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Abstract—In this paper we suggest a novel systematization of
Information Retrieval and Natural Language Processing prob-
lems. Using this rather general description of problems we are
able to discuss and proof the equivalence of some problems. We
provide reformulations of well-known problems like Named En-
tity Recognition using our novel description and discuss further
research and the expected outcome. We will discuss the relation
of two problems, cluster labeling and search query finding. With
these results we are able to provide a novel optimization approach
to both problems. This novel systematization approach provides
a yet unknown view generating new classes of problems in NLP.
It brings application and algorithmic approaches together and
offers a better description with concepts of theoretical computer
science.

I. INTRODUCTION

A
LOT of research in the last decades focused on the

computational perspective of information retrieval and

improving clusterings, partitions, search queries and document

decomposing with and without feedback. Several authors like

Manning et al. [1] or Clarc et al. [2] give an overview about

the algorithmic part of computational linguistics and NLP.

Applied researchers try to answer questions similar to “What

was the question?”, “What is the best description of this set of

documents?”, “How can we compare this and that clustering?”.

We realized that there are several names for the same or at least

similar problems and approaches. For example Hagen et al. [3]

tried to find search queries for a given set of documents and

used it as a cluster labeling approach. This seems somehow

obvious, as well as some other equivalent problems might also

sound obvious. But nevertheless, we think a formal description

and proof is necessary.

During our literature search and evaluation of several al-

gorithms for query optimization and clustering, we realized

that a formal Schema would ease the task. For finding and

grouping This we propose such a schema within this work.

We claim every NLP problem can be described using a five-

tuple. To proof our theory a discussion on several problems

and the proof of equivalent problems will follow. This novel

systematic approach has a different perspective focusing on

the computational view on this research area. We hope this

early research will lead to a valuable discussion and more

research on the theoretical and algorithmic fundamentals of

natural language processing.

In table I we list some prominent NLP and IR probleme

in our proposed five tuple with a corresponding description.

The details of the tuple are introduced and discussed in

the following chapters. However the connection between the

problems can already be seen within this table.

TABLE I: Example formulations of information extraction

problems as five-tuple. The first element describes the domain

set, the second the domain subset of interest. The third element

is a description function f . We either note this function or

the image set of this function. The last entries are a feasible

similarity or error measure and a reference standard. These

problems are introduced in sections III and IV.

Problem Formulation Problem Description

D|R|XXX|err|R Generating of optimal Search Queries
D|R|XXX|err|R Generating of optimal Cluster Labels
S|∅|fff |e|{S× [0, 1]} Named Entity Recognition
D|R|L|sim|∅ Text summarization
D|R|K|sim|∅ Keyword identification
D|R|C|sim|∅ Document Clustering in C = {1, ..., n} cluster.

D|R|DDDD
DD|sim|∅ Relation Extraction

D|R|DDD|sim|R Document Subset Finding Problem
D|R|G|sim|∅ Parse tree

II. NOTATION

We want to introduce our problem description approach

using a five-tuple. Therefore we define a domainset D and

subset R ⊆ D, a description set X and a description function

f : D → X, an evaluation function e : E → [0, 1] and a

reference standard E. Hence NLP problems can be given as:

p = D|R|f : D → X|e : E → [0, 1]|E (1)

At first we have to introduce and describe the notation and

sets. Some examples and applications will be provided within

the next sections. For an illustration of sets and functions we

refer to figure 1.

A. Domain Set

Let D be a finite domain set containing all instances of

a Probleme, e.g documents, text data, speech or any other

semantic content. A definition is D = {d1, ..., dn} where di is

a vector of documents or semantic data. We may see a textual
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Fig. 1: Illustration of sets in equation 1. If not feasible, these

sets or functions can be set to ∅ or id. The cut between X and

the other sets is not necessarily empty.

document d as a vector containing n meta data as well as full

text etc., describing a document as follows

di =















d1i
d2i
d3i
...

dni

i















=















title

authors

fulltext
...

