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Abstract

This paper proposes a new state transfer method for geographic state machine replica-
tion (SMR) that dynamically allocates the state to be transferred among replicas according
to changes in communication bandwidths. SMR improves fault tolerance by replicating a
service to multiple replicas. When a replica is newly added or recovered from a failure,
the other replicas transfer the current state of the service to it. However, in geographic
SMR, the communication bandwidths of replicas are different and constantly changing.
Therefore, existing state transfer methods cannot fully utilize the available bandwidth,
and their state transfer time increases. To overcome this problem, our method divides the
state into multiple chunks and assigns them to replicas based on each replica’s bandwidth
so that the broader a replica’s bandwidth is, the more chunks it transfers. The proposed
method also updates the chunk assignment of each replica dynamically based on the cur-
rently estimated bandwidth. The performance evaluation on Amazon EC2 shows that the
proposed method reduces the state transfer time by up to 47% compared to the existing
one. In addition, we apply the proposed method to dynamic replacement of replicas,
which can mitigate latency degradation caused by network trouble, and evaluate how fast
the method can relocate a replica.

1 Introduction

State Machine Replication (SMR) [34, [13] is a method that improves the fault tolerance of a
service. SMR replicates a service to multiple servers, called replicas, which agree on the order
of request processing among them to maintain the same state of each replica. This method
allows replicas to continue the service even if some of them fail, and several SMR protocols
have been proposed in previous studies [5] 6] [7, 19, 2], 22, [26], 28, 27, 32, [35]. Furthermore,
performing SMR with multiple geographically separated replicas allows the service to resist
large-scale disasters, such as earthquakes. Such a method is called geographic SMRI2, [3], 10,
(1), 14} 16}, 15, 18], 17, 24} 25} 29, (30, 36, 138}, 139, 40].

In SMR, a replica that is newly added to replication or is recovered from faults is called
a recovery replica and retrieves the latest state of the service from the others, called transfer
replicas, to keep its state the same as that of the others. This process, called state transfer, is
important because we cannot avoid faults of replicas in a long-run replication, and this process
allows SMR to handle such faults without stopping the entire system. Schneider introduced a
basic state transfer method in which a recovery replica obtains the whole state from a single
transfer replica [34]. After that, Bessani et al. proposed the Collaborative State Transfer (CST)
protocol [4], which can mitigate the decrease in the request processing performance during a
state transfer. In this method, each transfer replica sends an equally sized part of the current
state to a recovery replica to reduce the state transfer time. These existing state transfer

*A preliminary version of this paper appeared in the ninth International Symposium proceedings on Com-
puting and Networking (CANDAR 2021) [9].
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Figure 1: Time variation of communication bandwidth in Amazon EC2 regions.

methods assume that replicas are deployed in the same data center, where the replicas are
connected through a high-speed and stable LAN.

In contrast, in geographic SMR, replicas communicate with each other over WAN, so the
characteristics of the communication environment are different from those of conventional SMR.
Figure shows the change in the communication bandwidth over seven days (Fig. is from
April 26 to May 3, 2021, and Fig. is from June 1 to June 8, 2021) among Amazon EC2
regions commonly used in geographic SMR. The communication bandwidth was measured
hourly using iperf 3.1.Eﬂ We deployed two groups of replicas, called Worldwide Group
and European Group, into regions, as depicted in Fig. The Worldwide Group deploys
replicas in four different continents: North Virginia, Ireland, Sao Paulo, and Sydney, while the
FEuropean Group deploys replicas in European regions: London, Frankfurt, Ireland, and Paris.
In Worldwide Group (Fig. , the communication bandwidth differs considerably among
the replicas. The degree of change in the communication bandwidth varies from region to
region, with little changes in Sao Paulo and large changes in Ireland. In contrast, in European
Group(Fig. , the difference in the average communication bandwidth among replicas is
small but changes are very large for all regions. Thus, in a geographic SMR, since the available
communication bandwidth differs for each replica and changes frequently and largely, the
existing state transfer methods cannot transfer the state efficiently.

In this paper, we propose a state transfer method that adapts to network bandwidth vari-
ations in geographic SMR. The proposed method has the following features:

Chunk division and bandwidth-based allocation: The proposed method divides the
replicated service state into several small chunks and changes the number of chunks allocated to
a replica so that a replica with a broader communication bandwidth transfers more chunks than
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Figure 2: Geographic location of replicas in each group.
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Figure 3: An example of state transfer with the proposed method.

others. Ideally, the state should be strictly divided based on communication bandwidths, but
for this purpose, a recovery replica needs to know the current state size in advance. However,
since geographic SMR generally has high communication delays [37], increasing the number of
communications will increase the state transfer time and complicate the state transfer process.
Therefore, the proposed method divides the whole state into small N chunks, where NN is the
predefined value, and a recovery replica requests, as a partial state, m chunks so that m is
close to the ratio of the communication bandwidth between each replica.

Figure |3 shows an example of state transfer with the proposed method. In Fig. 3] three
transfer replicas, A, B, and C, transfer chunks to the recovery replica. Replicas A and C have
the broadest and narrowest bandwidths to the recovery replica, respectively. The recovery
replica estimates the communication bandwidth with each replica and requests the number
of chunks close to the ratio of their communication bandwidths (e.g., 18 chunks to replica A
and 3 chunks to replica C). The transfer replicas divide the state into chunks and transfer the
chunks requested by the recovery replica.

Updating allocated chunks according to changes in the communication band-
width: In the proposed method, a recovery replica always measures the communication band-
width with each replica based on the SMR message reception speed. Since this measurement
is passive, there is no overhead. When the ratio of the communication bandwidth between
replicas changes, the recovery replica periodically reallocates the chunks based on the new
ratio to adapt to dynamic changes in the communication bandwidth.

Per-chunk hashing and efficient integrity verification: When a recovery replica
receives a service state, it needs to verify the correctness of the state to avoid applying a false
state from a malicious replica. The proposed method efficiently verifies the integrity of the
received state by assigning and verifying the integrity per chunk.

