
Co-REX:A Collaborative Transformer for Try
Location Detection and Catch Exception Prediction

Jing Xiao
School of Computer Science

South China Normal University
Guangzhou, China

xiaojing@scnu.edu.cn

Tianyu Liang
School of Artificial Intelligence
South China Normal University

Foshan, China
2022024925@m.scnu.edu.cn

Abstract—Try Location Detection (TLD) and Catch Exception
Prediction (CEP) are two interrelated tasks in runtime exception
handling which is a crucial aspect in Java programming. The
performance of each task can significantly benefit from the
information provided by the other. However, previous methods
primarily treated these tasks in isolation or addressed them
separately using multi-task frameworks, which overlooked their
interconnected information flow. In this work, we propose a
Collaborative transformer model for Runtime EXception detector
(Co-REX), which establishes a bidirectional information flow
between TLD and CEP and enables mutual enhancement through
joint learning. Additionally, to evaluate the performance of Co-
REX, we collect a large number of Java methods from Gitee and
GitHub to create a benchmark dataset. Our experimental results
demonstrate that Co-REX achieves 78.1% accuracy outperform-
ing other state-of-the-art methods by a margin of at least 2.1%
for TLD. It also performs better by 3.1% improvement in terms
of Top-1 accuracy than others for CEP.

Index Terms—Try Location Detection, Catch Exception Pre-
diction, Runtime Exception, Collaborative Transformer

DOI reference number: 10.18293/SEKE2024-028

I. INTRODUCTION

Exception handling mechanism plays a pivotal role in
modern programming languages, serving as a critical tech-
nology for ensuring the robustness and reliability of software
systems [1]. For instance, the Java language employs try-catch
blocks, allowing developers to efficiently identify and manage
runtime exceptions, thereby facilitating exception recovery
mechanisms. This approach segregates the code dealing with
errors from the regular source code, significantly enhancing the
program’s comprehensibility and maintainability in the later
stages. However, crafting high-quality exception handling code
is a time-consuming endeavor. Consequently, the handling of
runtime exceptions automatically through deep learning have
garnered increasing attention in recent years.

In runtime exception handling, there are two critical tasks,
try location detection (TLD) and catch exception prediction
(CEP). Recent methods explore novel solutions based on
deep learning for TLD and CEP. NexGen [13] utilizes a
bidirectional long short term memory network (BiLSTM) and
attention mechanism to detect potential runtime exceptions
in Java code and generate appropriate handling code. [14]
aims to predict the location and type of potential runtime
exceptions by identifying correlations between certain code

elements and Java runtime exception types. [17] develops a
graph-based code representation that combines control flow
graphs, data flow graphs and abstract syntax trees into a unified
graph to capture both semantic dependencies and syntactic
structures. Although these methods demonstrate improved
experimental results for both TLD and CEP, they only focus
on the information flow of each task independently, lacking
an exploration of the interconnected information flow between
these two tasks. For example, in Figure 1, the invocation of
parseInt() on the method parameter value gives a clue about
NumberFormatException. With the mutual information
about TLD locating in statement 3 with parseInt(), we tend
to predict the exception type NumberFormatException
in CEP. On the contrary, when NumberFormatException
occupies a greater weight in CEP, we prefer to locate
the statement which contains parseInt or others related to
NumberFormatException.

public static String [] TransMax(String [] params, String max){
 for (int i = 0; i < params.length - 1; i++) {
 if (Integer.parseInt(params[i]) > Integer.parseInt(max)) {
 params[i] = max;
 }
 }
 return params;
}

1
2
3

5

8
7
6

4

Fig. 1. An example of Java method prone to runtime exception.

To address the previous lack of mutual information explo-
ration between TLD and CEP, we introduce Co-REX, a novel
framework for jointly dealing with these two tasks. The key
component in Co-REX is the collaborative transformer, which
effectively integrates bidirectional information flow between
the two tasks and enhance their performance in a mutual way.
Specifically, in the collaborative transformer, we first employ a
label attention mechanism over the labels of TLD and CEP to
generate the explicit input representations, which focus on the
exception location and exception type semantic information
respectively. Secondly, the explicit exception location and type
representations are fed into the collaborative transformer to
make mutual interaction. In particular, the exception location

Collaborative Transformer

C
ollaborative Transform

er

C
ollaborative Transform

er

C
ollaborative Transform

er

Word-Sentence Encoder

Output Decoder Layer

Linear

Linear

Attention

��1

BiLSTM

���

BiLSTM

...