NE















Here D = Ln with n = maxi ni is the vector space of

dim(D) = n data fields of a natural language L. We may also

store binary data within this vector. For a better generalization

we can set D = P(S) as the vector space of semantic digital

assets. Here P denotes the power set. In this case a document

d is a list d = {s1, ..., sn} of semantic digital assets (SDA)

si ∈ S. These SDAs are an optimal carrier for meta-data or

annotations.

A semantic digital asset can be defined as “an asset that

exists only as a numeric encoding expressed in binary form”

[4]. This definition includes text, images, sound files, tables,

and so on. In a nutshell we can conclude that “digital assets

include any electronically stored information” [5]. In addition

some meta data is included. Thus we can describe a SDA

as a variation of the information tetrahedron introduced in

[6] where four semiotic properties are wrapped around each

signal. These semiotic properties are (a) Sigmatics (b) Prag-

matics (c) Semantics and (d) Syntax, see figure 2. As described

by Hodapp et al. in [7] SDAs are highly flexible and can be

easily connected. The hierarchy is connected into annotations.

Applications can be found in [7] and [8].

Since it is of crucial importance, we will discuss the

hierarchical connection in a nutshell, but refer to [7] for

further information. Let a and b be defined with Sigmatics

sentence:S153:1322066041 and sentence:S153:1322066041 –

the first one with the Pragmatics sentence and the second

one Mus_musculus. Here, the first SDA contains the sentence

Fig. 2: Illustration of an SDA. All four properties, (a) Sigmat-

ics (identification) (b) Pragmatics (what is being represented)

(c) Semantics (what is being represented) and (d) Syntax (how

is the signal constructed), are wrapped around the digital asset

to provide more meta-data. All five elements for the semantic

digital asset which. Multiple SDAs connect if they share at

least one of these elements.

in natural language, for example “Spontaneous antepartal

RhD alloimmunization” whereas the signal of the second one

contains the named entity information {"begin": 24,"end":

27,"attr": "original","ref": "MM137098:Rhd"}. Thus it is not

really necessary to store explicit relations between SDAs, since

they are implicitly given in the structure of SDAs.

B. Domain Subset

To find a proper problem description, we can either focus on

the complete domain set D or a subset R ⊆ D This can either

be a manually created subset or created by semi-automatic

tools. One can imagine the result of a search query.

In addition, we allow a ranking of elements in R in the

intervall [0, 1] of real numbers. Then R = R′ × [0, 1] with

R′ ⊆ D.

C. Description Function

If necessary, we may also add a description function f for

documents or subsets of D. Given a description set X, this

function can have several forms, in general denoted by f :
D → X. In our short notation we can either note the function f

or the set X if we need to focus on this set. If both information

are needed, we can write f,X.

If we want to map elements in R to a meta data subset of

a document d ∈ D like publishers, authors etc. f has the form

f : D → D with dim(D) ≤ dim(D) and f(di) = f
j
i . This

may also be a combination of vector entries.

A description function may also return several discrete

values, for example true or false. In this case f is given by

f : D → N ⊂ N. If we want to describe concepts from

a terminology T , f is given by f : D → T . The function

may also return words σ∗ from a language L which leads to

f : D → Σ∗. Here Σ∗ denotes the set of all words (or strings)
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over a given alphabet or language. We can even consider a

subset from the language which leads to f : D → L. If we do

not need a description function we can simply set f = id to

the identity function. As we can see the cut between X and

the other sets is not necessarily empty.

In some cases it is useful to assume that X = f (D) and

thus q as a surjective mapping. It follows that f has a right

inverse q with f ◦q = idX. This function is necessary to model

some problems. Usually we cannot assume that f is also an

injective mapping: A description set x ∈ X may have more

than one origin in D.

Considering an element µ ∈ X and X as the description set

of a search engine, R can be explicitly set as E = q(µ) with

the right inverse of f . Here q denotes the search function with

q : X → D.

D. Evaluation Function

For several problems we need an evaluation function e :
E → [0, 1] which is either a similarity measure sim, an error

measure err or a weight weight. If it is not applicable, we may

use the identity function id. The set E must be set according

to our optimisation goal. If we optimise D, for example by

adding new documents or additional information, E = D×D.