For evaluation of the proposed method, we first show the superiority of the proposed method
in geographic SMR analytically. In the analysis, we use the variation in the bandwidth between
each replica and the estimation error in bandwidth estimation of the proposed method as vari-
ables and formulate the state transfer times of the proposed and existing methods. Assuming
that the average bandwidth between replicas is 100 Mbps, even if the standard deviation of the
bandwidth is 20 Mbps or more and the estimation error is approximately 10%, the proposed
method is faster than existing methods.

We also show that the proposed method reduces the state transfer time of geographic SMR,
experimentally. We build a geographic SMR system on Amazon EC2 and measure the state
transfer time of the proposed method and existing methods. The experimental results show
that the proposed method can reduce the state transfer time by up to 47% compared to the
CST protocol in the environment with a large difference (Worldwide Group) and large changes
(European Group) in the communication bandwidth.

Moreover, we examine the dynamic replacement of replicas using the proposed state transfer
method. In geographic SMR, the latency between replicas varies depending on the geographic
location of the replicas and, as a result, the latency of requests also varies [31}, [36]. In addtion,
the latency between the same replicas is not constant and varies over time [3I]. These vari-
ations are caused by network congestion and changes in routing paths, which exacerbate the



request latency. Dynamic replica replacement prevents exacerbation of the request latency due
to latency changes between replicas by dynamically moving replicas during replication. How-
ever, dynamic replica replacement in geographic SMR has not been attempted so far, because
replica replacement requires state transfer processing, which is considered time-consuming in
geographic SMR|[36]. In contrast, our proposed method can shorten the state transfer time in
geographic SMR. Because the proposed method is also expected to enhance the practicality of
dynamic replica replacement, we examine this practicality using the proposed method.

The remainder of this paper is organized as follows. Section [2] describes SMR and existing
state transfer methods. Section [3] proposes the state transfer method that adapts to network
bandwidth variations in geographic SMR. Section [ theoretically analyzes the state transfer
times of the proposed method and existing ones. Section [5] shows the performance evaluation
results using a geographic SMR system built on Amazon EC2. Section [f]verifies the practicality
of the dynamic replica replacement using the proposed method. Section [7]concludes the paper.

2 Related work

2.1 State Machine Replication (SMR)

State Machine Replication (SMR) [34] [I3] is a method of replicating a service to multiple servers
(replicas) and processing requests in the same order to keep the replicas in the same state; as
a result, the fault tolerance of the service can be improved. Although SMR requires that all
replicas receive requests in the same order, the communication delay between the replicas is
different in the actual network. Even if a client sends a request to all replicas simultaneously,
the request arrival time differs among the replicas. In such a case, a distributed protocol, called
Total Order Broadcast or Atomic Broadcast [I2], can ensure that each message is delivered
to all participants in a group in the same order. We can realize SMR by using Total Order
Broadcast to deliver requests to replicas.

Most SMR protocols [B] [6] [7, 19, 21 22} [32] [35] elect one leader among the replicas, which
determines the processing order of requests and distributes the decision to other replicas. Even
if the leader fails, the replicas must not process the requests in a different order. To meet this
requirement, the replicas agree with the processing order [23]. The difficulty of agreement with
faulty replicas varies depending on an assumed failure model, and the number of necessary
replicas for agreement also changes. Hereafter, we denote the total number of replicas and the
upper bound of faulty replicas by n and f, respectively.

According to their target failure model, we can classify SMR protocols into Crash Fault-
Tolerant SMR, (CFT-SMR) and Byzantine Fault-Tolerant SMR, (BFT-SMR). CEFT-SMR resists
crash faults in which a faulty replica does not operate at all after the failure, while BFT-SMR
resists Byzantine fault [23], in which a faulty replica behaves arbitrarily without following the
protocol after the failure. There are several protocols for CFT-SMR, such as Paxos [22], Raft
[32], and ZAB [19], as well as for BFT-SMR, such as PBFT [0], Zyzzyva [2]], and BFT-SMaRt
[35]. CFT-SMR and BFT-SMR protocols require n > 2f + 1 [22, 8] and n > 3f + 1 [23],
respectively.

2.2 Geographic SMR

Geographic SMR places replicas at a large distance from each other and tolerates large-scale
disasters, such as earthquakes. Since geographic SMR exhibits different characteristics from
conventional SMR, there are various SMR, protocols specialized for geographic SMR [2] [3]
10, 011, 14, 0o, I5, 08, I7, 24, 25, 29, B0, 36l B8, B9, 40]. The most significant difference
between SMR in a data center and geographic SMR is the inequality of latency and throughput
between replicas and clients. In geographic SMR, latency (communication delay) [31} B6] and
throughput (Fig. [1)) between replicas differ greatly from replica to replica. However, since the
SMR protocols designed for a data center assume that messages arrive at almost the same
time on all replicas, these SMR protocols cannot demonstrate their original performance in
geographic SMR. Therefore, many SMR protocols designed for geographic SMR [25] 40 [36],
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3, 241 [14, 10} [30} 11 B9, [15] 18, [17] assume different latencies and use various techniques to
overcome this difference.

WHEAT [36] solves this problem and shortens the time required for consensus by adding
extra replicas to the system and changing the voting weight in the consensus process for each
replica. AWARE [3] responds to changes in the network environment by dynamically changing
the voting weight and location of the leader in the consensus. Steward [2], Weave [16], and
Geo-Raft [38] build SMRs hierarchically in two layers, inside each data center and between the
data centers. This reduces communication over a slow WAN, and, as a result, these protocols
can reduce latency. As explained in Sect. many SMR protocols require a leader to order
the requests, in which replicas must forward the requests to the leader. Since this transfer
adversely affects latency, geographic SMR often uses leaderless protocols [I5], [I8, I7]. In a
leaderless protocol, any replica can determine the processing order of requests by coordinating
with other replicas. The features and limitations of leaderless SMR protocols were investigated
by Rezende et al. [33]. In geographic SMR, the processing performance of replicas (e.g., CPU
and memory) might not be uniform. Even if they are the same, they might not be able to
achieve their original performance due to network failures or load congestion. In this case, the
slow replica becomes the bottleneck, and the service latency increases. To avoid this, there
are protocols that distribute SMR functions to replicas to balance loads [40, 30, [38]. There is
also a method to find the best replica deployment based on the latency between replicas and
clients [31].

