
Computation of Gauss-Jacobi Quadrature Nodes

and Weights with Arbitrary Precision

Dariusz W. Brzeziński

Institute of Applied Computer Science

Lodz University of Technology

18/22 Stefanowskiego St., 90-924 Łódź, Poland

Email: dbrzezinski@iis.p.lodz.pl

Abstract—In the paper there are presented efficient and accu-
rate methods of Gauss-Jacobi nodes and weights computation.
They include an enhancement for standard iteration method
for Jacobi polynomials zeros finding, weight function formula
transformation for increased accuracy of fractional derivatives
computation and arbitrary precision application for mitigation
of double precision arithmetic flaws. The results of numerical
experiments presented in the paper prove high accuracy and
efficiency of developed methods for computation of quadratures’
nodes and weights, decreased amount of required iterations for
polynomials zeros finding and elimination of truncation errors
during weights computation. Accuracy of computations depends
on height of precision applied for it, which is limited only by
accessible hardware.

I. INTRODUCTION

S
PECIAL FUNCTIONS are part of mathematics that cov-

ers not only well known logarithmic, exponential and

trigonometric functions, but also beta, gamma and zeta func-

tions and orthogonal polynomials.

Special functions have numerous applications, not only in

mathematics, but also in applied sciences, astronomy, heat

conduction, electrical circuits, quantum mechanics and mathe-

matical statistics. More about this subject can be found in [1].

Classical Jacobi orthogonal polynomials are applied in

many important scientific areas that include functions’ approx-

imation in collocation points method for solutions of ordinary

differential equations known as Sturm-Liouville problem and

lately - fractional order derivatives and integrals computations

by applying Gauss-Jacobi Quadrature [2], [3].

Methods of mathematical formulas implementations in com-

puter programs are crucial part of numerical methods research

due to their influence on general accuracy and efficiency

of scientific computing. Especially in the case of a basic

research as for example computation of polynomials values,

their derivatives or their zeros, that can become a part of

another computational methods.

Available research on these subjects focus on achieving the

highest order of calculated polynomial [4], highest computa-

tional speed [5] and lowest computational complexity [6].

Besides of an interesting implementation of algorithms

around orthogonal polynomials by applying Julia program-

ming language [4], the majority of results published in sci-

entific papers are obtained by applying computer implementa-

tions in Matlab, C++ or Python programming languages and

the use of the double precision arithmetic.

The double precision arithmetic is optimized for speed

and has many flaws influencing negatively accuracy of com-

putations, e.g. limitations of number values which double

precision variables can hold or no programmer influence on

mathematical operations rounding.

In the meantime, computational capabilities of computers

has been steadily increased and they presently enable using

numerous enhancements for the uniform programming lan-

guages on the everyday basis. They include infinite precision

computing for increasing accuracy and correctness of numeri-

cal calculations and Nvidia CUDA parallelization technology

for their effectiveness, are the best examples in this context.

The term Infinite Precision Computing is just a metaphor

suggesting, that precision of computation is only limited by

an amount of accessible hardware. The more appropriate

description of this aspect of computation would be Arbitrary

Precision Computing.

Arbitrary precision computing has numerous advantages

over standard double precision one, e.g. it makes possible for

the user to choose a precision for each calculation and for each

variable storing a value; it is also not depended on machine

or IEEE standard types of data. Therefore, it opens brand new

possibilities in terms of accuracy and correctness of scientific

computing.

Having that in mind, the primary aim of the following paper

is to present high-accuracy computing methods of Jacobi poly-

nomial and its derivative, nodes (zeros of Jacobi polynomials)

and weights of Gauss-Jacobi Quadrature.

The secondary aim is to present application usefulness of

high-accurate computed Gauss-Jacobi Quadrature for frac-

tional order derivatives and integrals computation.

Presented results of the experiments enable investigating in

the future the possibility of their application in spectral meth-

ods for solutions of fractional order differential equations and

the research of the high-accuracy computation on mitigation

of Runge Phenomenon.

The paper is organized as follows: In section II, there are

presented mathematical formulas for Jacobi polynomials and

their derivatives computation. Section III and IV provides

mathematical preliminaries about Gauss-Jacobi Quadrature to-

gether with detailed guidance how to adapt it for high-accuracy

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 297–306

DOI: 10.15439/2018F107

ISSN 2300-5963 ACSIS, Vol. 15

IEEE Catalog Number: CFP1885N-ART c©2018, PTI 297



fractional derivatives and integrals computation. Section VI

describes standard methods for zeros of Jacobi polynomi-

als finding (nodes of quadrature) and their enhancements

for increasing computational accuracy and efficiency. Next

section VII expands the information on methods of Gauss-

Jacobi Quadrature weights computation with details on their

enhancements. Both sections include numerous test plots and

some preliminary results. Last section VIII presents practical

testbed for developed methods in terms of accuracy and

efficiency for fractional derivatives of two example functions

computation. The paper ends with usual conclusions and future

research.

II. JACOBI POLYNOMIAL AND ITS DERIVATIVE

COMPUTATION

Jacobi orthogonal polynomials have two parameters

usually denoted as α and β [7] and can be

computed by applying Rodrigues’ formula [8]

P (α,β)
n (x) =

(−1)
n

2n · n! (1− x)−α (1 + x)−β dn

dxn

[

(1− x)n+α (1 + x)n+β
]

. (1)

Jacobi polynomials are orthogonal with respect to the weight

function

w (x) = (1− x)
α
(1 + x)β (2)

only for

α, β > −1, −1 < x < 1

and particularly

1) For α = β = 0 we obtain ultraspherical Jacobi

polynomials - Legendre polynomials,

2) For α = β = 1
2 we obtain ultraspherical Jacobi

polynomials - Chebyshev polynomials of second kind,

3) For α = β = − 1
2 we obtain ultraspherical Jacobi

polynomials - Chebyshev polynomials of first kind,

4) For α = β we obtain Gegenbauer polynomial.