The same holds, if we want to find an optimal subset R ⊂ D.

If we want to optimise our description function f , we must

use the function space D
X = E. An evaluation of the reference

standard will be even more complex, see below. Then E = E

applies.

E. Reference Standard

Usually the evaluation process cannot be done without an

external criterion. In this cases we can add a reference standard

or evaluation set

E ⊂
{

D
n ×

(

D
X
)m

×
(

D
[0,1]

)o}

to optimize our result. We either have one single subset of D,

or two subsets – a positive and a negative reference standard.

We may also have a ranked list of subsets of D. A description

function in the function space D
X or n of them could also

be set as a reference standard, as well as one or o evaluation

functions out of the function space D
[0,1]. This is sometimes

denoted as one or many gold standards. This can be very

complex, but usually problems only need one of these sets.

If not feasible or unused, we may also set E = ∅.

F. Problem Description

Natural Language Processing problems can thus be de-

scribed by a five-tuple. We can denote them by a combination

p of

p = D|R|f : D → X|e : E → [0, 1]|E

with a domain set D, a domain subset R, a description set X

and a description function f as well as an evaluation function

e evaluating on the set E according to the reference standard

E. We usually have four parameters given and want to obtain

an optimal solution for the fifth. The optima result with respect

to the problem will be denoted in bold letters. We can add an

additional index for ambiguous notations.

If we have an optimal algorithm we only need one computa-

tion step. If we have a heuristic returning approximate values,

we may use the output of the first iteration as an input for the

next iteration. We will discuss, that similar approaches usually

only differ with respect to the chosen set X.

III. SEARCH QUERIES AND CLUSTER LABELS

A. Generating and optimisation of Search Queries

In this paper we use a very generic definition of search

engines and search queries. A search engine is a function q :
X → D which outputs a set of documents or any other content

of the domain set if the input is a subset of a description set

X which we cal search query.

The problem of generating search queries usually has a

domain set D restricted by the database of the search engine.

The return value of our problem is a search query µ ∈ X so

that q(µ) = R. Thus R is the subset of documents for which

we want to create a search query. We have a mapping from

Q ⊂ X R ⊂ D

f

q

one element in X to a subset of D. q is thus the right inverse

of the description function f and f ◦ q = idX. Not only does

f have to be surjective, but we also have to assume that even

q is surjective. Every document in the target set D should be

a target of some search query.

It is very easy to see that this is usually not given in reality:

Assume q is a websearch, X the web search description and

D the set of all web pages available. Some of them may not

be indexed due to restrictions made to the robots crawling and

indexing the web. We can sail around this by restricting D to

q(X). Then f should be the right inverse of q with q◦f = idD.

We can also see, that ∀d ∈ D several µ1, ..., µn ∈ X exists

with d ∈ q(µi) – neither q nor f are injective mappings. If

we want to find the optimal µ we need to define some sort

of metric on elements in X. This can be very complex. If we

assume, that we have a terminology T and a simple algebra

with ∨ and ∧, we can simplify X = P(T,∨,∧) and take the

length of µ ∈ X as a metric. But if all documents have a unique

index stored in X the shortest search query might consist of a

concatenation of these indexes listing all documents in R.

Thus, the simplest evaluation function e : D → [0, 1] is set

by

err1(di, dj) =











1 i 6= j, f(di) 6= f(dj), di, dj ∈ R

1 i 6= j, f(di) = f(dj), di or dj ∈ R

0 else

If f , the description function with the image set X, does not

map two documents in R to the same element, which is the
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search query µ ∈ X, we count an error. Same happens, if

another document not in R is mapped to R. Thus we want

to find a description function f so that f(R) = µ ∈ X with

q(µ) = R. It follows that the problem is given by

p = D|R|XXX|err1|R

This is the simplest formulation of the stated problem. As

discussed, it can be more complex. We have not defined a

proper quality measure for search queries µ ∈ X. In addition,

the space X may be very complex and it is not clear, if it is

– like D – a discrete space with a proper metric. In addition,

although f is a surjective mapping and q can be set to be

surjective, it is left open, if one of these mapping might also

be injective.