The proposed state transfer method targets geographic SMR and can be used in combi-
nation with various geographic SMR protocols, such as WHEAT and AWARE. This method
supports both CFT-SMR and BFT-SMR.

In Sect. [6] we apply the proposed method to dynamic replica replacement, which improves
service latency by moving a replica to another location. This replacement can be used comple-
mentarily with geographic SMR protocols in situations where it is difficult to improve latency
with an adaptive function, such as AWARE [3] or where we want to place replicas based on
the suggestion obtained by the method by Numakura et al. [31] during replication.

2.3 State Transfer of SMR

In SMR, to restore the failed replica to replication as a normal replica again, the replica
transfers the latest state to the failed replica [34]. This cooperation is called state transfer and
we explain two major state transfer methods here.

The most basic state transfer method is one in which a single replica transfers the entire
state to the failed replica. This method was introduced by Schneider [34] and adopted by
various SMR protocols, such as PBFT [6, [7]. Hereafter, we call this method PBFT state
transfer. An example of PBFT state transfer is shown in Fig. [ In PBFT state transfer,
a state consist of two types of data: checkpoint and log. The checkpoint is a replica of the
current service status and acquired periodically, and the log is a list of requests executed after
the latest checkpoint is acquired. The checkpoint and log are transferred simultaneously; thus,
in the explanation of PBFT state transfer, we just call them a state.

We now explain the flow of PBFT state transfer. First, the recovery replica sends a request
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Figure 5: State transfer of CST protocol.

to transfer the latest state to one of the replicas, called transfer replica, and the transfer replica
transfers its entire state to the recovery replica. In the case of BFT-SMR, the transfer replica
might be Byzantine fault and transfer an incorrect state. To prevent this, the recovery replica
requests the hash value of the entire state from replicas other than the transfer replica. The
recovery replica uses these hash values to verify the integrity of the received state as follows.
First, the recovery replica compares the received hashes with the hash h calculated from the
state received from the transfer replica. If the recovery replica receives the hashes that match
h from f 4 1 or more replicas, the recovery replica decides that the replicas include at least
one non-faulty replica and concludes that the received state is correct.

When the recovery replica receives the state from the transfer replica and the hash verifica-
tion is successful (in the case of BFT-SMR), the recovery replica applies the state to itself and
completes the state transfer. If the transfer replica does not transfer a state or the hash verifi-
cation fails (in the case of BFT-SMR), the recovery replica again requests the status transfer
from a replica other than the current transfer replica.

PBFT state transfer is performed by only two replicas (one recovery replica and one transfer
replica). Therefore, when a client sends a request to a service on SMR during a state transfer,
the replicas that are not involved in the state transfer maintain their normal processing per-
formance. In contrast, the recovery replicas and transfer replica must devote their processing
power to both state transfer and request processing. Therefore, the processing performance of
the service on SMR decreases during the status transfer [4].

In order to alleviate the degrading processing performance of a service during a state trans-
fer, Bessani et al. proposed a fast state transfer method, called Collaborative State Transfer
(CST) protocol [4]. This method shortens the transfer time by dividing a state into multiple
sub-states (checkpoints and logs) and transferring them from multiple replicas cooperatively.
Figure [5] shows an example of state transfer using the CST protocol.

In the CST protocol, the recovery replica requires state transfer to all other replicas with
the latest state (replicas A, B, and C in Fig. . When a state is requested, one transfer replica
transfers the entire checkpoint, while the other transfer replicas send an equally-divided part
of a log simultaneously. Figure[p|assumes the case in which the checkpoint and equally divided
log have the same size. In the case of BFT-SMR, to verify the integrity of the received state,
the transfer replicas also send the hashes of the checkpoint and the divided log. If the recovery
replica receives a checkpoint and all divided logs and succeeds in the hash verification (in the
case of BFT-SMR), it applies the state to itself and completes the state transfer.

3 Proposed Method

Here, we describe the proposed state transfer method. We present the overview of this method
in Sect. and the details in Sect. Finally, we prove the correctness of this method in
Sect. 3.3
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3.1 Overview

Figure [6] shows the overview of the proposed method. The proposed method internally repre-
sents the service state by the checkpoint and the log as in the CST protocol, but during a state
transfer, the state is represented as the binary data obtained by combining them. Furthermore,
the state is divided into N chunks of the same size and transferred in these units. In this way,
the amounts of data transferred by each replica can be easily adjusted.

A recovery replica assigns N chunks to the transfer replicas at the start of the state transfer
and requests the transfer of the chunks from them. When a transfer replica receives the chunk
transfer request, it divides the checkpoint and the log into chunks. The transfer replica then
sends the chunks and their hashes, which can be used to verify the integrity of the chunks, to
the recovery replica.

When the recovery replica receives a chunk from the transfer replica, it calculates a hash
of the received chunk and compares the hash it calculated with the hash it received from the
transfer replica to exclude the fake chunk sent by a Byzantine replica. This verification proceeds
in parallel with the sending and receiving processes for the state transfer. This reduces the
state transfer time and enables early detection of fake chunks and their re-request.

The recovery replica always records the reception rate of chunks from each transfer replica
during a state transfer and estimates the communication bandwidth based on the rate. Based
on the estimated bandwidth, the recovery replica adjusts the chunk allocation of the transfer
replicas such that the replica with a broader communication bandwidth than others transfers
more chunks. In this way, the proposed method adapts to dynamic changes in the communi-
cation bandwidth.

When the recovery replica receives all chunks and completes the verification, it restores the
checkpoint and log from the chunks and applies them to the replica along with the received
log during the state transfer to restore the latest service state and finishes the state transfer.

3.2 Details

Here, we describe the details of the proposed method. First, we introduce some notations to
describe the method formally. In the proposed method, all replicas except the recovery replica
r behave as transfer replicas. We denote the set of all transfer replicas by T'. The recovery
replica repeatedly requests a set of chunks from the transfer replica every I seconds. The i-th
chunk set that the recovery replica r requests from the transfer replica ¢ is denoted by C{, and
the set of all chunks that represents the latest service state is denoted by Cg;;. The average
communication bandwidth with the transfer replica t estimated by the recovery replica between
the (i — 1)-th and i-th times is denoted as w?, and the sum of the communication bandwidth
with all transfer replicas is denoted as w;l L= jer w; In the case of i = 0, a recovery replica
cannot estimate the bandwidth; thus, we assume w? = 1 for every transfer replica t.