Jacobi polynomials P (α,β) (x) of order n P
(α,β)
n (x) can

be calculated by applying explicit form of the Rodriguez

formula [9]

P (α,β)
n (x) = 2−n

n∑

k=0

(
n+ α

k

)(
n+ β

n− k

)

(x− 1)
n−k

(x+ 1)
k
,

(3)

wherein

P
(α,β)
0 (x) = 1, P

(α,β)
1 (x) =

1

2
(α+ β + 2)x

1

2
(α− β) .

The derivative of Jacobi polynomial P
′(α,β)
n (x) of order

n P
′(α,β)
n (x) can be calculated by applying the following

formula

d

dx

[

P (α,β)
n (x)

]

=
1

2
(n+ α+ β + 1)P

(α+1,β+1)
n−1 . (4)

However, application of formula (3) for computations is im-

practical. We can replace it by three-term recurrent formula (6)

for this purpose resulting from theorem 1.1.1 published in [9].

According to it, more practical formula for Jacobi polyno-

mial computation P
(α,β)
n (x) , n = 0, 1, 2, 3, . . . is

P (α,β)
n (x) =

n∑

i=0

(−1)
n−i

(1 + β)i (1 + α+ β)n+i

m! (n− i)! (1 + β)i (1 + β + α)n

(
x+ 1

2

)i

,

(5)

where (α)i = α (α+ 1) · · · (α+ i− 1) , α0 = 1.

From (5) the following computational three-term recurrence

formula can be then derived

P
(α,β)
0 (x) =1, (6)

P
(α,β)
1 (x) =

1

2
[(α− β) + (α+ β + 2)x] ,

P
(α,β)
n+1 (x) = (αnx+ βn)P

(α,β)
n (x)− γnP

(α,β)
n−1 (x) ,

n =1, 2, · · · ,

where

αn =
(2n+ α+ β + 1) (2n+ α+ β + 2)

2 (n+ 1) (n+ α+ β + 1)
,

βn =
(2n+ α+ β + 1)

(
α2 − β2

)

2 (n+ 1) (n+ α+ β + 1) (2n+ α+ β)
,

γn =
(n+ α) (n+ β) (2n+ α+ β + 2)

(n+ 1) (n+ α+ β + 1) (2n+ α+ β)
.

Two example plots for Jacobi polynomial P
(1.5,−0.5)
n (x)

and its derivative P
′(1.5,−0.5)
n (x) , x ∈ 〈−1, 1〉 of order n =

1, 2, . . .5 are presented in Figures 1 and 2.

−1 −0.5 0 0.5 1

0

5

10

t

P
(α

=
1
.5
,β

=
−
0
.5
)

n

n = 1

n = 2

n = 3

n = 4

n = 5

Fig. 1. Graph of Jacobi polynomial P
(1.5,−0.5)
n (x) , x ∈ 〈−1, 1〉 of order

n = 1, 2, . . . 5

298 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



−1 −0.5 0 0.5 1

0

20

40

60

80

x

d d
x

[

P
(α

=
1
.5
,β

=
−
0
.5
)

n
(x
)]

n = 1

n = 2

n = 3

n = 4

n = 5

Fig. 2. Graph of Jacobi polynomial 1st derivative

d
dx

[

P
(1.5,−0.5)
n (x)

]

, x ∈ 〈−1, 1〉 of order n = 1, 2, . . . 5.

III. GAUSS-JACOBI QUADRATURE

A weight function enabling elimination of problems with

integration of functions with singularities at both ends of

integration interval is so called Jacobi weight (2).

By using some of its properties, there can be increased

the accuracy of numerical integration, e.g. for computation

of derivatives and integrals of fractional orders. Detailed

description will be presented in subsection of section IV.

Jacobi polynomials are orthogonal in respect to weight

function (2).

By applying Gauss-Jacobi Quadrature definition, formula

for finite integral approximation assumes the following form

∫ 1

−1

(1− x)α (1 + x)β · f (x) dx ≈
n∑

k=1

wkf (xk) , (7)

where the nodes of the quadrature xk are the zeros of Jacobi

polynomial P
(α,β)
n (xk) of order n.

The weights wk can be computed by applying the following

formula

wk = 2α+β+1 Γ (α+ n+ 1)Γ (β + n+ 1)

n!Γ (α+ β + n+ 1) (1− x2
k)
[

P
(α,β)

′

n xk

]2 ,

(8)

where P
′

n (xk) is 1st derivative P
(α,β)′

n (xk) of Jacobi poly-

nomial of order n and Γ (.) is Euler Gamma function.

IV. FORMULAS FOR FRACTIONAL ORDER DERIVATIVES

AND INTEGRALS APPROXIMATION

Fractional order derivatives and integrals can be approxi-

mated by applying numerous formulas representing various

approaches to this problem [10]. The most popular are as

follows.

