

Abstract—This paper describes an algorithm for creating hash

function, resistant for quantum computer. The given approach

is based on the problem of solving a system of polynomial

equations in integers, where the number of equations is less than

the number of unknown parameters. The developed algorithm

is parameterized so the result of the hash function depends on

several parameters, therefore, it will take considerably longer to

select the solution of the task. The avalanche effect is about 50%,

collision is impossible because the task to find a solution of the
described system of equations with a degree greater than 3 is

algorithmically unsolvable. This hash function was developed

for blockchain to ensure its integrity, but it can also be used in

any application where a hash function is needed.

I. INTRODUCTION

INCE Peter Shor has been demonstrated the solvability of

the problem of discrete logarithm factorization using

quantum computer in 1995 [1], there was become actually a

post-quantum cryptography. It was necessary to develop such

algorithms that could not be solved with the help of quantum

computers.

 Blockchain technology become popular for different kinds

of applications: in banking, gambling, registries and etc. It

uses hash function – cryptographically primitive for

supporting invariability and consistency of data.

Hashing in blockchain is the process of converting an array

of input data of arbitrary length into an output bit string. Hash

function uses for making a digest of blocks or some another

data, stored not only in blockchain. Hash functions guarantee

the "irreversibility" of data.

 But inventing quantum computers will force to develop a

hash function resistant to the quantum computers.

In developing the hash function algorithm for the

blockchain technology, some requirements is important: hash

function should be resistance to collisions of first and second

kind and it should have a high avalanche effect.

A. Motivation

At present, post-quantum cryptography is based on four

approaches that guarantee resistance to quantum computers

These are Code-based cryptography, Hash-based Digital

Signature Schemes, Multivariate Public Key Cryptography,

Lattice-based Cryptography [2].

Our algorithm is based on problem where the number of

equations is less than the number of unknown parameters.

 This work was not supported by any organization

B. Algorithm Idea

As already mentioned, post-quantum cryptography is based

on algorithmically unsolvable problems. We describe two

complexity problems (we call it A and B) that are suitable for

us. Our approach is constructed on Problem B, Problem A is

its particular case. The work of Aitai [3] is equivalent to

Problem A. In this section, we will show the transition from

problem A to problem B and justify using of these

computational problems.

Problem A. It is needed to find the solution of a system of

linear Diophantine equations in integers.

Strongly underdefinished system of equations or a system

where the number of equations is substantially less than the

number of unknowns is given:

∑ 𝑎𝑖𝑗𝑥𝑗 = 𝑑𝑖𝑛
𝑗=1 𝑎𝑖𝑗 , 𝑑𝑖 ∈ Ζ,

𝑖 = 1,2, … , 𝑚, 𝑗 = 1,2, … , 𝑛, 𝑛 > 𝑚

If there are restrictions, such as 𝑥𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑛 or 𝑥𝑗 ∈ {0, 1}, 𝑗 = 1,2, … , 𝑛 - this task becomes the task of

integer programming. Particularly interesting for encryption

is the case where 𝑛 > 𝑚 (it is a strongly underdefinished

system of linear equations). In particular, if 𝑚 = 1 and 𝑥𝑗 ∈{0, 1}, 𝑗 = 1,2, … , 𝑛, then this task is the task of the knapsack

problem or subset-sum problem.

The scheme of the hash function, described by M. Aitai in

1996, is a special case of problem A. In the original article it

tells about the lattice theory, but we show that the problem on

lattices is equivalent to the described problem A.

Let us describe the scheme of the hash function of M. Aitai.

A randomly selected matrix Α ∈ Ζ𝑝𝑛×𝑚of dimension 𝑛 × 𝑚

is chosen, where 𝑛 < 𝑚. Vector x ∈ Ζ𝑝𝑚(𝑑 < 𝑝) will be

hashed.

For this the system Α𝑥 = 𝑚𝑜𝑑(𝑝) ∈ Ζ𝑝𝑛 is calculated,

where Α𝑥 is the hash of the vector x.

Note, that the parameters are set: n, m, q, 𝑑 > 1, 𝑛 < 𝑚, 𝑞 > 𝑑, Α ∈ Ζ𝑝𝑛×𝑚.

We note that the solution of equation Α𝑥 = 𝑚𝑜𝑑(𝑝) ∈ Ζ𝑝𝑛

is a problem A, which is guarantees a solution. Consequently,

the solution of the system of linear equation where the number

of equations is less than the number of unknowns is

equivalent to the problem on lattices.