BiLSTM

��2

BiLSTM

�1

BiLSTM

��

BiLSTM

...

BiLSTM

�2

BiLSTM

Attention

Word
Encoder

Sentence
Encoder

1 …… i …… K

0.3 …… 0.7 …… 0.1

37

Exception Type Score

1 …… i …… K

Exception Loacation Score

Prediction Decoder

Fig. 2. The overall architecture of the proposed Co-REX model.

representations are treated as queries and exception type repre-
sentations are considered as keys and values to obtain the type-
aware location representation. Meanwhile, the exception type
representations are used as queries and location representations
are treated as keys and values to get the location-aware
type representations. These above operations can establish the
bidirectional connection across TLD and CEP and allow them
to benefit from enhanced mutual information. Moreover, to
evaluate the proposed Co-REX model, we have compiled an
extensive dataset, containing more than 500K Java methods,
by gathering a vast array of Java projects from Gitee and
GitHub, followed by rigorous data cleansing efforts. The main
contributions of this paper are as follows:

• We introduce Co-REX, a novel collaborative transformer
model that enhances predictive accuracy and robustness
by enabling dynamic bidirectional information sharing
between TLD and CEP.

• We create a benchmark dataset with more than 500K Java
methods for runtime exception handling and the dataset
is available at https://github.com/lyc-mz/Co-REX.

• Extensive experimental results demonstrate that Co-REX
outperforms state-of-the-art approaches in terms of pre-
dictive performance.

II. RELATED WORK

In the field of software engineering, significant progress has
been made in the study of exception handling [1]. Recent
research [3], [4] has revealed a plethora of undocumented
runtime exceptions within Java libraries and highlighted the
challenges that developers may face in handling exceptions.
This underscores the necessity for automated techniques to
aid developers in identifying code that is prone to runtime
exceptions.

Static error detection technologies are continually evolving.
Traditional pattern-based techniques [5], [6], while effective,
require extensive manual effort to adapt to updates in code
and emerging error types. In contrast, studies [7], [8] have
automated the mining of API usage rules from extensive
source code, identifying violations as potential API misuse
defects, yet they lack specificity for high-frequency APIs.

Techniques proposed by [9] that use static and dynamic
analysis to detect uncaught exceptions are effective but may
face scalability issues in large-scale Java projects.

In exploration on automated exception handling techniques,
[10], [11] introduced heuristic search methods based on code
context, while [12] focused on recommending exception han-
dling code through GitHub code searches. However, these
innovative approaches overlooked other significant factors
outside the code context, such as the developers’ experience
and specific project requirements. NexGen [13] advanced
the prediction of try block locations and the generation of
exception handling code, while D-REX [14] offered token-
level, finer-grained predictions that target hard-to-capture run-
time exceptions, providing highly interpretable suggestions
to developers. Despite their effectiveness, there is a risk
these methods might overemphasize a global understanding
of the code at the expense of pinpointing critical exception
locations. Similarly, methods like [15] and [16], although
they are capable of leveraging program contexts to provide
relevant suggestions, they are not sufficient for handling more
complex or unusual exception scenarios. In terms of capturing
code semantics, [17] represented code as control flow graphs
(CFGs) and data flow graphs (DFGs). [18], [19] explored
the complementarity of different code representations such as
tokens, abstract syntax tree (AST) and CFGs through empirical
studies and multimodal attention mechanisms. These studies
indicate that diverse representational methods can provide a
more comprehensive perspective, aiding in a more precise
understanding and handling of code.

III. METHODOLOGY

In this section, we first introduce the two key tasks in this
paper. Then the Co-REX framework is presented in detail. As
depicted in Figure 2, the overall model architecture of Co-
REX consists of three parts: the word-sentence encoder, the
collaborative transformer and the prediction decoder.

