2018 Volume E101.A Issue 1 Pages 129-137
Physically Unclonable Function (PUF) is a cryptographic primitive that is based on physical property of each entity or Integrated Circuit (IC) chip. It is expected that PUF be used in security applications such as ID generation and authentication. Some responses from PUF are unreliable, and they are usually discarded. In this paper, we propose a new PUF-based authentication system that exploits information of unreliable responses. In the proposed method, each response is categorized into multiple classes by its unreliability evaluated by feeding the same challenges several times. This authentication system is named Q-class authentication, where Q is the number of classes. We perform experiments assuming a challenge-response authentication system with a certain threshold of errors. Considering 4-class separation for 4-1 Double Arbiter PUF, it is figured out that the advantage of a legitimate prover against a clone is improved form 24% to 36% in terms of success rate. In other words, it is possible to improve the tolerance of machine-learning attack by using unreliable information that was previously regarded disadvantageous to authentication systems.