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Abstract

Functional annotation of newly sequenced genomes is one of the major challenges in modern

biology. With modern sequencing technologies, the protein sequence universe is rapidly

expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate

of data generation has far surpassed that of protein annotation. The volume of protein data makes

manual curation infeasible, whereas a high compute cost limits the utility of existing automated

approaches. In this work, we present an improved and optmized automated workflow to enable

large-scale protein annotation. The workflow uses high performance computing architectures and

a low complexity classification algorithm to assign proteins into existing clusters of orthologous

groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search

Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications.

The workflow utilizes highly scalable parallel applications for classification and sequence

alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the

workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of

the protein sequence universe, the proposed workflow will enable scientists to annotate big

genome data.
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1. INTRODUCTION

Advances in sequencing technologies enabled rapid generation of data rapidly approaching

exa-byte scale [1–3]. The rapid expansion of the protein sequence universe makes protein

annotation one of the principal challenges in life sciences [4]. Functional annotation of big

protein data is an immense computational challenge that requires advanced analytical tools

and next-generation compute capabilities [5–10]. Approximately one third of proteins in any

newly sequenced genome have unknown function [11–15]. This barrier remains relatively

constant as new organisms are being sequenced. The rapid expansion of protein sequence

universe makes manual curation infeasible.

Clustering methods have gained popularity as automated approaches that can facilitate the

annotation of large number of proteins [16–23]. Clustering approaches typically assume

sequence similarity of orthologous genes. Thus, functionally similar proteins are expected to

cluster together.

Existing clustering approaches are not easily scalable to handle large data volumes [4, 24].

Consequently, public annotation resources are struggling to cope with the influx of data and

a growing number of them can no longer sustain the expansion [19, 21, 25]. The Clusters of

Orthologous Groups of proteins (COG) database is one of the primary tools in functional

annotation and comparative genomics [21]. Last updated in 2006, the database contains 70%

of protein-coding genes from 69 prokaryotic and eukaryotic genomes. COG clusters are

based on a top-hit approach using Basic Local Alignment Search Tool (BLAST) sequence

similarity scores [21, 26]. The resulting clusters were manually curated to verify the

grouping and functional annotation.

The COG clusters were used as seeds in the eggNOG database to construct groups of

orthologous genes [17, 27]. The eggNOG method uses precomputed all-versus-all alignment

scores from FASTA algorithm. The FASTA algorithm is more sensitive than BLAST but

has higher compute cost. The size of user queries in eggNOG is limited to 30 sequences and

can take up to 10 min according to the manual. Both the query size and the processing speed

limit the utility of eggNOG as an annotation resource for big data. With the proliferation of

new organisms and environments being sequenced, even small laboratories would require

efficient annotation pipelines capable of handling large volumes of sequencing data.

In [28], we proposed a new workflow to enable large-scale functional annotation using high

performance computing (HPC) architectures. The workflow uses a Position-Specific

Iterative (PSI)-BLAST approach and low-complexity classification method to assign newly

sequenced bacterial genomes to existing COGs [21, 26]. To reduce error propagation, the

workflow is iterative. With each iteration, the expansion of COG clusters leads to increase in

compute time. Here, we optimize the workflow to reduce compute time and memory

demands while retaining the accuracy. The optimized workflow relies on highly scalable

parallel implementations of the analysis tools to enable rapid analysis on the National

Science Foundation (NSF)-funded Kraken supercomputer and the Newton HPC cluster at

the University of Tennessee [29, 30]. Kraken is a Cray XT5 machine consisting of 112,896

AMD Opteron compute cores at 2.6 GHz in 9408 nodes with 147 TB of total memory [29].
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Newton consists of 250 compute nodes with a total of over 2400 processor cores. The

processors are Intel Xeon model E5-2670 clocked at 2.6 GHz. Each node has 32 GB of

system memory. The Kraken development will be then used to adapt to other NSF resources

and to develop a widely portable and parallel pipeline.

2. METHODS

2.1. Cluster of orthologous groups of proteins database

By a major principle of molecular evolution, functionally important proteins tend to be

conserved across species. Developed by the National Center for Biotechnology Information

(NCBI), the COG database is separated into prokaryotic (COG) and eukaryotic (KOG)

orthologous groups [21]. The COG database contains 192,987 proteins from 66 bacterial

proteomes that form 4873 clusters including 2824 well-annotated COGs with 107,711

proteins and 2049 poorly annotated COGs with 36,609. The KOG database contains 112,920

proteins from seven eukaryotic proteomes mapped into 4852 functional clusters [21, 31].