B. Generating and optimisation of Cluster Labels

A clustering is usually done on a domain set D and leads

to several clusters C1, ..., Cn, n ∈ N. If D = P(S), these

clusters are explicitly coded in the set D. Finding cluster

labels is the task of assigning a subset of a description set

X with the description function f : D → X to a cluster

R ∈ {C1, ..., Cn}. We might consider an evaluation function

measuring the distance between the description between two

documents in R, |f(di) − f(dj)|. But we need to assume

a proper metric on X to do so. This leads to very complex

questions. For example: What is a proper metric on a space of

boolean algebra? The easiest evaluation function is thus given

by

err2(di, dj) =











1 i 6= j, f(di) 6= f(dj), di, dj ∈ R

1 i 6= j, f(di) = f(dj), di or dj ∈ R

0 else

Here we define that every two documents in R must share

the same cluster labels. This cluster label has to be unique to

this cluster. The reference standard can also be set to R. Thus

the problem of generating and optimisation of cluster labels

is given by

p = D|R|XXX|err2|R

where the resulting label set is the image f(R) ⊂ X .

Depending on the choice of X this either leads to a set of

metadata, terms, sentences or any subset of natural language.

Again, this problem can be very complex.

C. Search Queries and Cluster Labels are closely connected

In our introduction we already discussed, that Hagen et al.

found out that both problems are similar, see [3]. It is easy to

proof that given the same domain set D, image set X of the

description function and the same evaluation function both

problems are equivalent. Thus, they are closely connected.

Lemma III.1. Let X be a description image set. For every

solution f of p1 = D|R|XXX|err1|R this is also an optimal

solution of p2 = D|R|XXX|err2|R.

Proof. This follows directly, since err1 = err2.

Same follows directly for the inverse:

Lemma III.2. Let X be a description image set. For every

solution f of p2 = D|R|XXX|err2|R this is also an optimal

solution of p1 = D|R|XXX|err1|R.

Thus both problems are equivalent if we consider the same

domain set D, image set X of the description function and the

same evaluation function. We can conclude that we can use the

same or similar heuristics for solving both problems. Usually

a search query language is not used for representing cluster

labels. But since query languages and natural languages are

not only highly connected but merge more and more (see [9]

or [10]) we follow that in future both problems will be even

more connected. We will now discuss a small example.

D. Example

We will do a generation and optimization of cluster labels

with a similar approach to Borkowski et al. [11], Kanavos et

al. [12] and Demner et al. [13]. All of them use a taxonomy

of categories like Medical Subhect Headings (MeSH, see

https://www.nlm.nih.gov/mesh/) and process the documents

using tfidf-method. We will use SCAIView, see [14] or

https://www.scaiview.com), an information retrieval system for

knowledge discovery for a similar approach. SCAIView was

used in many recent research projects, for example regarding

neurodegenerative diseases [15], brain imaging features [16]

and other theoretic research like document clustering, see

[17]. The advantage is, that SCAIView already provides us

with Named Entities for MeSH but also other ontological

representing biomedical entities. Thus we get a better coverage

of text with named entities.

Our domain set D is MEDLINE data, and R a subsets of

MEDLINE data. MEDLINE (Medical Literature Analysis and

Retrieval System Online) is a bibliographic database main-

tained by the National Center for Biotechnology Information

and covers a large number of scientific publications from

medicine, psychology, and the health system. For the cluster-

ing use case, we study MEDLINE abstracts and associated

metadata that are processed by ProMiner, a named entity

recognition system, see [18], and indexed by the semantic

information retrieval platform SCAIView.

Our goal is, to find a unique representation of R in X. Let

f(d) = µ for all d ∈ R. We have to define the description set

X.

Borkowski et al. [11] processed a ranked list of categories

with their weights. We will follow Kanavos et al. [12] and use

all ontologies available at SCAIView. To make our approach

easier, we will limit our image set X. Let X be the SCAIView

search query set limited to NE.