A. Problem Formulation

TLD and CEP are two key tasks in runtime exception
handling. TLD is determining which statements may throw

���

���
C

oncat

FFN

����

����

��

��

��

��

��

Softm
ax

Softm
ax

��

T

T

Multiply
Add& Norm

��

��

Location Label
A

ttention
Type Label
A

ttention

Linear

Linear

Fig. 3. The Collaborative Transformer.

exceptions and should be enclosed by a try block, while CEP
seeks to predict the type of exceptions.

Given the code fragments C = {s1, s2, . . . , sN}, where N
is the number of statements. TLD is to determine one sequence
Y = {y1, y2, . . . , yN}, where yi = 0 represents that statement
si has no exception and yi = 1 means that statement si exists
exception. CEP aims to identify a set of exception types P =
{p1, p2, . . . , pM}, where M is the number of exception types
and pi means the probability of occurring exception type i.
If all statements are labelled by 0, it implies that the code
fragment will not generate exceptions at runtime. In this study,
nested try-catch blocks are not considered.

B. Word-Sentence Encoder

The initial stage in our model involves the encoding of
code fragments to generate context-sensitive embeddings for
each statement. Given a code fragment C = {s1, s2, . . . , sN},
where each statement si is composed of a sequence of tokens
Ti = {ti1, ti2, . . . , tiK} and each token tij in the sequence
is first initialized into a corresponding vector xij ∈ Rd. To
encode the token vectors into a statement-level representation,
we employ a BiLSTM network, which can capture dependen-
cies across the entire sequence by processing the sequence in
both forward and reverse directions. The output of BiLSTM
for each token tij is a hidden state hij ∈ Rd. Then, we
employ a attention mechanism over the hidden states to filter
out irrelevant tokens. The statement embedding Si ∈ Rd can
be calculated as follow:

Si =

N∑
j=1

αijhij , (1)

αij =
exp(uT

ijuw)∑N
j=1 exp(u

T
ijuw)

, (2)

uij = tanh(Wwhij + bw), (3)

where αij is the attention coefficient, Ww ∈ Rd×d, uw ∈ Rd

and bw ∈ Rd.

After obtaining a sequence of statement vectors, we analyze
their sequential dependencies by processing them through an-
other BiLSTM to obtain the hidden states h′

i = BiLSTM(Si).
We then apply an attention mechanism, assigning weights to
these statements to derive the updated embeddings S′

i ∈ Rd

so that:
S′

i = βih
′
i, (4)

βi =
exp(uT

i us)∑K
j=1 exp(u

T
i us)

, (5)

ui = tanh(W sh
′
i + bs). (6)

Then, we can generate the code fragment matrix F ∈ RN×d

by concatenating the updated statement embeddings.

C. Collaborative Transformer

The collaborative transformer is a central component of the
Co-REX framework, which can make the representation in
TLD updated with the guidance of associated CEP task and the
representation in CEP updated with the guidance derived from
TLD, achieving a bidirectional connection with the two tasks.
The detailed architecture of the collaborative transformer is
shown in the Figure 3.

To get the explicit exception location and exception type
representations for TLD and CEP, we perform label attention
over TLD and CEP label. We first treat the code fragment
matrix F as the input data T in for TLD and Cin for CEP.
Secondly, we regard the parameters of the fully-connected
TLD decoder layer and CEP decoder layer as exception
location embedding matrix W t ∈ Rd×T label

and exception
type embedding matrix W c ∈ Rd×Clabel

(T label and Clabel

represent the number of TLD and CEP label, respectively),
which represent the distribution of labels in a certain sense.

For TLD, we use T in as the query, W t as the key and
value to obtain the explicit exception location representations
T label with TLD label attention:

T label = T in + softmax(T inW t)W
T
t , (7)

where T label ∈ RN×d. Similarly, we treat Cin as the query,
W c as the key and value to get the exception type representa-
tions Clabel ∈ RN×d, which capture exception type semantic
information.