Riemann-Liouville integral of fractional order ν > 0

RL
0 I

(ν)
t f (t) =

1

Γ (ν)

∫ t

0

f (τ)

(t− τ)1−ν
dτ, (9)

Riemann-Liouville derivative of fractional order ν > 0

RL
0 D

(ν)
t f (t) =

dn

dtn

[

1

Γ (n− ν)

∫ t

0

f (τ)

(t− τ)ν−n+1 dτ

]

,

(10)

Caputo derivative of fractional order ν > 0

C
0 D

(ν)
t f (t) =

1

Γ (n− ν)

∫ t

0

f (n) (τ)

(t− τ)
ν−n+1 dτ (11)

with the following conditions: f (t) = 0 for t ≤ 0, f (0) =
0, f (1) = f (2) . . . f (n) = 0.

The following formula presents the relationship between

formula (10) and (11)

RL
0 D

(ν)
t f (t) =C

0 D
(ν)
t f (t) +

n−1∑

k=0

tk−ν

Γ (k − ν + 1)
f (k) (0) .

(12)

Inserting formula (11) to the right side of equation (12) en-

ables derivation of an equivalent to (10) formula for Riemanna-

Liouville’a derivative of fractional order

RL
0 D

(ν)
t f (t) =

n−1∑

k=0

tk−νf (k) (0)

Γ (k − ν + 1)

+
1

Γ (n− ν)

∫ t

0

f (n) (τ)

(t− τ)
ν−n+1 dτ. (13)

In formulas (9)-(13) ν is a real number such as n − 1 <
ν < n, n denotes an integer number n = ⌈ν⌉.

The practical application advantage of Caputo fractional

derivative (11) over Riemann-Liouville fractional deriva-

tive (10) is, that the first one enable defining initial conditions

in terms of classical, integer order derivatives [11]. Therefore,

the Riemann-Liouville derivative definition is used more often

in theoretical consideration, in which initial conditions must

be defined in terms of fractional order integrals [12].

V. APPROXIMATION OF FRACTIONAL ORDER

DERIVATIVES AND INTEGRALS BY APPLYING

GAUSS-JACOBI QUADRATURE

Using the weight function (2) and integration formula (7),

we can "remove" the kernel of the integrand from the for-

mula (9)

RL
0 I

(ν)
t f (t) =

1

Γ (ν)

∫ t

0

(t− τ)
ν−1

︸ ︷︷ ︸

kernel

f (τ) dτ,

substituting λ = ν − 1, β = 0, we obtain

∫ 1

−1

(1− t)
λ
f (t) dt ≈

n∑

k=1

wkf (tk)

=

n∑

k=1

2ν

(1− t2k)
[

P
(λ,0)′
n tk

]2 f (tk) ,

(14)

where wk are the weights (8).

DARIUSZ BRZEZIŃSKI: COMPUTATION OF GAUSS-JACOBI QUADRATURE NODES AND WEIGHTS WITH ARBITRARY PRECISION 299



Transforming integration interval [0, t] into 〈−1, 1〉
(
t− t0
2

)ν ∫ 1

−1

f (u)

(1− u)
λ
du

where

f (u) = f

((
t− t0
2

)

u+

(
t+ t0
2

))

,

we obtain formula (15), which can be applied for computing

Riemann-Liouville and Caputo fractional derivatives with high

accuracy. A formula for fractional integrals computation can

be derived in a similar way.

In the formula (15) the difficult part of the integrand -

the kernel - equipped with singularity and high increases

of function values, is computed using different, much more

accurate method - by applying formula for the weights wk [2].

RL
t0

D
(ν)
t f (t) =

n−1∑

k=0

(t− t0)
k−ν

f (k) (t0)

Γ (k − ν + 1)
+

1

Γ (n− ν)

(
t− t0
2

)n−ν ∫ 1

−1

f (n) (u)

(1− u)
ν−n+1 du

=

n−1∑

k=0

(t− t0)
k−ν

f (k) (t0)

Γ (k − ν + 1)
+

1

Γ (n− ν)

(
t− t0
2

)n−ν n∑

k=1

2ν

(1− u2
k)
[

P
(ν−n+1,0)′
n uk

]2

︸ ︷︷ ︸
wk

f (n) (uk) , n = ⌈ν⌉ .

(15)

VI. METHODS OF FINDING ZEROS OF JACOBI

POLYNOMIALS

Formula (7) suggests that the construction of Gauss-Jacobi

Quadrature is limited to finding zeros xk of Jacobi polyno-

mial P
(α,β)
n (xk) of order n and determining its derivative

P
(α,β)′

n (xk).

Polynomial of order n has n distinct zeros [13]. This

rule extends for systems of orthogonal polynomials, including

Jacobi polynomials. Proof of this theorem can be found in [14].

Chebyshev polynomials of I, II, III and IV kind are spe-

cial cases of Jacobi polynomial for α and β with values

−0.5,−0.5, 0.5, 0.5,−0.5, 0.5 and 0.5,−0.5 respectively.

Zeros of Chebyshev polynomials called Chebyshev points

are given by the following formulas [15]:

xk = cos
(k − 0.5)π

n
,

xk = cos
kπ

n+ 1
,

xk = cos
(k − 0.5)π

n+ 0.5
,

xk = cos
kπ

n+ 0.5
, k = 1, 2, . . . n. (16)

Finding zeros of Jacobi polynomial with other values α and

β is not easy.

However, a standard method for finding zeros of polyno-

mials is an iteration algorithm called Newton-Raphson algo-

rithm [16].

Iteration algorithms usually require first raw approximation

for finding a zero. In case of Jacobi polynomial, it can be for

example a zero of Chebyshev polynomial of 1st kind (16).

Fig. 3. Chebyshev points,n = 5 of Chebyshev polynomial of the I kind.