S

Parametric Hash Function Resistant to Attack by Quantum Computer

Sergey Krendelev
Novosibirsk State University,

JetBrains research, Novosibirsk,

Russia

Email: s.f.krendelev@gmail.com

Polina Sazonova
Novosibirsk State University,

JetBrains research, Novosibirsk,

Russia

Email: psazonova@gmail.com

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 387–390

DOI: 10.15439/2018F254

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 387

Problem B. It is necessary to find a solution of a system of

polynomial equations in integers. 𝑓𝑖(𝑥1, 𝑥2, … , 𝑥𝑛) = 0, 𝑖 = 1,2, … , 𝑚

Problem B is algorithmically unsolvable. In addition, if the

degrees of polynomials ≥ 3 and 𝑛 > 𝑚, then the problem is

algorithmically unsolvable in integers. This conclusion

follows from solution of 10th Hilbert problem.

In this paper, we consider a variant of constructing a hash

function based on the problem B. In this type of hash function,

a set of parameters can be used to enhances the persistence of

the hash function. If you build a set of hash functions that

depends on a large number of parameters, you get an object

of the Universal hash type [4].

II. ALGORITHM DESCRIPTION

As our algorithm is parametric, first we need to choose

parameters. In based version the parameters is: module p, size

of dimension 𝑚 × 𝑛, set of starting coefficients ∝1, ∝2, … , ∝𝑛, size of block b, rules of forming summands ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑚(𝑥).

Let us consider algorithms parameters. We also have

developed requirements for parameters for the better result.

All calculations will be performed on the module p. The

module should be a sufficiently large prime number.

We will generate some set of vectors according to special

rules derived from the parameters ∝1, ∝2, … , ∝𝑛, ∝𝑖∈ 𝛧𝑝𝑛 , 𝑖 =1,2, … , 𝑛, where n - is an arbitrary integer. The dimension of

these vectors is n.

Suppose that some hashed document is described by a set

of numbers 𝑥 = (𝑥1, 𝑥2, …). Each number is a certain number

of bits, assembled into a conditional block. Our block can be

8, 10, 12, etc. bit. The size of the block in bits b is another

parameter of our algorithm.

A rule of generation of functions ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑚(𝑥)

should be defined as a parameter. It will determine the order

of formation of the terms of our hash function.

The computation procedures of the proposed algorithm are

illustrated as following.

Step 1: data preparation.

On this step, we prepare a string of decimal integers 𝑥 =(𝑥1, 𝑥2, … , 𝑥𝑚) according to the input file.

Next, we prepare a matrix A = (𝑎1, 𝑎2, … , 𝑎𝑚), forming on

the set of starting coefficients ∝1, ∝2, … , ∝𝑛. Vector 𝑎𝑖
construct as a recurrent sequence according to the formula 𝑎𝑖 =∝1 𝑎1 +∝2 𝑎2+. . . +∝𝑛 𝑎𝑛

Step 2: constructing a hash function.

Then the following vector will be a hash: 𝐻(𝑥) = [𝑎1ℎ1(𝑥) + 𝑎2ℎ2(𝑥) + ⋯ + 𝑎𝑚ℎ𝑚(𝑥)]𝑚𝑜𝑑(𝑝)

Functions ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑚(𝑥) in hash function can be

implemented as follows, but we can choose any rule for

forming ℎ𝑖(𝑥): 𝐻(𝑥) = [𝑎1𝑥1𝑥2 + 𝑎2𝑥2𝑥3 + ⋯ + 𝑎𝑚𝑥𝑚𝑥1]𝑚𝑜𝑑(𝑝)

The size of the output string of the hash function is 𝑛 × 𝑚.

Step 3: modifications.

On the large file we have a high probability when some

terms will be a zero. The main cause of it is a rule of forming

a recurrent sequence, when zero in some terms is cumulated.

To avoid it in a base version of algorithm we use a cyclic shift.

In another version, we can use replacing on zero-component

to fixed number which can be a parameter too.

Thus, we have constructed a hash-scheme with parameters,

where the parameters are: module p, vector dimension n,

block size b, terms generation rules ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑚(𝑥).

III. THE TOY EXAMPLE

On the first step parameters is chosen. It is a simple number

p, which will be a module; for example here p = 4049, the

dimension of the vector n = 4, m = 4, the size of the block is

b = 6 bits, the rule of generating multipliers in the term is 𝑥𝑖𝑥i+1, window size is 2, coefficients ∝1, ∝2, ∝3, ∝4 =

(3174,3507,860,1294).

On the first step, we preparing a data.

Data from the file represented as decimal integers is 𝑥1, 𝑥2, …, where each x is 6 bits. We separate 32 bits file on

block of 6 bit and convert to decimal integers and the result is

(34, 16, 23, 63).