Then, we design different linear projections to map the
matrix T label and Clabel to queries (Qt,Qc), keys (Kt,Kc)
and values (V t,V c). To obtain the exception location rep-
resentations to incorporate the corresponding exception type
information, we utilize the typical self-attention mechanism to
model the input data. Specifically, we treat Qt as queries, Kc

as keys, V c as values and employ layer normalization function
to generate the type-aware location representation T ′ ∈ RN×d.
The process can be expressed as the following equations:

T ′ = LayerNorm(T label + softmax(
QtK

T
c√

dk
)V c). (8)

Similarly, we treat Qt as queries, Kt as keys and V t as values
to obtain the location-aware type representation C ′ ∈ RN×d.

Furthermore, we apply a feed-forward network (FFN) to
integrate the information flows of exception location and
exception type. We first concatenate T ′ and C ′ to get H ∈
RN×2d and then feed it into FFN as follow:

T out = LayerNorm(T ′ + FFN(H)), (9)

Cout = LayerNorm(C ′ + FFN(H)), (10)

FFN(H) = max(0,HW 1 + b1)W 2 + b2, (11)

where T out ∈ RN×d and Cout ∈ RN×d are the obtained
representations of exception location and exception type, re-
spectively.

D. Prediction Decoder

In order to conduct sufficient interaction between the two
tasks, we apply a stacked collaborative transformer with multi-
ple layers. After stacking L layer, we obtain the final exception
location representations T final ∈ RN×d and final exception
type representations Cfinal ∈ RN×d.

For TLD decoder layer, we predict the result of whether
each statement of code fragment has an exception as follow:

St = σ(T finalW t), (12)

where St ∈ RN×T label

is the score vector of label in TLD
and W t ∈ Rd×T label

is the training parameters. Generally, σ
is the sigmoid function, T label = 1 and St(i) > 0.5 indicates
statement i has a runtime exception while St(i) <= 0.5 means
there is no exception.

For CEP decoder layer, we use the following formula to
obtain the exception score Sc ∈ RN×T label

:

Sc = σ(CfinalW c), (13)

where σ is the ReLU function, W c ∈ Rd×Clabel

is the training
parameters and exception label ŷ can be calculated by ŷ =
argmax(Sc(i)).

IV. EXPERIMENTAL RESULTS

This section first details the datasets, baselines and related
experiments. Then, the results of related experiments are
reported to justify our superiority. Finally, we discuss our
observations from the results.

A. Data Collection

To evaluate the performance of Co-REX, we create a run-
time exception location detection and type prediction dataset.
Firstly, we develop automated scripts to clone Java projects
from Gitee and GitHub. In particular, we target projects
publised after 2010 with more than 50 star ratings to make
sure that we include only recent and well-regarded code. Then
we batch process these projects to extract Java methods that
were suitable for analysis by using the JavaProjectBuilder tool.
Additionally, we focus on methods that contained only a single
try block and whose length ranged between 3 to 50 lines,
to maintain consistency and relevance to typical exception
handling scenarios.

From this initial extraction, we conduct a statistical anal-
ysis to refine our dataset further. We select 291,008 Java
methods containing runtime exceptions and collect 227,240
no exception Java methods that match the exception methods
in frequency and quantity to balance the dataset. The final
benchmark dataset comprises 518,248 Java methods, providing
a robust foundation for evaluating our model’s performance
across a wide range of exception handling scenarios and
enhancing the reliability of our experimental results.

B. Baselines

To evaluate the effectiveness of Co-REX, we use the fol-
lowing models as baselines:

• Conditional Random Field (CRF) is a sequence modeling
framework used to predict program properties. It takes
a raw token sequence as input and maximizes the joint
probability of the entire label sequence for a given
observation.

• BiLSTM [2] is effective for modeling sequence data and
access both past and future input features at a given
position to enhance performance.

• NexGen [12] employs BiLSTM and attention mecha-
nisms to generate token and statement embeddings, using
a binary classifier to predict if a statement throws an
exception.

• D-REX [13] accurately predicts exception types and
provides interpretable suggestions by tokenizing the se-
quence and using a position-aware transformer model.