In BFT-SMR, Byzantine replicas might transfer fake chunks to a recovery replica as transfer
replicas. To avoid such attacks, the recovery replica collects hashes of each chunk and verifies
the integrity of the received chunksﬂ The set of hashes of all chunks is denoted as Hy;;, the

2In CFT-SMR, a faulty replica just stops processing. Therefore, a recovery replica does not need to take
care of such attacks.



set of hashes for which a recovery replica verifies the integrity of their chunks is denoted as H,
and the hash function is denoted as Hash(x).

Algorithm [I] shows the pseudocode of a recovery replica for BEFT-SMR. When a state
transfer is required, a recovery replica r starts two tasks: T; to request chunks and 75 to
receive chunks. First, task T requests hashes H,; of all chunks from all transfer replicas T
(lines . Next, r requests a set of chunks Cyy; from T every I seconds until all chunks C?
are received (lines . Here, 7 determines C} such that it satisfies the conditions

ICil = (N = |C]) - w}/wu 1)
cul ) =Ca, (2)
JET

where C' is the set of chunks that r has received and verified. If |C}| = 0 because of a narrow
bandwidth, a recovery replica allocates one chunk, which overlaps with C? of another transfer
replica aEI

Task Ty continues to receive chunks from the transfer replicas until it receives all chunks
Cou (lines . After receiving a chunk ¢ that has not been verified, a recovery replica r
verifies its integrity (lines . The verification succeeds if r receives the same hash from
f+1 transfer replicas and h matches hash h' = Hash(c), which is locally computed in r from c.
If the verification succeeds, r includes ¢ in C. When the verification fails, the recovery replica
r requests ¢ again from another transfer replica different from the previous sender of ¢ in the
next chunk request. If the recovery replica r receives hashes from |T'| — f transfer replicas, but
at least f + 1 replicas of them do not send the same hash, this method switches to the PBFT
state transfer method. After receiving all the chunks, 75 combines C' to obtain the checkpoint
and log and uses them to restore the latest state (lines . When the recovered replica is
up-to-date, the proposed method terminates.

Algorithm [2| shows the pseudocode of a transfer replica for BEFT-SMR. When a transfer
replica t receives a request for hashes of all chunks from a recovery replica r, ¢t calculates H
from the latest checkpoint and log and sends it to r (lines [IH{3]). When a received request wants
a chunk set C}, t divides the checkpoint and log into chunks and transfers the requested chunks
to r one by one (lines [4H9).

In the case of CFT-SMR, the following processes are changed. First, in Task 77, the request
of H (lines of Alg. (1)) is no longer required. Next, Task T5 skips the integrity verification of
the received chunk ¢ (lines of Alg. [1) and simply adds ¢ to C. Finally, a transfer replica
is never requested to transfer H (lines of Alg. 12).

3.3 Correctness

We prove the correctness of the proposed method in terms of the following requirements.
Safety: The state applied to a recovery replica is the same as that of a non-faulty replica.
Liveness: State transfer eventually terminates.

For safety, a recovery replica verifies the integrity of a chunk ¢ using identical hashes
h received from f + 1 transfer replicas. In addition, the recovery replica locally computes
h' = Hash(c) and compares it to h to deal with a Byzantine transfer replica that might send
a fake chunk and the correct hash. This ensures that the chunk is identical to that of at least
one non-faulty transfer replica. Therefore, the state applied to the recovery replica is the same
as that of a non-faulty replica.

Next, we prove the liveness. A recovery replica r needs to receive all hashes and chunks
and verify their integrity before the state transfer terminates. For receiving hashes, even if
f transfer replicas are faulty, there are still at least f + 1 non-faulty transfer replicas. If the
non-faulty replicas send a hash to the recovery replica when they process the same request, the
recovery replica can receive the same hash from at least f + 1 replicas. However, the recovery

3This is because some data transfer is necessary to passively estimate the communication bandwidth.



Algorithm 1 The pseudocode of the recovery replica
Initialization:

1. C+0

2: Activate task T1, T»

Task T7:
i< 0
: for t in T do
Request the set Hyy; of all hashes to t

end for
while C 75 Ca” do

8: for t in T do

9: Calculate C¢ from Equations. and
10: Request Cf to ¢
11: end for
12: Wait I seconds
13: i1+ 1
14: end while

AN

ot

Task T5:

15: when receive a set of hashes H,;; from the transfer replica t € T' do

16: if it has received Hqy from |T'| — f or more transfer replicas and it has not received more than
f + 1 same Hg; then

17: Switch to the state transfer method of PBFT protocol

18: end if

19: end when

20: when a chunk set C; C Cyy; is delivered from a recovery replica t € T' do

21: for cin C; \ Cuy do

22: if it has already received the same f + 1 hash h of chunk ¢ and h matches b’ = Hash(c)
then

23: C + CuU{c}

24: end if

25: end for
26: if C = Ca” then

27: Combine C and get checkpoint a and log L

28: Apply checkpoint a

29: Process log L and the log received during state transfer in order of oldest to newest
30: Terminate

31: end if

32: end when

replica may not be able to receive the same hash from f+ 1 replicas because the arrival timing
of the status transfer request is different for each replica. In such a case, the recovery replica
switches to the PBFT status transfer method to ensure the liveness. For receiving chunks, a
Byzantine transfer replica may not send any chunk. However, a recovery replica r continues
to request at least one chunk from each transfer replica. Thus, even if the Byzantine transfer
replica does not send any chunk, r eventually receives all chunks from non-faulty transfer
replicas. Therefore, the state transfer eventually terminates.

4 Analysis of State Transfer Time
In this section, we analytically compare the state transfer times of the proposed and existing

methods under worst-case conditions.

