| > 2hy/m, this proves the first part of the
Proposition.

If |[{w@) — (ur@)| < 2hy/m, then (26) and (27) are different from zero. In this case it ba readily
shown that the PCNN system described by (26) evolves to disolgiven by the average value of the
input image.

Q.E.D.

Remark: Proposition 2 shows that the PCNN model exhibits an infisge of equilibrium points
satisfying conditionga) and (b), in addition to the set of equilibria (corresponding to tiverage value
of the input image) that also the discretized Perona-Malddeh possesses. As a result the two models
are not topologically equivalent. The consequence of tifferdnt dynamic behavior is that the output
image of a PCNN model is obtained without stopping the systepiution after a given time (scale).
This could represent a significant advantage for implentiemtaf image preprocessing algorithms, as
shown in the following example.

Ezxzample: Without losing any generality we assume that a Gaussiasenwith zero mean value
and unknown variance is added to a given standard image {ge)F Similar considerations hold by
considering different noise models (e.g. speckle or salt@@pper noise).

The upper and the lower part of Fig. 3 show the dynamic behafithe Perona-Malik (5) and of the
polynomial CNN model (10) respectively . In particular, @@ed order approximation of the exponential
diffusivity function is exploited (see equation (4)). Tharameterm is set t00.04 and the input gray-
level image (bounded function betwepnl, +1], where—1 and+1 correspond to white and black pixels
respectively) with Gaussian noise, is given as initial ¢ood. It is readily verified that the steady-state
output of the Perona-Malik model is the average value of tipait image, while the PCNN converges to
an equilibrium point, corresponding to an image, where thisenhas been removed.

It is worth remarking that in case of model (5), the corredlsct which the evolution should be
stopped, cannot be accurately estimated because no a-4pfammation is available for the Gaussian
noise variance.

In order to compare the two processes it is useful to compelassicasignal to noise ratiadefined
as:

> (i (t))?
0 (Ui (0) — ;i 5(1))?

whereu'?(0) is the original input image without noise ang;(t) is the processed image. It is well known
that this parameter can be used when the original image ilableaand the elaboration is performed on

SNR(t) =10 Log (29)
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Fig. 2. Left: Original Image, Right: Image with Noise.

Fig. 3. Top: Perona-Malik model. Bottom: Polynomial CNN.oFRr left to right: Output images at the scales= 0.1, t = 1, t = 10,
t =100 andt¢ = 500.

static images. Table | presents the SNR values evaluatdu aichles corresponding to the images shown
in Fig. 3.

It is worth observing that the SNR, obtained by using the Radalik model, becomes very low for
large values of the scale because the output image corr@spgonthe average value of the noisy input
image. On the other hand, by considering the PCNN model, MR ®nds to an higher constant value
for the reason that the output image is one equilibrium pofrihe system.

IV. NON-PDE BASED CNN MODELS

The CNN models proposed in Section Il are derived from ne@ainPDE based filtering processes.
Recently a novel non-PDE based approach has been prop@&efllgg and [15]), in order to deal with
images corrupted by non-Gaussian noise.

This model is described by the following equation (see [12])

SNR t=01|t=1|t=10 | t=100 | t =500
Perona-Malik model| 23.73 23.27 | 22.07 19.31 11.32
PCNN 23.81 23.00 22.15 20.70 19.35
TABLE |

SIGNAL TO NOISE RATIO EVALUATED AT THE SCALESt = 0.1,¢ = 1,¢ = 10, t = 100 AND ¢t = 500 FOR THEPERONA-MALIK AND THE
PCNNMODELS.



11 = Jij-1 (Wig—1 — uig) + Jijpr (Wiger — uij) +

Jicrj (Wic1y — wig) + Jiv1y (i j — uij) (30)

where the coefficients; ;_1, J; j+1, Ji—1,;, andJ;1, ; represent the local variances defined as:

_Yij

Ji,j—l = Z (ukJ — ui,j)2 M + 025 6_%
I=j+1,[k—i|<1 Vi
- - L

Jijr1 = Z (upy — uij)° (1‘/;@ +0.25 ¢
I=j—1,|k—i|<1 t
- - _ﬁ

Ji1;= Z (upy — uij)° w +0.25 % (31)
k=it1,|l—j]<1 t
- - 1 _ﬁ

Jiv1; = Z (s — i g)? ( ‘i ) +0.25 e
| h=i—1,]1-j|<1 | t

andVi; = Jijo1 + Jiji + Jicry + Jiva e

As reported in [12], the model (30) is not very sensitive te farameten for a large range of values.
It is shown in [12] that piecewise linear signals are betmonstructed by non-PDE based models in
presence of heavy noise corruption. The implementatior3@f ¢nto the CNN Universal Chip (see [12])
requires space-variant linear template programming, deoto evaluate the coefficient§ ;_,, J; ;1.
Ji—1j, and Jigq ;.

It is easily seen that equation (30) can be approximatedigiiraghe polynomial CNN model (10), by
only exploiting space invariant templates.

In fact, the coefficients/; ;_1, J; j+1, Ji—1,;, andJ;41; can be estimated as:

Jij-1= D (k= i) | (Vi) +0.25 (Vi)
| 1=j+1, k=il <1 |
Jij+1 = Do (=) | (Vi) +0.259(Vy)
| 1=5-1,|k—i<1 |
Jic1; = Z (Upy — ui,j)2 11 (Vi) +0.25 v2(Vi5) (32)
| k=it ji—j|<1 |
Jig1j = Z (uks — uij)® | 1(Vij) + 0.25 72(Vi))
k=i Li—jl<1

where,(-) and~,(-) are given by equation (8) and; has the following expression:

Vij = Z (urg — ui,j)2 : (33)

|k—i|<1,]i—j|<1
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Finally, by posingy: (V;;) = 12(Vi;)/A andy.(V;;) = 7,5, the following nonlinear template, whose structure
is identical for each processing cell;, is obtained:

0 Tiy; O

0 Ty O

where

Lij1 = Z (U —uij)? | +0.25 A

I=j+1,|k—i|<1

Ty, = > (urg—uig)? | 025\

k=i+1,]l—j|<1

Pijyn = { > (uki—uiy)’ | +0.25 )\} %

Fi—i—l,j = Z (ukJ — um)z +0.25 A h

k:i_L‘l_.ﬂSl

V. CONCLUSIONS

In this study we have proposed a class of CNN models for appiting isotropic (Perona-Malik)
and anisotropic diffusion equations, based on a polynowrpgroximation of the diffusivity function.
Such models present the advantage of defining a paradigmlyfigpuial CNNs, that is also useful for
approximating some non-PDE based models.

The dynamic of the original Perona-Malik model and that & plolynomial CNN have been compared.
It has been shown that polynomial CNNs have more than onéestaglilibrium point and for each initial
image, the output image corresponds to one of these eqailibhnis property (implying that the Perona-
Malik and the polynomial CNN model are not topologically aglent) could be exploited for some
image preprocessing tasks.
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