Then, the Newton-Raphson method is used for finding

highly accurate location of that zero.

This method is usually fast-convergent, especially for or-

thogonal polynomials.

Let s denote consecutive iteration. Each iteration of standard

Newton-Raphson method requires computation of polynomial

value and its derivative. Both values can be used for approxi-

mating kth zero in the following way

xs+1
k = xs

k − Pn (s
s
k) /P

′

n (x
s
k) , (17)

where P
(α,β)
n (x) is Jacobi polynomial computed using recur-

rent relationship (6).

Its derivative P
′(α,β)
n (x) can be computed by another re-

currence relation

P ′

n+1 = Pn + (x− α)P ′

n − βnP
′

n−1. (18)

A. Accuracy of the Standard Iteration Method

For the purpose of assessing accuracy of finding zeros of

Jacobi polynomial Pn for arbitrary selected values of n by

300 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



applying standard iteration method, relative error measure er
and norm ‖er‖L∞

‖er‖L∞

= maxi

‖xi − x̂i‖
‖xi‖

. (19)

are used.

The norm (19) assess similarity of two vectors, e.g. with

zeros values by applying standard iteration method x̂i and their

exact values. In both cases, there are applied standard double

precision for computations and first raw approximations of

zeros by applying formulas (16) proposed in [17].

TABLE I
Relative error ‖er‖L∞

for selected order n of Jacobi polynomial.

n Chebyshev I Chebyshev IV

50 2.89e-15 5.66e-15

100 9.55e-15 1.04e-14

200 1.37e-14 1.10e-14

300 3.18e-14 2.02e-14

400 2.19e-14 4.11e-14

500 2.00e-14 1.19e-14

1000 5.36e-14 7.39e-14

Application of first raw approximation of zeros by applying

formulas (16) in Newton-Raphson method enabled finding n
distinct zeros with double precision exactness of each zero

after 8-10 iterations.

B. Enhancements of the Standard Iteration Method

1) More accurate first raw approximations of zeros: Appli-

cation of more accurate first raw approximations of zeros can

reduce an amount of required iterations for finding an exact

location of a zero in Newton-Raphson method.

As it is to see in figure 4 with plots of Jacobi polynomials of

order 5 and 6, in the middle part, the polynomials are similar

to sine and cosine functions. Near boundary, at x = 1 they

become compressed. Therefore, we can draw a conclusion that

an amount of zeros of Jacobi polynomial increases towards

end of the interval [−1, 1]. This conclusion suggests that we

should use different formulas for first raw approximations for

zeros in Newton-Raphson method for middle and boundary

parts of Jacobi polynomial.

According to [18] an universal formula for the middle part

of the Jacobi polynomials, zeros 4, n−2 for k = 1, 2, 3, . . . , n
is (20).

−1 −0.5 0 0.5 1

−5

0

5

x

P
(α

=
1
.0
,β

=
0
.0
)

n
(x
)

n = 5

n = 6

n = 6

n = 5

Fig. 4. Jacobi polynomials n = 5 and n = 6.

xk = − cos (θk + δθk) +O
(
n−4

)
(20)

where

θk = π (2k + β − 0.5) /σ,

δθk =

[
(
0.25− β2

)
cot

(
θk
2

)

−
(
0.4− α2

)
tan

(
θk
2

)]

/σ2,

σ = 2n+ α+ β + 1.

For approximating zeros for nodes [1, 2, n− 1, n] i.e. for

both ends of the interval we can use formula by [18] that uses

zeros of Bessel functions of order 5 J5
α,k, e.g. [19]

xk = cos (θk + δθk) +O
(
J5
α,kn

−7
)

(21)

where

θk =
J5
α,k

ν
,

δθk = −θk

[

4− α2 − 15β2

720ν4

(

J2
α,k

2

)

+ α2 − 1

]

,

ν = 0.5
√

σ2 + (1− α2 − 3β2) /3.

2) Application of reflection formula: For finding zeros of

Jacobi polynomial for α 6= β, there can be applied reflection

formula

P (α,β)
n (−x) = (−1)

n
P (β,α)
n (x) ,

d

dx

[

P (α,β)
n (−x)

]

= (−1)
n−1 d

dx

[

P (β,α)
n (x)

]

, (22)

which results from formula for Jacobi polynomial of order

n (1).

It enables reducing computational effort of polynomial

values to the right part of the interval, i.e. x ∈ [0, 1]. It means

that we only require to compute zeros from the right part of

the interval and copy them to the second one x ∈ [−1, 0].

DARIUSZ BRZEZIŃSKI: COMPUTATION OF GAUSS-JACOBI QUADRATURE NODES AND WEIGHTS WITH ARBITRARY PRECISION 301



3) Application of arbitrary precision: enables increasing

overall accuracy of computations.

To be able to solve a difficult numerical problem according

to a set goal, we have to make some crucial decisions regarding

applied hardware, programming tools and techniques for that

purpose. This includes a selection of an appropriate computer

programming language, mathematical libraries and hardware.

The selection of uniform C++ equipped with the standard

mathematical library as a main programming tool is not

enough nowadays to take full advantage of available hardware.

And it is the main task for a computer scientist, because

the newest hardware gives the opportunity to solve many

problems, which appeared "unsolvable" not long time ago. The

application of infinite precision computing for increasing the

accuracy and the correctness of numerical calculations and

Nvidia CUDA parallelization technology for their effective-

ness, are the best examples in this context.

In this paper there is presented application of arbitrary

precision for increasing accuracy of computations.