4.1 Formulation of State Transfer Time

We consider a situation of state transfer to the recovery replica r, and let S be the state size
of a transfer replica t at that time. We denote the communication bandwidth from a transfer



Algorithm 2 The pseudocode of the transfer replica

when the hash set H,y of all chunks is requested from a recovery replica r do
Transfer Hy;; to r
end when

when a chunk set Cf} is requested from a recovery replica r do
Ct < CZ'
for c in C; do
Transfer ¢ to r
end for
end when

replica ¢ to the recovery replica r as wy .

First, we formulate the state transfer time of PBFT. In PBFT state transfer, assuming that
the recovery replica r chooses the replica ¢ with the widest communication bandwidth as the
transfer replica, the state transfer time is expressed as

S

Wt,r

Teprr = (3)

In the CST protocol, we assume that all transfer replicas send partial states of the same
size to the recovery replica r in parallel. This is the best case for the CST protocol, and the
state transfer time can be expressed as

Tcst = ( 5 ) (4)

n—1) w
where w = min(wy, r, Wiy ry .-, Wi, 4 r)-

Next, let us consider the state transfer time of the proposed method. If we assume that a

recovery replica can measure the communication bandwidth of each transfer replica without
any error, the state transfer time of the proposed method can be expressed as

S

)
Wall

()

Tproposed =

where wqy = Y i) Wi, -

However, in reality, it is difficult to measure the communication bandwidth without any
error. If there are errors in the estimated communication bandwidth, a replica with a nar-
row communication bandwidth might have to transfer more chunks, which increases the total
transfer time longer. To take such error into account, we assume the worst case, where all
replicas are mistakenly overestimated (or underestimated) their communication bandwidth by
x % compared to the actual bandwidth. In this case, if the communication bandwidth faster
than the average is underestimated by & % and that slower than the average is overestimated
by = %, the state transfer time becomes the longest and can be expressed as

S+ (1+ /100
Tproposcd w_err — M, (6)
- Werr _all
where wep a1 is the sum of the communication bandwidth between each transfer replica and
the recovered replica r, including the estimation error.

4.2 State Transfer Times in Different Communication Bandwidths

Figure[7]shows the state transfer times for each method in different communication bandwidths
calculated by Equations 7@. The figure assumes a situation in which the number of
replicas is n = 4 and there are no faulty replicas. The average communication bandwidth
between replicas is set as 100 Mbps, and the standard deviation ranges from 0 to 80 Mbps.
For example, if the standard deviation is 40 Mbps, the communication bandwidths of the three
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Figure 7: State transfer times in different communication bandwidths and errors.

transfer replicas are 60, 100, and 140 Mbps, respectively. The state transfer time is normalized
to the PBFT transfer time as 100%.

As shwon in Fig.[7] when the standard deviation increases, the state transfer time of the CST
protocol increases compared to that of the PBFT protocol. In the PBFT protocol, the replica
with the widest communication bandwidth transfers the state; thus, PBFT can transfer the
state at high speeds when the standard deviation of the communication bandwidth is large. In
contrast, each transfer replica sends the state equally in the CST protocol. In other words, each
transfer replica must send the same amount of data regardless of its communication bandwidth.
Therefore, in environments with large variations in the communication bandwidth, the transfer
replica with a narrow bandwidth needs more time to send its partial state, and the total state
transfer time also increases. This tendency is clearly evident when the standard deviation of
the communication bandwidth is 80 Mbps; in this case, the state transfer time is three times
longer than that of PBFT.

The proposed method has the shortest state transfer time in the absence of any estimation
error, and increases in the standard deviation do not affect the transfer time. The proposed
method allocates the amount of data to be transferred (i.e., the number of chunks) according to
the communication bandwidth of each transfer replica so that the transfer time of each transfer
replica is the same. Therefore, if the total communication bandwidth of each transfer replica
does not change, the transfer time will remain constant. However, if there are estimation
errors, the transfer time of each transfer replica does not align and deteriorates. For example,
when the estimation error is 40%, the state transfer time is 1.6 times longer than that in the
caes where the standard deviation of the communication bandwidth is 0 Mbps and 2.1 times
longer when the standard deviation is 80 Mbps, compared to the case without any estimation
error. Although the transfer time of the proposed method is still shorter than that of the other
methods in many cases, the proposed method becomes slower than PBFT when the standard
deviation of the communication bandwidth is greater than 60 Mbps and the estimation error
is 40%. However, such large estimation errors are rare, as we see in Sect.

From these results, we have analytically confirmed that the proposed method can perform
a state transfer at high speed in environments with large differences in communication band-
width, which is a typical characteristic of geographic SMR. While the errors in estimating
the communication bandwidth affect the state transfer time of the proposed method, they are
not expected to be significant in a real environment. This will be confirmed using an actual
environment in the next section.

5 Performance Evaluation

Here, we build a geographic BFT-SMR system on Amazon EC2 using the open-source SMR
library BFT-SMaR#t 1.@ and evaluate the state transfer time of the proposed method.

“https://github.com/bft-smart/library/releases/tag/vl.2
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Table 1: Premeasured inter-region communication bandwidth (Mbps).

Sydney Sao Paulo N. Virginia Ireland

Sydney 33.7 57.0 42.9
Sao Paulo 33.3 102.2 64.5
N. Virginia 56.6 103.0 174.3
Ireland 42.9 64.4 173.3

(a) Worldwide Group

Ireland London Paris  Frankfurt

Ireland 857.8 578.1 420.8
London 866.8 1219.6 667.2
Paris 594.4 1234.4 1115.5

Frankfurt 420.0 662.4 1113.6
(b) European Group

Table 2: Specifications of t3.xlarge instance.

Item Specification
CPU Intel Xeon Platinum 8000 series
#vCPUs 4
Memory 16.0 GiB
Network burst bandwidth 5 Gbps

5.1 Experimental Method

We implement the proposed method and the CST protocol [4] in BFT-SMaRt as a state
transfer method. While the authors in [4] introduced various optimization techniques for the
CST protocol, we implement only “Optimizing CST,” which reduces the state transfer time.
In the CST protocol, the sizes of the checkpoint and logs sent by the transfer replicas depend
on the timing of the state transfer, but we assume that each transfer replica sends the partial
state of the same size because this is the fastest situation for the CST protocol.