C. Implementation Details

Due to the different characteristics of TLD and CEP, we
evaluate the performance of Co-REX on the two tasks by
different approaches.

In TLD experiments, we utilize a dataset comprising
253,928 Java methods associated with the top 53 types of
exceptions and 272,688 no exception Java methods. Each
type of exception uses for experiments occurring more than

350 times, which ensures a diverse and representative sample
of common exception handling patterns. To evaluate our
model, we employ the Accuracy, Precision, Recall and F1
Score as performance metrics, which are common metrics
in other methods. In CEP experiments, we adopt a rigorous
evaluation strategy that considers only the Top-1 accuracy
for each method. The core of this Top-1 accuracy is that
for a given code segment, the model must predict a runtime
exception type with the highest probability. Compared to Top-
k accuracy methods, this approach is statistically stricter as
it does not consider suboptimal predictions. To validate the
exception type prediction capability of Co-REX, we consider
to compare the performance of CEP across datasets with
different numbers of exception types. Specifically, we filter
the data to create datasets containing the top 8 most frequent
exception types (8 ET), the top 25 exception types (25 ET) and
the top 53 exception types (53 ET), resulting in datasets with
191,022 Java methods, 233,083 Java methods and 251,207
Java methods, respectively.

To ensure the reliability and generalizability of the exper-
imental results, we split the datasets into training, validation
and test sets in a ratio of 7:1:2. In each experiment, the Adam
optimizer with a learning rate of 0.001 and a momentum
of 0.9 is used to minimize the loss value. The embedding
dimension d, batch size, dropout rate are set to 128, 64 and
0.1 respectively. All models are implemented using Python
and PyTorch on a Linux server.

TABLE I
PERFORMANCE(%) COMPARISON OF ALL METHODS FOR TLD.

Methods Precision Recall F1 score Accuracy
CRF 65.3 27.6 37.3 54.4
BiLSTM 74.6 69.8 74.1 69.6
NexGen 80.9 74.5 77.4 75.5
D-REX 82.4 74.8 78.2 76.0
Co-REX 84.7 80.3 82.0 78.1

D. Performance Analysis

The prediction performance of our model and the other
baselines for TLD is shown in Table I. Overall, Co-REX
achieves better prediction results than the other baselines,
which exhibits its superior ability in TLD. In the following,
we present thorough observations and analyses of the experi-
mental results:

In the benchmark dataset, it achieves 84.7% Precision,
80.3% Recall, 78.1% Accuracy and an F1 score of 82%.
Additionally, Co-REX shows improvements over NexGen in
Accuracy, Precision, Recall and F1 score by 3.8%, 5.8%, 4.6%
and 3.6%, respectively. Compared to the current state-of-the-
art D-REX, Co-REX performs better by 2.3%, 5.5%, 3.8%
and 2.1% in Accuracy, Precision, Recall and F1 score. These
results indicate that considering only source code tokens is
insufficient to capture code semantics and it is also necessary
to pay attention to the exception type information in the

method, which helps locate the exceptions. Intuitively, Co-
REX greatly improves its performance in locating anomalies
by integrating anomaly location information with anomaly
type information and collaborating with each other through
information exchange.

TABLE II
TOP-1 ACCURACY(%) COMPARISON OF ALL METHODS FOR CEP.

Methods 8 ET 25 ET 53 ET
BiLSTM 63.9 59.3 55.4
NexGen 84.0 81.5 79.3
D-REX 83.2 81.1 78.5
Co-REX 85.9 83.4 82.4

The performance in terms of Top-1 accuracy of Co-REX
and the other baselines for CEP is shown in Table II. It
is evident that the pure BiLSTM model performs the worst
among the methods. It achieves only 63.9%, 59.3% and 55.4%
accuracy on the 8 ET, 25 ET and 53 ET dataset respectively.
The NexGen reaches an accuracy of 84%, 81.5% and 79.3%.
D-REX obtains only 83.2%, 81.1% and 78.5%, indicating
that merely using token and method location information is
insufficient for accurately predicting exception types. It is
noteworthy that Co-REX outperforms NexGen by 1.9%, 1.9%
and 3.1% accuracy on the 8 ET, 25 ET and 53 ET dataset.
The result means that exception type prediction accuracy
can be improved by the guidance of the exception location
information.