The standard double precision computer arithmetic was

replaced by arbitrary precision for most parts. This move made

possible unlocking full potential of developed algorithms by

using available hardware.

Double precision arithmetic commonly applied in scientific

numerical calculations is optimized for speed and has many

flaws which influence negatively the accuracy of computations,

e.g. limitations of number values which double precision vari-

ables can hold or no programmer influence on mathematical

operations rounding.

However, it is the lack of clarity in handling of intermediate

results which troubles the most, i.e. the floating-point standard

only defines that the results must be rounded correctly to the

destination’s precision and not defines the precision of desti-

nation variable. This choice is commonly made by a system

or a programming language. The user can not influence it in

any way. Therefore, the same program returns significantly

different results depending on the implementation of the IEEE

standard.

Arbitrary precision makes possible for the user to choose a

precision for calculation and for each variable storing a value

and it is nor machine or IEEE standard types depended. It is

only limited by accessible hardware.

Arbitrary precision can be applied for calculating important

constants like π or increase general accuracy of the mathe-

matical computations. Its application purpose is above all to

increase accuracy of numerical calculations, e.g. by eliminat-

ing under- and overflows, increasing accuracy of a polynomial

zeros finding and derivatives and integrals calculating.

Still, application of arbitrary precision has drawbacks:

Arbitrary precision is simulated and therefore, depending

on chosen precision, calculations with the help of it require

more time to complete than by applying standard data types

optimized to run on standard processors - even with the use of

FPGAs (field programmable gate arrays), which can be fully

programmed by the user.

Another challenge is a requirement of special computational

algorithms which can handle different data structures.

Nevertheless, arbitrary precision application already became

a part of standard computations without the consent of the user.

The process named constant folding with arbitrary precision

is used in preprocessing phase to increase the accuracy of

constants before they can be handled with standard precision

data types. This procedure [20] involves replacing constant

expressions with their final value in order to reduce the need of

recomputing the same result every time the program executes

the code line containing the constant. When the compiler

flag −01 is inserted GCC complier uses the GNU MPFR

library with version 4.3 to handle constant folding and evaluate

mathematical applied to constants at compile time at arbitrary

precision.

The GNU MPFR library is an arbitrary precision pack-

age for C/C++ [21] and is based on the GNU Multiple-

Precision Library (GMP) [22]. MPFR supports arbitrary pre-

cision floating-point variables and provides exact rounding

of all implemented mathematical functions [23]. The code is

portable, i.e. it will produce the same result independently

from the hardware.

The GNU MPFR library is written in C and thus it can not

use operator overloading. Even the most basic arithmetic op-

erations have to be conducted using function calls. Therefore

MPFR includes multiple functions for each operation and for

each supported data type.

C. Results

Table II presents accuracy of computed zeros of Jacobi

polynomial in form of relative error (19) calculated in respect

to the exact values obtained by applying Czebyshev points (16)

for 50, 100, 500 and 1000 digits precision.

It is worth noting, that the proposed enhancements of the

standard iteration method enables finding zeros with arbitrary

precision. The level of exactness depends on how high preci-

sion is selected applied for computations.

Additionally, application of more accurate first raw ap-

proximations of zeros (20) and (21) before Newton-Rapshon

method starts, decreases an amount of required iterations until

exact zero position is found.

Computation time complexity of running program is pre-

sented in figure 5. The time depends directly on the hight

of precision selected for computations: for polynomial order

n < 500 and up to 100 digits precision, the time is similar

to double precision computations, for n > 500 and more than

100 digits precision, the complexity is 2n, and n! is for 1000

and more digits precision.

VII. METHODS OF JACOBI WEIGHTS COMPUTATION

A. Standard Approach

A standard approach to the problem of Jacobi weights

computation is the direct use of formula (8).

In this formula proposed in [24], weight is computed by

using value of derivative of Jacobi polynomial of order n and

a value of Jacobi polynomial of order n− 1.

302 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



TABLE II
RELATIVE ERROR ‖er‖L∞

OF FOUND ZEROS OF Pn (x) FOR SELECTED n IN RESPECT TO (16).

Czebyszew I Czebyszew II Czebyszew III Czebyszew IV

n 50 time(s) iter 100 time(s) iter 500 time(s) iter 1000 time(s) iter

50 1.50e-49 0.047 6 3.77e-99 0.053 7 6.24e-499 0.102 7 8.31e-647 0.150 6

100 6.84e-49 0.0168 6 6.74e-99 0.195 7 1.40e-498 0.392 7 5.24e-641 0.562 7

200 9.52e-49 0.588 7 7.43e-99 0.765 6 1.35e-498 1.323 7 1.89e-641 2.073 7

300 1.66e-48 1.236 6 2.22e-99 1.673 6 1.31e-498 3.012 7 3.64e-640 4.514 7

500 1.49e-48 3.089 6 1.59e-99 4.349 6 9.05e-498 8.034 7 1.58e-648 12.598 7

1000 5.61e-48 11.867 6 2.60e-98 15.913 6 7.96e-498 34.37 7 8.99e-709 49.015 7

2000 7.00e-48 47.353 6 5.45e-98 63.445 6 3.78e-497 126.664 7 8.99e-709 49.173 7

0 500 1,000 1,500 2,000

0

50

100

150

n

ti
m
e(
s)

50

100

500

1000

Fig. 5. Computation time complexity of finding zeros of Jacobi polynomials
of selected order n with 50, 100, 500 and 100 digits precision.