In addition, as a baseline, we implement a method that removes the dynamic bandwidth
estimation function from the proposed method. This method allocates chunks using the average
communication bandwidth measured in advance as follows. The communication bandwidth
between replicas is measured hourly for seven days (Worldwide Group is from April 26 to May
3, 2021, and European Group is from June 1 to June 8, 2021) using iperf 3.1.3. Tableshows
the measured communication bandwidth between each replica in two groups. In each table,
the first column represents sending replicas and the first row represents receiving replicas.
Hereafter, we refer to this method as “Premeasured BW.”

In the experiment, we use four replicas: one recovery replica and three transfer replicas. The
geographic locations of these replicas are Worldwide Group and European Group, described
in Sect. Each replica uses a t3.xlarge instanceEI Table |2| shows the performance of the
instance type. In each replica, we use Docker 18.09.2 on Amazon Linux 2 to run BFT-SMaRt
in the openjdk:14-alpine container. Unless noted otherwise, the size of the state to be
transferred is 1000 MiB, the total number of chunks N in the proposed method is 256, and the
update interval I of the chunk allocation in the proposed method is 1000 ms. For the state
transfer time, we use the average value of five measurements. In the experiment, the size of
the checkpoints is fixed, and each method divides only the checkpoint. The log size is less
than 1/1000 of the fixed state size in the preliminary experiment, and, thus, does not affect
the result. Therefore, we refer to the checkpoint size as the state size. We use SHA-512 as a
hash function Hash(x) to verify the integrity of the chunks or the checkpoint and logs.

Shttps://aws.amazon.com/ec2/instance-types/t3/
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Figure 9: State size and state transfer time.

5.2 Comparison of State Transfer Time

The state transfer time of the proposed method is compared with that of the method using
the CST protocol and premeasured BW. We build geographic SMR, systems for each group
(the Worldwide Group and the European Group) and measure the state transfer time 12 times
every 2 hours using each replica in the groups as a recovery replica and obtain the average
value. The experiment was conducted from June 18 to June 19, 2021.

First, we compare the average state transfer time for each recovery replica when the state
size is 1000 MiB. Figure [§| shows the results. In the Worldwide Group, the state transfer time
of the proposed method was the shortest for all recovery replicas. When the recovery replica
was in Ireland, the difference between the proposed method and the CST protocol was the
largest and reduced by 47%. In contrast, the smallest reduction to the CST protocol (i.e.,
19%) occured, when the recovery replica was in Sydney. This difference is due to the difference
in the communication bandwidth of the transfer replicas. The average reduction rate of the
proposed method for the CST protocol was 37%. In contrast, the average reduction rate of the
proposed method to the premeasured BW method was 10%. This is because the time variation
of the communication bandwidth between the replicas is small.

Unlike Worldwide Group, the state transfer time of the premeasured BW method was
longer in the European Group. This is because, as shown in Fig. the time variation of
the communication bandwidth is large in the European Group. The results obtained for the
FEuropean Group suggest the importance of dynamically responding to the time variation of
the communication bandwidth.

Next, we compare the effects of different state sizes on the state transfer time. Figure [J]
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Figure 10: State transfer time for each replica. The horizontal axis shows the shortest and
longest transfer times of the transfer replicas and their difference.

shows the average state transfer times for different state sizes of 500, 1000, and 1500 MiB in
North Virginia in the Worldwide Group and Ireland in the European Group. In the Worldwide
Group, the effects of the state sizes were small: 40% for the 500 MiB state, 42% for the 1000
MiB state, and 41% for the 1500 MiB state, compared to the CST protocol. In contrast, in
the European Group, the effects of state sizes were larger than those in the Worldwide Group:
30% for the 500 MiB state, 21% for the 1000 MiB state, and 25% for the 1500 MiB state. This
is because the European Group was more strongly affected by the increase in transfer time due
to the larger state size since the time variation in the communication bandwidth was larger
than that in the Worldwide Group.

5.3 State Transfer Time of Each Transfer Replica

The proposed method reduces the total state transfer time by balancing the state transfer
time of the transfer replicas. We demonstrate the effect of balancing the state transfer time
by comparing the state or chunk transfer times of the transfer replicas. This experiment uses
North Virginia in the Worldwide Group and Ireland in the European Group as the recovery
replicas. The experiment was conducted from June 18 to June 19, 2021. Figure [10] shows the
state transfer time for each transfer replica.

As shown in Fig. [I(J(a)] and Fig. the CST protocol and the premeasured BW method
have large difference in the state transfer times of the transfer replicas. The recovery replicas
in North Virginia and Ireland have differences of 2.38 and 1.63 times with the CST protocol
and 1.26 and 1.54 times with the premeasured BW, respectively. The CST protocol has no
mechanism to adjust the difference in the communication bandwidth between the replicas.
Therefore, the state transfer time tends to differ considerably for each replica. This tendency
is particularly remarkable in the Worldwide Group. The premeasured BW method cannot
follow the changes in the communication bandwidth while transferring chunks. Therefore,
the state transfer time tends to vary for each transfer replica in the European Group, where
the communication bandwidth changes frequently. In contrast, the difference in the proposed
method is significantly small, 1.01 times in both cases. The proposed method has features of
dynamically adapting to both problems, and it works well.

5.4 Time Variation of Chunk Allocation of the Proposed Method

Here, we evaluate the time variation of chunk allocation of the proposed method to verify that
the method appropriately allocates chunks to each transfer replica based on the communication
bandwidths. In this evaluation, the state transfer is repeated five times, and we select the trial
with the median transfer time. The experiment was conducted on August 12, 2021. Figure [T]]
shows the time variation of chunk allocation when the recovery replica is in North Virginia in
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Figure 11: Time variation of chunk allocation (North Virginia, Worldwide Group).

the Worldwide Group.