R is the document set retrieved by a list of pubmed

identifiers. In our example, we have R as the result of a list

of 38 PMIDs. D is the set of all documents in SCAIView

databse. Querying the Lucene backend we find a list of 654

NE N = n1, ..., n654 and the documents containing them,

which we donate by l(ni). The list ni : l(ni) has the form
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1 CHEBI :36929 : [ 3 8 ]
MESH: E05 . 5 9 8 . 5 0 0 : [ 9 , 11 , 18 , 36]

3 ENTREZGENE:3630 : [ 2 9 , 37]
MESH: C10 . 5 9 7 . 7 4 2 : [ 9 ]

5 ENTREZGENE:387244 : [ 3 4 ]
MESH: C10 . 5 9 7 . 6 2 2 : [ 1 4 ]

7 MESH: F03 . 9 0 0 . 6 7 5 . 4 0 0 : [ 1 2 ]
MGI:96543 : [ 6 , 15 , 29 , 32 , 33]

9 CHEBI :6271 : [ 2 6 ]
. . .

We will now use a novel set covering approach. Following

[12] the labels for distinct subsets can be seen as potential

candidates for cluster labels. For example we can cover r with

n terms:

1 ;MESH: F01 . 7 0 0 . 0 3 9
2 1 ;MESH: C10 . 5 9 7 . 6 0 6 . 0 5 7

1 ; SWISSPROT :HUMAN
4 1 ;MESH: D059445

1 ;MESH: C23 . 8 8 8 . 5 9 2 . 6 0 4 . 0 3 9
6 2 ; CHEBI :36929 ;MESH: F01 . 7 0 0 . 0 3 9

2 ; CHEBI :36929 ;MESH: C10 . 5 9 7 . 6 0 6 . 0 5 7
8 . . .

If we use sim1 as an evaluation measure, we are nearly

done. But we might get more documents in D by querying

these labels.

We can now construct a hierarchical tree using the logical

operators and and or in X. We will do this by considering a

graph G = (V,E) with nodes V = N , in our example V =
{n1, ..., n654}. We add weighted edges between two nodes

ni, nj if l(nj) ⊂ l(ni). The weight is set to zero if 6 ∃nk ∈ N

such that l(nj) ⊂ l(nk) ⊂ l(ni). Otherwise we set the weight

w(ni, nj) to the largest number w so that w elements in N

exist with l(nj) ⊂ l(n1) ⊂ ... ⊂ l(nw) ⊂ l(ni). Thus the

weight is zero if the document set is a direct subset of the other

document set. Otherwise, it is the largest number of subsets

that lie in between. Finding the minimum spanning tree(s) in

this graph G and connecting all nodes with AND and the OR

of their child nodes lead to the solution µ:

MESH: F01 . 7 0 0 . 0 3 9
2 AND MESH: C10 . 5 9 7 . 6 0 6 . 0 5 7

AND SWISSPROT :HUMAN
4 AND MESH: D059445

AND MESH: C23 . 8 8 8 . 5 9 2 . 6 0 4 . 0 3 9
6 AND (

MESH: E05 . 5 9 8 . 5 0 0 AND (MGI:95574 OR MESH: C10
. 5 9 7 . 7 4 2 )

8 OR ENTREZGENE:3630 AND (MGI:96542 OR MESH: C19
. 2 4 6 . 3 0 0 )

OR
10 . . . )

The description function f is a heuristic finding one spanning

tree on G with the named entities covering the domain subset

R.

This is both: a correct solution of clustering labeling of R

on X obtained by f as well as a possible solution of a search

query so that q(µ) = R.

As we can see, even this simple approach needs a complex

heuristic. Although finding minimum spanning trees is usually

in FP , we can construct more complex examples that are NP-

complete. It would be very beneficial to find problems that are

in P .

This approach can now very easily be transferred into

natural language, although a very complex boolean algebra

might not be very helpful to human readers. This leads to

another problem we already discussed: How is the space X

defined? Is it a metric space? Is q an injective mapping? This

reformulation of both problems is very helpful to discuss and

proof the complexity and the real underlying problems and to

find more suitable heuristics and algorithms. But it also leads

to new questions and problems.