Both COG and KOG are used to identify paralog and ortholog proteins. According to

Google Scholar, the COG project is one of the most popular protein resources with

approximately 4.5K citations. However, because of computational costs, the database was

last updated in 2008 and is not currently maintained. Here, we are using the COG database

of prokaryotic genomes that we will refer to as COGs.

2.2. Classification

The existing clustering algorithms are based on pairwise sequence similarity. However,

computing pairwise scores is computationally intensive. To overcome this limitation, we

developed a simple classification method to assign proteins to existing COGs. The method is

based on PSI-BLAST where the score is computed using a position-specific scoring matrix,

or a profile [32]. The profile allows detecting distant relationships between proteins.

Here, for each COG cluster, we compute a profile and a consensus sequence. The consensus

is constructed by aligning sequences in a given cluster. The resulting consensus reflects an

agreement of residues in the alignment columns. For each newly sequenced protein, we then

compute a similarity score with a given consensus and a corresponding profile. Hence, the

use of PSI-BLAST allows comparing a protein with the entire cluster simultaneously, thus

avoiding numerous pairwise alignments. For each protein, we identify the top-scoring COG

cluster. The protein is assigned into the top-scoring cluster if the corresponding score

exceeds the threshold.

The optimal threshold selection was determined using test and train sets built from COG

database. The validation was perfomed on archaeal data. For more details, the reader can

refer to [28].

2.3. Implementation

The proposed pipeline includes BLAST functions, MUSCLE [33], Perl scripts, and

statistical analysis performed in R [34]. BLAST and MUSCLE were designed to run on a

typical workstation. Thus, many parallel implementations of these tools focused on clusters
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exist, such as mpi-BLAST [35], ScalaBLAST [36], and ClustalW-MPI [37]. These tools

achieve scalability through database fragmentation, parallel I/O, load balancing, and query

prefetching. However, only a few highly scalable implementations capable of using tens of

thousands of cores on supercomputers are available including BLAST on Blue Gene/L [38],

pioBLAST [39], and HSPp-BLAST [15]. We chose to use the HSPp-BLAST

implementation because of familiarity and proven results on the Kraken supercomputer.

The scalable wrapper, introduced with HSPp-BLAST, can also be used to scale other

components of the pipeline, such as MUSCLE. This wrapper is designed to provide

enhanced scalability on HPC systems with tens of thousands of compute cores. It does this

through two main components: mcw and stdiowrap. The mcw program is aMessage Passing

Interface (MPI) application written in the C programming language [40] and is named for its

hierarchical design: master, controller, worker. Figure 1 shows the system architecture

originally presented in [41] as applied to PSI-BLAST in this project. The master is

responsible for distributing the sequence database as well as input sequences to the

controller positioned on each of the other nodes. The workers represent each individual

instance of the scaled tool, for example, BLAST. The BLAST and MUSCLE programs are

linked with the stdiowrap library, which provides input and output redirections with the

controller through interprocess communication implemented by means of shared memory

segments.

For data storage, supercomputers largely use a distributed file system, such as Lustre [42]. In

a distributed file system, each instance of the tool needs to load a copy of the database. The

file system does not perform well when thousands of processes are trying to read the same

files simultaneously. The wrapper provides input enhancements by reading the database

with the master, then broadcasting the data with MPI’s MPI_Bcast function. The

MPI_Bcast scales logarithmically with the number of nodes. In addition, in order to reduce

input latency, input sequences are read by the master and prefetched by the controllers. The

performance of output operations was also improved by implementing a two-stage buffering

technique to provide asynchronous writes. The tools write to an in-memory buffer instead of

directly to disk. The data are flushed (and optionally compressed) from in-memory buffers

to disk by a background process when the buffers are nearly full, rather than on demand.

This increases the output bandwidth, results in more uniform output time, and almost

eliminates blocking in the tool itself.

To reduce error propagation, the COG database is expanded gradually. After each

expansion, we recompute the profiles and the consensus sequences. We used the first four

iterations to estimate the complexity and compute demand time of the algorithm. For

iterations 1–4, we sampled at random n = 200; 000 new proteins. The sampled sequences are

formatted into a database using formatdb. For each COG cluster, we use HSPp-BLAST to

compute the alignment scores for the COG clusters’ consensus sequences against the newly

sequenced proteins. We use the respective profile to jump start the search. The proteins were

assigned to the top hit COG given the alignment score exceeded the threshold.

After each iteration, the expanded COGs were used to recompute the consensus and profiles

and update the classification threshold. The consensus sequence and a profile for each COG
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are built with set_extractCore, a custom Perl script developed by NCBI (Y. Wolf).