Next, we need to generate coefficients A from starting

coefficients ∝1, ∝2, … , ∝𝑚= (3507,860,1294,3174)

(∝1∝2∝3∝4) , ∝𝑖∈ Ζ4049, 𝑖 = 1,2,3,4
Each 𝑎𝑘 is calculate using recurrent sequence. On first step

it will be 𝑎𝑘 = 3507𝑎𝑘−1 + 860𝑎𝑘−2 + 1294𝑎𝑘−3 +3174𝑎𝑘−4.

Let 𝑎𝑖 is:

𝑎0 = (1000) ; 𝑎−1 = (0100) ; 𝑎−2 = (0010) ; 𝑎−3 = (0001)

Consequently:

𝑎1 = (350786012943174)

When we read the elements of a file by 2 items and

calculate the product, it can turned to 0, if any one term turns

to 0. Therefore, it is necessary to provide a decision of this

problem in this case. We make a cyclic shift of numbers in

vector 𝑎𝑖 on 1 positions.

Next step we need to construct and calculate hash function: 𝐻(𝑥) = [𝑎1𝑥1𝑥2 + 𝑎2𝑥2𝑥3 + 𝑎3𝑥3𝑥4 + 𝑎4𝑥4𝑥1]𝑚𝑜𝑑(𝑝)

Let us construct the first term for the hash 𝑎1𝑥1𝑥2:

(350786012943174) × 34 × 16 = (729220534591782) 𝑚𝑜𝑑(4049)

388 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

Now the next vector according to the recurrence sequence

should be calculated:

𝑎2 = 3174 (729220534591782) + 3507 (1000) + 860 (0100) + 1294 (0010)

= (1325285833213664) 𝑚𝑜𝑑(4049)

We calculate the product from the document data to the

generated vectors: (1325285833213664) × 16 × 23 = (17203053337935) 𝑚𝑜𝑑(4049)

Modify the first two terms of hash:

(729220534591782) + (17203053337935) = (2449121027691817) 𝑚𝑜𝑑(4049)

And so on by induction. The final result of hash function

will be (1679, 1137, 1883, 213).

IV. POSSIBLE MODIFICATIONS

The described algorithm can be modified as follows.

Modification 1.The nonlinear case of the formation of terms

for the hash function should be considered.

We need to define a rule where the data from the input file

will be combined and be distributed according to the hash

function.

For example, 𝐴𝑥 = [𝑎1𝑥1𝑥2𝑥3 + 𝑎2𝑥2𝑥3𝑥4 + ⋯ + 𝑎𝑚𝑥𝑚𝑥1𝑥2]𝑚𝑜𝑑(𝑝)

The operations of multiplication are made on modulo p.

Thus, we can consider other types of polynomials for the

nonlinear case.

Modification 2. The nonlinear case should be considered

when multiplications are made according to some

multiplication table.

This table can be generated according to the hashed data.

V. SECURITY PROOF

C. Theoretical Foundation

For a hash function 𝑓 will be cryptographically stable, it

must satisfy the follow three basic requirements which most

hash functions are based in cryptography:

1. Irreversibility or resistance to restoration of the prototype:

for a given value of a hash function y, a data block x for

which 𝑓(𝑥) = 𝑦 must not be computed.

2. Resistance to collisions of the first kind or restoration of

the second inverse images: for a given message x it must

be computationally impossible to find another message z

for which 𝑓(𝑥) = 𝑓(𝑧).

3. Resistance to collisions of the second kind: it must be

computationally impossible to select a pair of messages x,

z having the same hash.

These requirements are not independent:

1. An invertible function is unstable to collisions of the first

and second kind.

2. A function that is unstable to collisions of the first kind is

not resistant to collisions of the second kind; the converse

is not true.

Let us consider how the collision for our variant of the hash

function will look. Let the same hash function be given for

two different x and z documents: 𝐻(𝑥) = [𝑎1ℎ1(𝑥) + 𝑎2ℎ2(𝑥) + ⋯ + 𝑎𝑚ℎ𝑚(𝑥)]𝑚𝑜𝑑(𝑝) 𝐻(𝑧) = [𝑎1ℎ1(𝑧) + 𝑎2ℎ2(𝑧) + ⋯ + 𝑎𝑚ℎ𝑚(𝑧)]𝑚𝑜𝑑(𝑝)

Collision means that if 𝑥 ≠ 𝑧, but 𝐻(𝑥) = 𝐻(𝑧).

Suppose for our algorithm the source document is known.