IV. MORE INFORMATION EXTRACTION PROBLEMS

Information extraction problems can be transferred into

p = D|R|XXX|sim|∅ with a result information description

image set X for R. Here f is a function that extracts some

information out of a document d: This may be natural language

f : D → L or another subset of D or a mapping to ontologies

or terminologies.

We will discuss some examples and point out the benefits

of our new approach.

A. Named Entity Recognition

Named Entity Recognition (NER) was initial proposed as

the task to identify names, location and temporal constructs in

text [19]. Over the decades this initial definition expanded to

detect arbitrary concepts, defined as things of thought [20].

Different Algorithms developed and adapted to NER over

time from simple gazetters [21] over rule based engines [18]

and probabilistic context-free grammar [22] to Conditional

Random Field [23] and neuronal networks [24]. No matter on

how the algorithm solves the problem in the end it needs to

link a sequence of character to one or many concepts. Therefor

a model, a function, is constructed that encode how this should

happen. This model is either generated by manual labour or

my machine learning approaches or mixtures in between.

The evaluation of NER applications is often done by com-

paring an obtained result to a reference (gold) standard [25].

For this comparison a function e : {S× [0, 1]}×{S× [0, 1]} →
{0, 1} is needed that assesses if a Named Entity (NE), a

Concept, is correctly detected or not. Based on the discrete

values of the function Precision, Recall and a F-score are

computed and are used as a performance indicator [25]. For the

definition of e we assume that the target set of the description

function, performing the NER, matches the definition of a

reference standard. This allows to use a result of a description

function a as a reference for a different function.

As initial mentioned NER is the task to link a sequence

of character to concepts. Subsequent the description function

looks like f : Σ∗ → Concept . If we assume a Concept is

encoded as an SDA the function is a mapping from a sequence

of character to SDAs. We also encode sequences of characters

as SDAs so the function can be refined as f : S → S. To also

encode the uncertainty of such a mapping the final function

is f : S → {S × [0, 1]}. To fit into the proposed schema, the
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function needs to map from a document D, thus we define

D = P(S) and f : D → {S× [0, 1]}
We transferred the application p = D|∅|f |∅|∅ and evaluation

p = D|∅|f |e|{S×[0, 1]} phase of NER into the initial proposed

five-tuple. Likewise we can decode a learning phase, therefore

we define a training set T = {S1 × [0, 1]}, S1 ⊂ D. The

function f than can be learned resp. optimized by using the

training set T and the evaluation function e. Subsequent a

learning phase is expressed as p = D|T |f |e|∅. Combing all

three phases the initial proposed five tuple is constructed:

p = D|T |f |e|{S× [0, 1]}

We like to illustrate this with a gazatter based approach. We

choose gazetter as an example because it is simple to under-

stand and it eases discussion about extending to more advanced

methods. Assume we have a gazetter, a list, with n Concepts

g = g1, g2, ..., gn. Each Concept gi = {gi1, gi2, gimi
} is

a set of alternative names (pairwise disjoint), where gi1 is

the Representative. The description function f maps SDAs

that encode sequences of character to a SDA that encode the

Representative of a Concept. For a simple gazetter the function

could look like the function below where an exact string match

[26] between the character sequence and an alternative name

is required.

f(n) =























{S(g11), 1} if ∃g1j = n, 1 ≤ j ≤ m1

{S(g21), 1} if ∃g2j = n, 1 ≤ j ≤ m2

...
...

{S(gn1), 1} if ∃gnj = n, 1 ≤ j ≤ mn

This function can be extend to a fuzzy string matching

[27]. The fuzziness can be encoded via a normalized edit

distance [27] in the second argument. Orthogonal an extension

on the used data is possible. The function could work on

Token , Stems or Lemmas [25] instead of character sequences.

This requires a preprocessing of the gazetter as well as a

transformation of SDA. Or alternatively a minor refinement

of the tuple, switching from character SDAs to e.g. Token

SDAs. However this is possible within the proposed five tuple

and shows the generality of our systematization. The same

transformation approach can be used to directly incorporate

various machine learning methods, like [23], [24], [22]. The

SDA, of the training set can be decoded into a better suited

feature representation for the used method and the results can

also be transformed into SDAs. Alternatively the method could

directly use SDA as features.