Given the list of protein IDs in a COG, this script identifies a nonredundant subset of

sequences using fastacmd and blastclust. The common domain for nonredundant

sequences is then built with PSI-BLAST, and the sequences are aligned with MUSCLE. The

algorithm used in the first four iterations is given in Figure 1 of [28].

The proposed workflow is currently implemented as a series of Perl, BASH, and R scripts.

For PSI-BLAST computations, we bundled the results into a single file and transferred them

to the Kraken supercomputer [29]. We ran HSPp-BLAST on Kraken using 480 compute

cores. For the first four iterations, the mean (± standard deviation) result file size was 31 ±

2.8 GB. The COG profiles are computed on the Newton HPC cluster [30].

2.4. Algorithm optimization

In the first four iterations of the original implementation [28], we have analyzed 800,000

proteins from the newly sequences genomes [43]. Consequently, 513,923 proteins were

assigned to 4525 COG clusters. The results were comparable across the four iterations in

terms of the alignment score distribution and the sensitivity and specificity of the

classification approach [28]. The rate of cluster expansion varied across COGs and so did

the profile computation. The run time for profile computation depended on the size and

heterogeneity of the COG cluster. Figure 2 shows the run time as a function of COG size.

By our estimates, for COGs with 500 sequences or less, the profile computing run time is

sublinear, , and it is (n2). otherwise.

After iteration 4, a number of COG clusters were expanded to include over 2000 sequences.

This in turn increased the compute time. To make the algorithm more efficient, we

developed a new processing scheme (Figure 3). Under the new scheme, after each iteration,

we identify sufficiently expanded COGs that have at least 5% cumulative expansion in size.

For any sufficiently expanded COG that contains 2000 or more proteins, the sequences are

first pre-clustered with usearch. The resulting subcluster cores are then used to compute

COG profiles and consensus. Profiles for COGs with less than 5% cumulative expansion in

size remain unchanged.

To assess the effect of pre-clustering on profile compute time and oucomes, we performed a

small study. For that, we have selected all clusters that had at least 2000 sequences after the

third iteration of the original algorithm [28]. The four selected COGs were pre-clustered

using usearch, and the identified subcluster cores were used to compute the profiles. Table

I shows the reduction in sequence set size (relative) and in compute time when using

subcluster cores as compare with the entire COG clusters. The pre-clustering effectively

reduces the size of the sequence set and the time it takes to compute the profiles.

Further, we considered the 200,000 query proteins from iteration 4. At the fourth iteration,

4411 proteins were assigned to one of the COG0477, 0583, 0745, and 1028 using profiles

computed from the entire COGs. We then clustered the four largest COGs with usearch,

extracted the subcluster cores, and computed the consensus and profiles with

set_extractCore routine. For each of the query proteins, we then computed the PSI-

BLAST alignment score against the four largest COGs based on subcluster profiles and
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consensus. Figure 4 shows the correspondence between the PSIBLAST scores computed

using profiles of the entire COG cluster and those of subcluster cores only. Overall, the two

alignments scores show a high degree of correlation. While the difference in scores is

statistically significant, the magnitude is relatively low. The subcluster-based scores tend to

be higher than those based on the complete cluster with the exception of COG0477 that

shows negative bias (Figure 5, Table I). Note that we limited the display to alignment scores

that exceed the classification threshold, that is, those that have an alignment score big

enough to be classified.

From 4411 proteins assigned to the four COGs at the fourth iteration, 4238 proteins (96%)

would be classified into COGs. From these, 4131 (94%) would be assigned to the same

COG as in iteration 4, and 107 (2%) would be assigned to COGs different from those in

iteration 4. Also with preclustering, 203 (4.5%) proteins would not be assigned to any COGs

because of the low alignment scores.

These results show that the preclustering step can sufficiently reduce compute time without

affecting the quality of the output.

2.5. Algorithmic improvements

After the four iterations, the COG clusters in most cases were significantly expanded. This

expansion led to blastpgp program failing. The program did not crash, but rather produced

numerous warning messages of the form “ObjMgrNextAvailEntityID failed with idx 2048”.

Consequently, the program produced incorrect alignments.

Because the failure comes as a warning, it is rather easy to overlook. In our case, blastpgp

is first used to build COG cluster profiles and consensus, and then used to compute

alignment scores for protein sequences against given COG consensus and profiles. The

resulting profiles looked as expected and were successfully processed by the subsequent run

of blastpgp as an input. In fact, we only discovered this issue when optimizing the

algorithm for large COGs as described in the next section.