As shown in Fig. the number of remaining chunks changed for the first 4 seconds after
the start of the transfer. This indicates that the recovery replica has not received chunks for
more than 3 seconds after the start. The change in the chunk allocation for these 4 seconds is
caused by not having enough data to be transferred to estimate the communication bandwidth
because the chunk reception has not started. After the 4 seconds, chunks are allocated at an
almost constant rate, and the requested chunks decrease at a constant slope. This indicates that
the transfer rate of the proposed method is close to constant, and the correct communication
bandwidth is reflected in the chunk allocation. Figure [I1] shows that the time to start the
state transfer is more than 3 seconds. Although each transfer replica calculates hashes before
sending chunks, the calculation time is approximately 2.3 seconds in this experiment. Since
the hash calculation time is shorter than the time to start the transfer, the delay in sending
chunks cannot be explained by the hash calculation time alone. Therefore, we suppose that
the delay in the start of the transfer was caused by two factors: the hash calculation time and
the latency of the transfer replica.

5.5 Effects of Different Hash Calculation Methods on State Transfer
Time

In the proposed method, a recovery replica calculates the hash of each chunk and verifies the
hash in parallel with the chunk reception to reduce the transfer time. To show the effect of this
technique, we measure the difference in transfer time between the proposed method and the
method that calculates the hash of the whole state. In the latter method, all transfer replicas
send the whole hash at the start of the transfer, and the recovery replica verifies the hash after
the chunks are combined. The experiment was conducted from June 9 to 10, 2021. Figure [I2]
shows the results measured by a recovery replica in North Virginia in the Worldwide Group.

Figure[I2)shows that the proposed method increases the hash verification time but decreases
the total transfer time. The increase in hash verification time is caused by the overhead of
frequent hash function calls and initialization caused by the division of chunks. The decrease
in transfer time was about half the hash verification time of the method calculating the entire
hash, indicating that about half of the hash verification time could be executed in parallel
during the state transfer.

5.6 Effect of Update Interval of the Chunk Assignment

In the proposed method, the recovery replica responds to changes in the communication band-
width over time by repeatedly updating the number of chunks that the transfer replicas send.
To verify the effect of the chunk update interval I on the state transfer time, we measure
the state transfer time by varying I as 0.1, 0.2, 0.5, 1, and 2 seconds. The experiment was
conducted on August 12, 2021. The results are shown in Fig. where the replicas are placed
in the Worldwide Group, and the recovery replica is in North Virginia.
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Figure 13: Chunk update interval and state transfer time (Worldwide Group, the recovery
replica is in North Virginia).

As shown in Fig. [[3] when the state size is 500 MiB, the shorter the update interval is,
the shorter the transfer time is. However, when the state size is 1000 MiB or larger, the
longer the update interval is, the shorter the transfer time is. This trend can be explained by
the transition of chunk allocation shown in Sect. First, when the state size is 500 MiB,
the state transfer time is always short. Since the communication bandwidth is unstable for
a relatively long time at the beginning of the state transfer, the proposed method with the
shorter update interval could estimate the bandwidth accurately. In contrast, when the state
size is 1000 MiB or more, the state transfer time is longer than that at the state size of 500
MiB. Since the communication bandwidth remains stable for a long time, the method with a
longer update interval can reduce the impact of updating the chunk allocation.

5.7 Relationship between the Number of Chunks and State Transfer
Time

The proposed method divides the service state into NV chunks and transfers them to the recovery
replica. Here, we investigate how the number of chunks affects the state transfer time and vary
N as 128, 256, 512, and 1024. The experiment was conducted on March 8, 2022. The results
are shown in Fig. where the replicas are placed in the Worldwide Group, and the recovery
replica is in North Virginia.

As shwon in Fig. the state transfer time decreases as the number of chunks N is
increased, although the details differ depending on the state size. This tendency is remarkable
when the state size is 1500 MiB, and the state transfer time is 9.6 % shorter when N = 1024
compared to the case where N = 128. However, there is a threshold above which increasing N
does not shorten the state transfer time. For instance, we can see the threshold at N = 256
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when the state size is 1000 MiB.

5.8 Error Rate in Estimated Communication Bandwidth during State
Transfer

In the proposed method, a recovery replica estimates the communication bandwidth between
itself and each transfer replica from the amount of data received during a state transfer. Here,
to verify the accuracy of this estimation, we measure the error rate between the estimated
communication bandwidth and the actual communication bandwidth every I second during
the state transfer. We repeat this measurement 12 times every 2 hours to obtain the final
average value. Here, we denote the communication bandwidth estimated from the amount of
data received in the interval I; by e;. In this case, the error between the actual bandwidth and
the estimated bandwidth in interval I; is expressed as |e;+1 — e;|. We measure the estimation
error in the period from 5 seconds after the start of state transfer to 5 seconds before the
end of the state transfer, because the communication bandwidth is stable in this period. This
experiment was conducted from June 18th to June 19th, 2021. The result obtained at a state
size of 1000 MiB in the Worldwide Group is shown in Fig. [I5]

Fig. |15| shows that the error between the actual communication bandwidth and the esti-
mated bandwidth is within 10%. The analysis in Sect. [4] shows that the proposed method
can transfer the state faster than the existing methods when the error is within 10%, and we
can confirm this fact from the experimental results. In addition, unlike the analysis shown in
Sect. @ in the actual environment, the case of overestimating the actual bandwidth (which
increases the transfer time) and the case of underestimating the actual bandwidth (which de-
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creases the transfer time) cancel each other out. Therefore, the effect on state transfer is even
smaller.

6 Applying the Proposed Method to Dynamic Replica re-
placement

In a distributed system consisting of multiple geographically-separated servers, the latency of
a system changes depending on the geographical arrangement of the servers. For this reason,
the authors in [20, [I] proposed a method to optimize the system latency by moving servers
and the data stored on them according to changes in latency between the servers. It is also
known that the latency of a geographic SMR system also changes depending on the geographical
arrangement of replicas [31,[36]. Since the latency of the geographic SMR system is determined
from the latency between the replicas, moving replica&ﬂ can reduce the system latency. Here,
we call this approach dynamic replica replacement. Dynamic replica replacement in geographic
SMR has several advantages: the mechanism is simpler than the methods using additional
replicas |36} 3], and the installation cost of additional replicas can be reduced. However, since
the state transfer, which is required for moving a replica, is considered a time-consuming
process [36], dynamic replica replacement has not been attempted so far. Since the proposed
method can transfer a service state fast as we observed in Sections [ and [5} we expect that the
performance degradation of dynamic replica replacement also can be alleviated. Therefore, we
evaluate the practicality of dynamic replica replacement using the proposed method.