However, due to 1 − x2
k expression occurrence in the de-

nominator of (8), high truncation error is expected if standard

double precision is applied.

Additionally, deducing from 4, an amount of zeros in

Jacobi polynomials increases quadratically with increasing n
(hence the distance between then decreases) towards bounds of

integration interval [−1, 1]. It causes the following problem: if

standard double precision is applied, for enough large n, zeros

become indistinguishable.

B. Enhancement of Standard Approach

Instead of formula (8), an equivalent formula is suggested

to apply

wk = 2α+β+1Γ (α+ n+ 1)Γ (β + n+ 1)

n!Γ (α+ β + n+ 1)

1
[

d
dθ
Pn (cos θk)

]2 ,

(23)

in which d
dθ
P (α,β) is derivative of Jacobi polynomial of order

n and θk = cos−1 xk, xk are zeros of Jacobi polynomial of

order n.

The conversion into trigonometric functions space has been

proposed by [25]. It enables omitting the expression 1 − x2
k

and hence reduce truncation error at the same time.

C. Results

Table III presents accuracy of Jacobi weights computation

in form of relative error (19) calculated in respect to the exact

values obtained by applying Czebyshev weights [15] for 50,

100, 500 and 1000 digits precision. Application arbitrary pre-

cision enables computing Jacobi weights with high-accuracy.

However, computational accuracy is not so straightforward

depended on an amount of digits of precision applied for

computations. It is caused by the fact that computational

complexity is increased by zeros of finding of the polynomial

of a given order.

General time complexity of Jacobi weights wk computation

presented in figure 6 depends directly on precision applied for

computations: for n < 500 and up to 100 digits precision it is

similar to double precision, n > 500 and more than 100 digits

precision it is 2n, and n! for more than 1000 digits precision.

0 500 1,000 1,500 2,000

0

100

200

300

n

ti
m
e(
s)

50

100

500

1000

Fig. 6. Computation time complexity of Jacobi weights for selected order n
with 50, 100, 500 and 100 digits precision.

VIII. FRACTIONAL ORDER DERIVATIVES AND INTEGRALS

COMPUTATION

The most useful method of presenting practical capabilities

of algorithms proposed in the following paper is computation

of values of integrals and derivatives of fractional order of two

exponential functions by applying formulas (9) and (13) with

the help of Gauss-Jacobi Quadrature (15).

DARIUSZ BRZEZIŃSKI: COMPUTATION OF GAUSS-JACOBI QUADRATURE NODES AND WEIGHTS WITH ARBITRARY PRECISION 303



TABLE III
RELATIVE ERROR ‖er‖L∞

OF COMPUTED WEIGHTS wk FOR SELECTED n IN RESPECT TO (16).

Czebyszew I Czebyszew II Czebyszew III Czebyszew IV

n 50 czas(s) iter 100 czas(s) iter 500 czas(s) iter 1000 czas(s) iter

50 1.46e-46 0.060 8 1.63e-97 0.109 9 9.33e-326 0.640 10 1.14e-323 2.651 10

100 3.73e-46 0.256 8 2.49e-96 0.339 9 9.64e-317 1.440 10 4.51e-319 5.632 11

200 8.39e-45 0.910 8 1.31e-95 1.051 9 1.86e-318 3.469 10 1.97e-318 12.322 11

300 6.53e-45 1.781 8 1.23e-95 2.170 9 2.57e-317 6.252 10 3.40e-317 20.000 11

500 1.01e-45 3.728 8 3.91e-94 5.265 9 1.56e-317 13.895 11 2.06e-320 38.619 11

1000 8.47e-43 14.03 8 8.53e-94 18.710 9 2.72e-326 45.04 11 1.71e-349 105.491 11

2000 7.26e-42 56.852 8 1.14e-93 72.479 9 3.08e-318 161.266 11 4.74e-318 335.694 11

To assess accuracy of computations of fractional derivatives

and integrals, it is required to computed exact values with

high-accuracy for relative error computation. In case of frac-

tional order derivative and integral computations, the effective

accuracy assessment is difficult, sometimes not possible due

to general lack of formulas for exact values.

Despite the availability of a handful of analytical formulas

for fractional order ν = 1
2 and some computational formulas,

they are accessible for selected types of functions only. Some

other formulas are in form of series expansion only. As it is

in case of exponential functions.

For the error (19) computation Mittag-Leffler function is

used.

A. Mittag-Leffler Function Computation

The Mittag-Leffler function [26] is a direct generalization

of the exponential function eat and it plays a major role in

fractional calculus. The one, two and three-parameter repre-

sentations of the Mittag-Leffler function can be defined in

terms of a power series as

Eα (at) :=
∞∑

k=0

atk

Γ (αk + 1)
, α > 0, (24)

Eα,β (at) :=

∞∑

k=0

atk

Γ (αk + β)
, α, β > 0. (25)

When β = 1, Eα,1 (at) = Eα (at).

Eγ
α,β (at) :=

∞∑

k=0

(γ)k
Γ (αk + β)

atk

k!
, α, β > 0, (26)

in which (γ)k is Pochhammer symbol [27]

(γ)k :=
Γ (γ + k)

Γ (k)
.

When γ = 1, E1
α,β (at) = Eγ

α,β (at), and when γ = β = 1,

E1
α,1 (at) = Eα (at). Some particular cases of the Mittag-

Leffler function are: E0 (at) =
1

1−at
, E1 (at) = eat E2 (at) =

cosh
√
at, E1,2 (at) = eat

−1
t

, E2,2 (at) =
sinh(at1/2)

at
1

2

,

E 1

2
,2 (at) = eat

2

erfc (−at). Papers [28] and [29] present

comprehensive knowledge of computing the Mittag-Leffler

function and its first derivative.