As it can be see the systematization is a common base for

various methods. Various methods can be transferred into this

tuple representation by a transforming the data from and into

an SDA. This shows the strength and flexibility of SDAs and

the proposed tuple.

B. Text summarization

Text summarization is the task of assigning a short summary

in natural language L to a document d ∈ D. Thus our

description set X = L and the complete problem has the form

p = D|R|L|sim|∅

with a result information description f(R) for R. Here f is

a function that extracts some information in form of language

out of a document d: f : D → L. Once again we have to ask

how our evaluation function sim works. Is sim just the vector

distance in a vector-space representation of L? If we limit L

to a list of terms, a terminology or ontology summarising

the document, this might be suitable. But considering the

context of text might be more helpful. We can find several

examples in literature: Demner et al. [13], who generated

extractive summaries for abstracts of documents in MEDLINE.

Barzilay et al. [28] did use lexical chains, without considering

the semantic interpretation. Gong et al. [29] rather explicitly

considered the semantic of the texts.

Thus all these approaches differ in the definition of the

domain set D. It may contain a simple list of texts or abstracts,

but it may as well contain semantic digital assets S considering

the semantics and context. In addition the description function

is another criterion for distinction. We may add them as addi-

tional index to X. This leads to p = D|R|Llexical_chains|sim|∅
for [28] or p = S|R|Lsemantics|sim|∅ for [29].

This novel problem description provides a helpful frame-

work for sorting the approaches found in literature.

C. Relation Extraction

The task of extracting relational facts – or relations – from

a text is the combination of two or multiple entities in a

computable format. This is usually either done by manual

curation (see [30]) or by supervised or unsupervised learn-

ing (see [31] or [32]). Relation extraction is widely used

in biomedical research, biology or toxicology to handle the

growth of publications and data available. In addition it is

used in medical research, see [33]. After relation extraction

computable networks are created, see [32].

Let D = P(S) be a set of documents denoted by SDAs.

Our description set contains all relations between SDAs. Thus

it is the set of all functions from SDAs to SDAs: X = D
D.

In addition we need a similarity measure that maps relations

from documents to SDA terms:

sim : X → [0, 1]

Then doing Relation Extraction is the task of finding an

optimal description function

f : D → X

that either maps SDAs for sentences to one or more relations

between SDAs or to 0 if a SDA has no NE. Thus we find

p = D|R|DD
D

D
D

D|sim|∅

A lot of question have to be left open: How can we define

f according to the solutions found in literature? Could X be

reduced to a subset without loosing information? Once again

a systematization of approaches found in literature could be

made, although this will be part of future work.
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V. DISCUSSION AND FURTHER RESEARCH

We proposed a novel formal schema for information re-

trieval and natural language processing problems and reformu-

lated several well-known problems. Our schema is helpful to

sort NLP-problems according to their underlying and inherent

structure and to identify the complex parts to solve the

problem.

Discussing the equivalence between cluster labelling and

finding search query we proofed that they are – obviously

– equivalent if they share the same description set and the

same evaluation function. This directly leads to the conclusion,

that most NLP-problems have a core problem that can be

solved with distinct heuristics and algorithms. Finding an

evaluation function and a description set is not a core problem

of computer science, but deeply related to linguistics and

applied computer science. Our new approach will help to

group problems and foster synergies for optimization and offer

a better description with terms of theoretical computer science.

Here we already reduced a simplified search query problem

to a graph problem.

We left several open questions. Further research has to be

done with focus on time and space complexity – what is the

computational complexity in these natural language problems?

Here the integration of formal language theory will be the

next step. Also unsupervised and supervised learning can be

expressed with our novel approach, more research has to be

done regarding this. In addition, our paper is based on text

data. But we can also express binary data such as speech and

images in D.

In this paper we could only discuss some early work on the

preliminaries and provide a few short examples. We hope that

the impact of our schema is a better categorization of NLP-

problems and a better communication between application and

theoretical informatics, leading to more efficient algorithms

and heuristics.
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