E. Ablation study

To further understand the contributions of individual com-
ponents within the Co-REX model, we conduct a series of
ablation experiments in the benchmark dataset. Figure III show
the result of this ablation experiment.

Impact of Explicit Representations. We remove the excep-
tion location label attention layer and replace T label with T in.
This means that we only get the exception type representation
explicitly, without the exception location semantic informa-
tion. We name it as w/o location label attention. Similarly, we
perform the w/o type label attention experiment. The results
show that TLD and CEP performance drops, which demon-
strates the initial explicit exception location and exception type
representations are critical to the collaborative transformer
between the two tasks.

Impact of Collaborative Transformer. In this experiment,
we use the traditional transformer instead of the collaborative
transformer, namely w/o collaborative transformer, thereby
preventing TLD and CEP from sharing information bidirec-
tionally. The results show a significant decrease in overall
metric for TLD and CEP. The reason is that the traditional
transformer only model the interaction implicitly while the
collaborative transformer can explicitly consider the cross-
impact between two tasks.

Impact of Bidirectional Connection. We examine the
effect of bidirectional versus unidirectional information flow

TABLE III
PERFORMANCE(%) OF ABLATION EXPERIMENTS FOR TLD AND CEP.

Model TLD CEP
Precision Recall F1 score Accuracy Accuracy

Co-REX 84.7 80.3 82.0 78.1 82.4

w/o location label attention 83.8 (↓0.9%) 79.2 (↓1.1%) 80.4 (↓1.6%) 77.2 (↓0.9%) 82.2 (↓0.2%)
w/o type label attention 84.4 (↓0.3%) 79.9 (↓0.4%) 81.1 (↓0.9%) 77.8 (↓0.3%) 81.2 (↓1.2%)
w/o collaborative transformer 82.6 (↓2.1%) 77.3 (↓3.0%) 78.7 (↓3.3%) 76.2 (↓1.9%) 78.8 (↓3.6%)
with location-to-type only 83.4 (↓1.3%) 78.0 (↓2.3%) 79.7 (↓2.3%) 77.5 (↓0.6%) 81.9 (↓0.3%)
with type-to-location only 84.3 (↓0.4%) 78.7 (↓0.6%) 81.0 (↓1.0%) 77.8 (↓0.3%) 80.3 (↓2.1%)

by keeping only one direction: either from location to type or
from type to location. This is achieved by using one type of
information representation as queries to attend to the other.
We refer to these approaches as with location-to-type only
and with type-to-location only. The results show that
Co-REX outperforms both with location-to-type only and
with type-to-location only. This suggests that modeling the
mutual interaction between TLD and CEP enhances both
tasks in a mutual way, whereas unidirectional models only
consider interaction from a single direction.

V. CONCLUSION

In this study, we introduce Co-REX, a novel collaborative
transformer model designed to address two interrelated tasks
in runtime exception handling: TLD and CEP. Our approach
innovatively establishes a bidirectional information flow be-
tween TLD and CEP, allowing for mutual enhancement and
more robust model performance. The experimental results
on the benchmark dataset clearly demonstrate that Co-REX
outperforms existing state-of-the-art methods, providing great
improvements in Precision, Recall, F1 score and Accuracy.
The ablation study further underscores the critical role of the
collaborative transformer module in enhancing task intercon-
nectivity and performance. By enabling dynamic information
sharing, Co-REX effectively leverages the interdependencies
of TLD and CEP, illustrating a promising direction for future
research in automated exception handling.

VI. ACKNOWLEDGEMENT

This paper is supported by the National Natural Science
Foundation of China No. 62177015.

REFERENCES

[1] E. A. Barbosa, and A. Garcia, ”Global-aware recommendations for
repairing violations in exception handling,” In Proceedings of the 40th
International Conference on Software Engineering, pp. 858-858, 2018.