Later, we found numerous mentions of this warning by blastpgp users, most did not dwell

on it and mediated the problem by either shortening the size of the query or reducing the

number of passes. Although not incorporated into the blastpgp, the patch to fix this bug

has been successfully developed and implemented [44]. The reason for the warning and the

subsequent fail was due to assignedIDsArray variable not being reset after each iteration

of blastpgp or after each query sequence. The provided fix resets the array thus ensuring

sufficient number of IDs for the next round of computations. The solution has been

rigorously tested and implememented at the Finnish IT Center for Science [44]. In addition,

the implementation provides anywhere from 0% to 40% improvement in the compute speed

depending on the query [45].

3. RESULTS

Currently, we have tuned and deployed the new classification pipeline on Kraken

supercomputer. We have run the fifth iteration processing 400,000 proteins under the new
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classification scheme (Figure 3). As a result 201,837 proteins were assigned to 3862 clusters

with the median log alignment score of 5.5.

To monitor the accuracy of the classification approach, we used the results from the first

five iterations to compare the classification of the sequences in the original database with

that of their analogues. We performed BLAST to match sequences in the original COG

database with their newly sequenced analogues. After iteration 5, there were 10,894 high

certainty alignments (bit score > 300) out of which 10,142 (93%) had a matching COG

assignment.

We matched 190,194 sequences in the original COG with their newly sequenced analogues.

From these, 29,676 (15%) were selected for classifcation in iterations 1–5. From 29,676

selected for classification, 18,373 proteins were classified by both methods including 16,683

that were assigned to the same cluster by the two methods (Table II). The two methods gave

identical classification for23,276 (16,683C6,593 or 78%) of proteins. The classification

using new method differed from the original for 6400 (= 676 + 4034 + 18, 373 − 16; 683 or

22%) of proteins. These results confirm the quality of the classification to be consistent with

that expected from the design.

4. CONCLUSION

Functional protein annotation is one of the most important challenges in biology [4]. The

number of sequenced genomes increases rapidly. The Earth Microbiome Project alone is

expected to sequence 500,000 microbial genomes [3]. This is well over a 100-fold increase

in the number of sequenced microbial genomes and proteins currently contained in GenBank

[46]. The i5K Insect and other Arthropod Genome Sequencing Initiative are expected to

yield nearly 100 million new protein sequences [2]. Assigning functions to this glut of newly

sequenced proteins is an immense computational and scientific challenge.

In this paper, we propose improvements to the automated workflow to enable large-scale

functional annotation using HPC architectures. We use the workflow to annotate newly

sequenced bacterial genomes. Currently, we have processed 1,200,000 newly sequenced

proteins. The improvements include a revised scheme to compute profiles for large COGs.

The new scheme allows reduction in compute time while maintaining the accuracy of

classifications. The improved workflow relies on highly scalable parallel applications for the

alignment and classification analysis.

The workflow was developed for Extreme Science and Engineering Discovery Environment

supercomputers. Currently, we are working on enhancing and extending the wrapper. We

also are working on enabling streaming when the output from one tool serves as an input to

the next tool through the shared memory segments. Streaming allows running all tools to

process a single COG on the same compute node, thus effectively reducing compute time

and memory load. Streaming differs from other workflow automation systems such as

Airavata [47] that uses a course-grained approach where each step is performed as a separate

job.
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The scope of functional annotation task far exceeds resources and capabilities of the life

sciences community. The rate of increase in sequencing data requires new, trans-disciplinary

approaches to efficiently translate the influx of new data into ground-breaking discoveries.

Communities like Data-Enabled Life Sciences Alliance (DELSA Global) stand to promote a

collective innovation through interdisciplinary research and transdisciplinary engagement

[48, 49]. Grand challenges in modern life sciences can be only solved through concerted

effort of scientific collectives like DELSA Global.
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Figure 1.
The wrapper architecture. The high-level design of the parallel wrapper used to scale tools

on HPC architectures.
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Figure 2.
Profile compute time as a function of COG size with LOWESS smoother overlayed (red).

Both size and time are shown on natural log scale.
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Figure 3.
The algorithm to classify newly sequenced genomes into existing clusters.

Stanberry et al. Page 13

Concurr Comput. Author manuscript; available in PMC 2014 October 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4.
PSI-BLAST scores based on profiles computed using the entire COG cluster (horizontal

axis) versus profiles based on subcluster cores only. Shown are the subcluster-based score

above the classification threshold of 4.49 (on log scale) for iteration 4. The y D x line is

overlayed in red.
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Figure 5.
Distribution of PSI-BLAST score differences for using the subcluster cores versus the entire

COG.
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Table II

Iterations 1–5: number (%) of proteins analyzed classified by the new method and the original COG database.

By new method

Yes No

Original COG Yes 18,373 (62%) 4034 (14%)

No 676 (2%) 6593 (22%)
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