6.1 Evaluation Settings

We assume the following two scenarios that require dynamic replica replacement and reproduce
them.

e Scenario 1: Replace a replica with poor latency between replicas due to a failure of replica
or network with a close replica

e Scenario 2: Improve system latency by moving a replica with high latency between
replicas to a different location

Here, we call the replica to be removed to improve the system latency remowal replica, and
that to be added to a system instead of the removal replica additional replica.

In the experiment, we construct a geographic BFT-SMR system using three transfer repli-
cas, one removal replica, and one additional replica, for a total of five replicas. The additional
replica does not participate in the agreement during the state transfer and receives only the
result of the agreement to prevent the latency from deteriorating due to the increase in the
number of replicas. The configuration of each replica and each client is the same as that in
Sect. However, due to the restriction of the software used for this experimemﬂ we use
openjdk:11-jre-slim-bullseye as the docker container. We have confirmed in advance that
this change will not affect the system latency. We use the latency from request transmission
to response reception measured by a client as an evaluation measure. In geographic SMR, the
smaller the latency between the leader replica and a client is, the smaller the system latency is
[36]. Therefore, we place the client at the same location as the leader replica. The client sends
requests to each replica synchronously, and as soon as it receives the response, it sends the
next request. In this experiment, we compare two state transfer methods in dynamic replica
replacement: the proposed method and PBFT state transfer. Compared to the CST proto-
col, which was used in Sect. 5] PBFT state transfer undergoes lesser performance degradation
when the network bandwidth is limited due to a failure of replica or network assumed in the
experiment. Therefore, we use PBFT state transfer as a baseline here. The state size to be
transferred is 1000 MiB, the total number of chunks of the proposed method is N = 256, and
the update frequency of the chunk assignment is I = 1000 ms.

6While we use the term “move a replica” here, a replica is moved in two steps. First, we place a new replica at
a destination. After the state transfer to the replica is complete, the original replica is deleted from replication.
"The tc command did not work in the docker container used in Sect.
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Figure 17: Latency change in the experiment of replica replacement.

6.2 Replacing the Replica with Poor Latency between Replicas

Here, we assume Scenario 1, in which a replica with deteriorated latency between replicas is
replaced with a replica close to the slow replica, and measure the change in latency of the
geographic BFT-SMR system. We worsen the latency between the removal replica and other
replicas by artificially adding a delay to all messages sent by a removal replica with tc com-
mandﬂ The delay to be added is 100 ms. Thirty seconds after the latency deteriorates, the
additional replica is added to the system and begins state transfer. After the state transfer
of the additional replica is completed, the removal replica is removed from the system. When
a replica or a network fails, it is unrealistic for the removal replica to participate in the state
transfer. Therefore, in this experiment, the removal replica does not participate in the state
transfer. As shown in Fig. replicas are placed in the Worldwide Group, defined in Sect.
and London. The removal replica and the additional replica are in London and Ireland, re-
spectively. Both the leader replica and a client are in Sydney. The experiment was conducted
on February 3, 2022.

The results are shown in Fig. At (1) of Fig. a delay was added to the removal
replica to simulate a failure of replica or network. At this time, the system latency also
increased by 100 ms, similar to the added delay. At (2), the recovery replica started state
transfer to the additional replica. At this time, in both the proposed method and PBFT, the
request processing was stopped for approximately one second. This is because it is necessary to
stop processing consensus temporarily to change the replication configuration (i.e., adding the
additional replica). At (3), when the status transfer to the additional replica was completed,
the removal replica was deleted from the system. Since London and Ireland are close to each
other and the tendency of latency between replicas is similar, the system latency recovered to
the same level as before (1).

The above results show that the deteriorated system latency can be recovered by replacing
the replica whose latency has deteriorated with another replica by dynamic replica replacement.

Shttps://man7.org/linux/man-pages/man8/tc.8.html
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Figure 19: Latency change in the experiment of replica migration.

While PBFT took 55 seconds for state transfer, the proposed method completed the state
transfer in 40 seconds. Thus, the proposed method is effective for replica replacement with
poor latency between replicas.

6.3 Migrating a Replica with Large Latency between Replicas

Here, we move a replica with high latency between replicas to another location with low
latency by dynamic replica replacement and measure the change in latency. Unlike Sect.
the removal replica also participates in the state transfer to the additional replica. As shown
in Fig. replicas are placed in five locations: the Worldwide Group (Ireland, North Virginia,
Sydney, and Sao Paulo) and California. The removal replica is in Sydney, and the additional
replica is in California. The leader replica and a client are located in North Virginia. The
experiment was conducted on February 3, 2022.

The change in request latency is shown in Fig.[19] At (1) of Fig.[19] replicas started state
transfer to the additional replica in California. Similar to Fig.[I7] the system request processing
stopped for approximately one second in the proposed method and PBFT status transfer. At
(2), the state transfer was completed and the additional replica was added to the system, so
the removal replica in Sydney was removed from the system. Compared to Sydney, California
has a lower latency to the leader replica; thus, the system latency was improved drastically
compared to that before (1). PBFT took 55 seconds for a state transfer, while the proposed
method took 35 seconds. This result indicates that the proposed method is also effective for
the dynamic replacement of a replica with high latency between replicas.

7 Conclusion

In this paper, we proposed a state transfer method suitable for geographic SMR. The proposed
method addresses the problems caused by the instability of the communication bandwidth
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specific to geographic SMR, that is, variation and non-uniformity of the communication band-
width. This is achieved by passively estimating the communication bandwidth between replicas
and dynamically adjusting the amount of state that each transfer replica sends to a recovery
replica according to their communication bandwidth. The evaluation results showed that the
proposed method can deal with the communication bandwidth variations and reduce the state
transfer time by up to 47% compared to the existing method. Moreover, we showed that the
proposed method can be used in dynamic replica replacement, which allows us to improve the
service latency of geographic SMR by moving a slow replica to another location. For future
work, we plan to reduce the service outage time while adding or removing replicas and to
develop a state transfer method that relocates multiple replicas simultaneously by transferring
the state to multiple replicas simultaneously. This approach would allow us to realize faster
replacement.
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