[2] M. Schuster, and K. K. Paliwal, ”Bidirectional recurrent neural net-
works,” IEEE transactions on Signal Processing, vol. 45, no. 11, pp.
2673-2681, 1997.

[3] B. Cabral, and P. Marques, ”Exception handling: A field study in
java and. net,” In ECOOP 2007–Object-Oriented Programming: 21st
European Conference, pp. 151-175, 2007.

[4] H. Shah, C. Gorg, and M. J. Harrold, ”Understanding exception
handling: Viewpoints of novices and experts,” IEEE Transactions on
Software Engineering, vol. 36, no. 2, pp. 150-161, 2010.

[5] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, ”Summarizing source
code with transferred api knowledge,” 2018.

[6] E. Aftandilian, R. Sauciuc, S. Priya, and S. Krishnan, ”Building useful
program analysis tools using an extensible java compiler,” In 2012 IEEE
12th International Working Conference on Source Code Analysis and
Manipulation, pp. 14-23, 2012.

[7] P. Bian, B. Liang, W. Shi, J. Huang, and Y. Cai, ”Nar-miner: discovering
negative association rules from code for bug detection,” In Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing, pp. 411-422, 2018.

[8] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, ”Bugs as
deviant behavior: A general approach to inferring errors in systems
code,” ACM SIGOPS Operating Systems Review, vol. 35, no. 5, pp.
57-72, 2001.

[9] J. Wu, S. Liu, S. Ji, M. Yang, T. Luo, Y. Wu, and Y. Wang, ”Exception
beyond Exception: Crashing Android System by Trapping in’ Uncaught
Exception’,” In 2017 IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering in Practice Track, pp. 283-
292, 2017.

[10] E. A. Barbosa, A. Garcia, and M. Mezini, ”Heuristic strategies for
recommendation of exception handling code,” In 2012 26th Brazilian
Symposium on Software Engineering, pp. 171-180, 2012.

[11] E. A. Barbosa, A. Garcia, and M. Mezini, ”A recommendation system
for exception handling code,” In 2012 5th International Workshop on
Exception Handling, pp. 52-54, 2012.

[12] M. M. Rahman, and C. K. Roy, ”On the use of context in recommending
exception handling code examples,” In 2014 IEEE 14th International
Working Conference on Source Code Analysis and Manipulation, pp.
285-294, 2014.

[13] J. Zhang, X. Wang, H. Zhang, H. Sun, Y. Pu, and X. Liu, ”Learning to
handle exceptions,” In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, pp. 29-41, 2020.

[14] F. Farmahinifarahani, Y. Lu, V. Saini, P. Baldi, and C. Lopes, ”D-REX:
Static Detection of Relevant Runtime Exceptions with Location Aware
Transformer,” In 2021 IEEE 21st International Working Conference on
Source Code Analysis and Manipulation, pp. 198-208, 2021.

[15] Y. Li, S. Ying, X. Jia, Y. Xu, L. Zhao, G. Cheng, B. Wang, and J.
Xuan, ”Eh-recommender: Recommending exception handling strategies
based on program context,” In 2018 23rd International Conference on
Engineering of Complex Computer Systems, pp. 104-114, 2018.

[16] S. Mahajan, N. Abolhassani, and M. R. Prasad, ”Recommending stack
overflow posts for fixing runtime exceptions using failure scenario
matching,” In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 1052-1064, 2020.

[17] R. Li, B. Chen, F. Zhang, C. Sun, and X. Peng, ”Detecting runtime
exceptions by deep code representation learning with attention-based
graph neural networks,” In 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering, pp. 373-384, 2022.

[18] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D.
Poshyvanyk, ”Deep learning similarities from different representations
of source code,” In Proceedings of the 15th international conference on
mining software repositories, pp. 542-553, 2018.

[19] Y. Wan, J. Shu, Y. Sui, G. Xu, Z. Zhao, J. Wu, and P. Yu, ”Multi-
modal attention network learning for semantic source code retrieval,” In
2019 34th IEEE/ACM International Conference on Automated Software
Engineering, pp. 13-25, 2019.