To calculate the Mittag-Leffler fractional order derivative/in-

tegral we combine the Riemann-Liouville fractional derivative

of the power function (t− t0)
p
, p ∈ R and the Mittag-Leffler

function (24) or (25)

t0D
(ν)
t Eα,β (at) = t−ν

∞∑

k=0

Γ (k + 1)atk

Γ (k + 1− ν) Γ (αk + β)
(27)

and for calculations of fractional order integral of the Mittag-

Leffler function, we apply the following formula

t0D
(−ν)
t Eα,β (at) = atν

∞∑

k=0

(atν)
k

Γ (αk + β + ν)
. (28)

B. Computing Environment Configuration

All computations described in the paper were conducted

using PC computer with Intel i7 2600K Processor, 8 GB

of RAM armed with full open-source operating system and

compiler: Ubuntu 16.04 LTS 64-bit Linux OS and gcc 5.4.0

compiler.

The computer system can be described as high-performance,

because its computational power is enormous. However, it

dates from 2011. Therefore it also can be described as com-

monly used.

To complete the picture that is important for time complex-

ity assessment, calculations were also conducted on an older

notebook with Intel Core 2 Duo Processor 2.4 GHz with 4

GB of memory from 2008 with exactly the same software

configuration.

C. Results

Figures 7 and 9 present plots of fractional integral and

derivative of two exponential functions. Figures 8 and 10

present plots of relative error (19) for n = 8, 16, 32 computed

with 100 digits precision.

As it is to see, steady 100 digits accuracy can be obtained by

applying Jacobi polynomial of order n = 32 for computations.

304 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018



0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

t

f
(t
)
=

ex
p
(−

0
.5
x
)
,(
0
,1
]

ν = 0.5

Fig. 7. Plot of fractional integral of order ν = 0.5 of function f (t) =
exp−0.5x in interval (0, 1].

0 0.2 0.4 0.6 0.8 1

10
−113

10
−90

10
−67

10
−44

10
−21

t

R
el
a
ti
v
e
er
ro
r

n = 8

n = 16

n = 32

Fig. 8. Plot of relative error of fractional integral of order ν = 0.5 of function
f (t) = exp−0.5x in interval (0, 1].

0 0.2 0.4 0.6 0.8 1

1.2

1.3

1.4

1.5

1.6

t

f
(t
)
=

ex
p
(0
.5
x
)
,(
0
,1
]

ν = 0.1

Fig. 9. Plot of fractional integral of order ν = 0.5 of function f (t) =
exp0.5x in interval (0, 1].

0 0.2 0.4 0.6 0.8 1
10

−114

10
−91

10
−68

10
−45

10
−22

t

R
el
a
ti
v
e
er
ro
r

n = 8

n = 16

n = 32

Fig. 10. Plot of relative error of fractional integral of order ν = 0.5 of
function f (t) = exp0.5x in interval (0, 1].

IX. CONCLUSIONS

The aim of the following research was to develop the most

efficient and accurate numerical algorithms for Gauss-Jacobi

Quadrature nodes and weights computation. In the paper,

we discuss efficient mathematical formulas for nodes and

wights computations and accurate methods of their computer

implementations.

Results of numerical experiments presented in the paper

prove that application of more accurate raw first approxima-

tions of zeros in the standard iteration method of polynomial

zeros finding leads to significant decrease of an mount of

iterations required for finding high-accurate zero location.

The proposed enhancements for the standard iteration

method of determining zeros of Jacobi polynomial enables de-

creasing an amount of iterations required for finding each zero

and increasing their accuracy many hundred times; changes to

the weight function formula and its computation by applying

cosine function enables massive reduction of truncation errors

and increasing overall accuracy of computations.

The enhanced methods programmed by applying excellent

arbitrary precision libraries GNU GMP and GNU MPFR

together with C++ programming language enable computation

of Gauss-Jacobi Quadratures and nodes and wights with arbi-

trary precision, i.e. with precision limited only by accessible

hardware (computer memory).

Results of computations of fractional order derivatives and

integrals of example exponential functions prove that modified

Gauss-Jacobi Quadrature that uses high-accurately computed

nodes and weight enables their computation with steady 100-

digits precision with only 32 sampling points at most. It is

worth nothing that standard numerical integration methods’,

e.g. Newton-Cotes quadratures’ accuracy is limited to a few

digits at best for the same computations [30], [31].

High accurately computed nodes of Jacobi polynomial

are an excellent starting point for research on mitigation

of Runge phenomenon. High-accurate methods of fractional

order derivatives and integrals computation can be useful

for constructing more efficient and accurate spectral methods

DARIUSZ BRZEZIŃSKI: COMPUTATION OF GAUSS-JACOBI QUADRATURE NODES AND WEIGHTS WITH ARBITRARY PRECISION 305



for solutions of fractional differential equations. This in turn

enables more accurate simulations of physical processes and

systems.

ACKNOWLEDGEMENT

The work was created as a result of the research project

no. DEC-2016/23/D/ST6/01709 financed from the funds of the

National Science Center, Poland.

REFERENCES

[1] S. Wolfram. (2005) The history and future of special
functions. http://www.stephenwolfram.com/publications/
history-future-special-functions/.

[2] D. W. Brzeziński and P. Ostalczyk, “High-accuracy numerical integra-
tion methods for fractional order derivatives and integrals computations,”
Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 62,
no. 4, pp. 723–733, 2014.