Then, taking into account that the vectors 𝑎1, 𝑎2, … , 𝑎𝑚 are

formed according to the parameters and the special rules to

the function ℎi(𝑥), 𝑖 = 1,2, … , 𝑚 calculations, the attacker is

aware of the following information: vectors 𝑎1, 𝑎2, … , 𝑎𝑚, 𝛼𝑖 = ℎi(𝑥), 𝑖 = 1,2, … , 𝑚 and 𝑣 = ∑ 𝛼𝑖𝑎𝑗𝑚𝑗=1 𝑚𝑜𝑑(𝑝). The

vector v is a hash of the document.

We need to solve equation 𝐻(𝑥) = 𝑑 to find collisions, but

this problem is equivalent to problem B, described in the

section I.B of this article.

Thus, we demonstrated that a collision is theoretically

possible. However, we affirm that there is no sense to find a

collision for our algorithms, since the problem is

algorithmically unsolvable if there are polynomials in the

system of equations with a degree greater than 3.

For cryptographic hash functions it is also important that

with the slightest change in the argument, the value of the

function changes greatly (avalanche effect). In particular, the

value of a hash should not give a leak of information, even

about individual bits of the argument. This requirement is the

key to the crypto-stability of algorithms for hashing user

passwords to obtain keys.

D. Implementation Details

Describing algorithm was implemented in Python 3.3 for

testing; measurements were made on a computer with an Intel

Core i5-4210U of 2 cores, operating at 2.4Ghz. The PC

contains 8 Gb RAM.

For testing avalanche effect, we calculated the hash function

from the source file, changed an arbitrary bit in the source file

and calculated the hash function from the modified file. Then

a bitwise comparison was made. In the case of any documents

of any size, when changing 1 bit in the source file, the hashes

of the primary and modified files coincide only by 47-50%

with a bitwise comparison.

Moreover, the best parameters at which the maximum

number of discrepancies is reached is a sufficiently large

prime number and the large dimension of the vector K is about

100.

The speed of the algorithm is about 0.007 sec for a 1 kb

file, an average of 70 seconds for a 500 kb file, an average

POLINA SAZONOVA, SERGEY KRENDELEV: PARAMETRIC HASH FUNCTION RESISTANT TO ATTACK BY QUANTUM COMPUTER 389

500 seconds for a 1 mb file. The algorithm works both with

text data, and with photo, video and audio content. Obviously,

realization of this algorithm should be optimized to reduce the

processing speed of the file.

VI. CONCLUSION

In this article is proposed an algorithm of hash function

resistant to quantum computer. This algorithm uses

algorithmically unsolvable problem of finding a solution to a

system of polynomial equations in integers. Our algorithm is

parametrized, which increases the decision-making time. It is

resistant to collisions, because the problem on which the

algorithm is built is algorithmically unsolvable (in the case

where the degree of the polynomial is greater than 3). The

avalanche effect is about 47-50% with a bitwise comparison.

The algorithm can work both with text data, with photo, video

and audio contents.

This algorithm was developed for blockchain technology

to increase its resistance to attacks by quantum computer. It

can also be used in any application where a hash function is

needed.

VII. REFERENCES

[1] Shor P.W. “Polynomial-time algorithms for prime factorization

and discrete logarithms on a quantum computer”, SIAM J.
Com., 26:5, 1997, pp. 1484-1509.

[2] Bernstein D. J., Buchmann J., Dahmen E. “Post-Quantum

Cryptography”. Springer-Verlag Berlin Heidelberg, 2009.

[3] M. Ajtai. “Generating Hard Instances of Lattice Problems”. In:
28th ACM Symposium on Theory of Computing, ACM,

Philadelphia, USA, 1996, pp. 99–108.

[4] L. Carter and M. Wegman. “Universal Classes of Hash
Functions”. In: J. Computer and System Sciences, Vol. 18(2),
1979, pp. 143–154.

[5] O. Goldreich, H. Krawczyk and M. Luby. “On the existence of
pseudorandom generators”. In: SIAM J. on Computing, Vol.
22-6, 1993, pp. 1163–1175.

[6] J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. “A
Pseudorandom Generator from any One-way Function”. In:
SIAM J. on Computing, Vol. 28 (4), 1999, pp. 1364–1396.

[7] A.K. Lenstra, H.W. Lenstra, L. Lov´asz. “Factoring
Polynomials with Rational Coefficients”. In: Mathematische
Annalen, vol. 261(4), 1982, pages 515–534.

[8] C.P. Schnorr. “A more efficient algorithm for a lattice basis
reduction”. In: Journal of Algorithms, Vol. 9, 1988, pages 47–
62.

390 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018