[3] D. W. Brzeziński, “Comparison of fractional order derivatives computa-
tional accuracy - right hand vs left hand definition,” Applied Mathematics
and Nonlinear Sciences, vol. 2, no. 1, pp. 237–248, 2017.

[4] A. Townsend, S. Olver et al. (2018) Fastgaussquadrature.jl. https:
//github.com/ajt60gaibb/FastGaussQuadrature.jl#fastgaussquadraturejl/.

[5] A. Glaser, X. Liu, and V. Rokhlin, “A fast algorithm for the calculation
of the roots of special functions,” J. Sci. Comput., vol. 29, pp. 1420–
1438, 2007.

[6] N. Hale and A. Townsend, “Fast and accurate computation of gauss-
legendre and gauss-jacobi quadrature nodes and weights,” Oxford Centre
for Collaborative Applied Mathematics, 2012, oCCAM Preprint Number
12/79.

[7] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions.
Applied Mathematics Series. Cambridge University Press, 1968.

[8] G. Szegö, Ortogonal Polynomials. American Mathematical Society,
Colloquiam Publications, Volume 23, 1939.

[9] D. Funaro, Polynomial Approximation of Differential Equations.
Springer-Verlag., 1992.

[10] M. D. Ortigueira, J. A. T. Machado, and J. S. da Costa, “Which differ-
integration?” IEE Proceedings - Vision, Image and Signal Processing,
vol. 152, no. 6, 2005.

[11] Y. Povstenko, Linear Fractional Diffusion-Wave Equation for Scientists

and Engineers. Cham, Heidelberg, New York, Dodrecht, London:
Birkhauser, Springer, 2015.

[12] J. Jiang, D. Cao, and H. Chen, “Boundary value problems for fractional
differential equation with causal operators,” Applied Mathematics and

Nonlinear Sciences, vol. 1, no. 1, pp. 11–22, 2016.
[13] D. Xin, Numerical Methods for Stochastic Computations: A Spectral

Method Approach. Princeton University Press Press, 2000.
[14] E. D. Rainville, Special Functions. Chelsea Publications Company,

1960.

[15] J. C. Mason and D. C. Handcomb, Chebyshev Polynomials. Champan
& Hall/CRC New York, 2003.

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing, Third Edition.
Cambridge University Press, 2008.

[17] K. Petras, “On the computation of the gauss-legendre quadrature form
with a given precision,” Jour. Comp. Appl. Math., vol. 112, pp. 253–267,
1999.

[18] W. Gautschi and C. Giordano, “Luigi gatteschi’s work on asymptotics
of special functions and their zeros,” Numerical Algorithms, vol. 49, pp.
11–31, 2008.

[19] H. Gerber, “First hundert zeros of j0 (x) accurate to 19 significant
figures.” Math. Comp., vol. 23, pp. 319–322, 1969.

[20] N. Brisebarre and J. M. Müller, “Correctly rounded multiplication by
arbitrary precision constants,” IEEE Transactions on Computers, vol. 57,
no. 2, pp. 165–174, 2008.

[21] J. M. Müller, N. Brisebarre, F. D. Dinechin, C. P. Jeannerod, V. Lefevre,
G. Melquiond, N. Revol, D. Stehle, and S. Torres, Handbook of Floating-

Point Arithmetic. New York, NY: Birkhauser, 2010.
[22] T. Granlund et al., gmp: GMP is a free library for arbitrary precision

arithmetic (version 6.0.0a), 2015, https://gmplib.org/.
[23] N. Brisebarre and J. M. Müller, “Correct rounding of algebraic func-

tions,” Theoretical Informatics and Applications, vol. 47, pp. 71–83,
2007.

[24] V. I. Krylov, Priblizhennoe wychislenie integralov, 2e izd. Mockba:
Nauka, 1967.

[25] P. N. Schwarztrauber, “On computing the points and weights for gauss-
legendre quadrature,” SIAM Jour. Sci.Comput, vol. 24, pp. 945–954,
2002.

[26] P. Humbert and R. P. Agarwal, “Sur la fonction de mittag-leffler et
quelques-unes de ses géneéralisations,” Bull. Sci. Math. Ser. II, vol. 77,
pp. 180–185, 1953.

[27] R. K. Saxenna, A. M. Mathai, and H. J. Haubold, “On generalized
fractional kinetic equations,” Physica A: Statistical Mechanics and its

Applications, vol. 344, pp. 657–664, 2004.
[28] R. Gorenflo, J. Loutchko, and Y. Luchko, “Computation of the mittag-

leffler function and its derivative,” Fractional Calculus & Applied

Analysis, vol. 4, pp. 491–518, 2002.
[29] R. Garrappa, “Numerical evaluation of two and three parameter mittag-

leffler functions,” SIAM J. Numer. Anal., vol. 53, no. 3, pp. 1350–1369,
2015.

[30] D. W. Brzeziński, “Accuracy problems of numerical calculation
of fractional order derivatives and integrals applying the riemann-
liouville/caputo formulas,” Applied Mathematics and Nonlinear Sci-

ences, vol. 1, no. 1, pp. 23–43, 2016.
[31] D. W. Brzeziński and P.Ostalczyk, “About accuracy increase of fractional

order derivative and integral computations by applying the grünwald-
letnikov formula,” Communications in Nonlinear Science and Numerical

Simulation, vol. 40, pp. 151–162, 2016.

306 PROCEEDINGS OF THE FEDCSIS. POZNAŃ, 2018


