
Using LINQ as a universal tool

for defining architectural assertions

Bartosz Frąckowiak

Institute of Informatics

University of Warsaw

Poland

Email: b.frackowiak@mimuw.edu.pl

Robert Dąbrowski

Institute of Informatics

University of Warsaw

Poland

Email: r.dabrowski@mimuw.edu.pl

Abstract—We demonstrate that Microsoft LINQ can be used as
a convenient tool to define architectural assertions. We introduce
an abstract model of software based on a directed multi-
graph and formalize the notion of software architecture and
architectural assertions. We demonstrate how Microsoft Visual
Studio can be harnessed to extract the architecture of a given
software project and append it with assertions using LINQ
notation. In particular we explain the flow of data processing that
takes place within Visual Studio engine. We follow with examples
of assertions selected to demonstrate the expressive power of our
approach. We conclude by showing subsequent areas of research
worth following in order to deepen the research indicated in this
paper.

I. INTRODUCTION

S
OFTWARE engineering is concerned with development

and maintenance of software systems. Properly engineered

systems are reliable, satisfy user requirements while their

development and maintenance is affordable.

In the past half-century computer scientists and software

engineers have come up with numerous ideas for how to

improve the discipline of software engineering. Edgser Di-

jkstra in his article [11] introduced structural programming

which restricted imperative control flow to hierarchical struc-

tures instead of ad-hoc jumps. Computer programs written

in this style were more readable, easier to understand and

reason about. Another improvement was the introduction of

the object-oriented paradigm [19] as a formal programming

concept. Other improvements in software engineering included

e.g. engineering pipelines and software testing.

In the early days software engineers perceived significant

similarities between software and civil engineering processes.

The waterfall model [23] that resembles engineering practices

was widely adopted as such, even though despite its original

description actually suggesting a more agile approach. It has

soon turned out that building software differs from building

skyscrapers and bridges. In the late 1990s the idea of extreme

programming emerged [3], its key points being: keep the code

simple, review it frequently and test early and often. Among

numerous techniques, test-driven development was promoted,

which eventually resulted in increased quality of produced

software and the stability of the development process [14].

Contemporary development teams started to lean towards short

iterations (sprints) rather than fragile upfront designs, and short

feedback loops allowed customers’ opinions to provide timely

influence on software development. This allowed for creating

even more complex software. Growing complexity of software

required ability to describe the software on different levels

of abstraction, and the notion of software architecture has

developed. The emergence of patterns and frameworks had a

similar influence on architecture as design patterns and idioms

had on programming. Software became developed by assem-

bling reusable software components, that interact using well-

defined interfaces, while component-oriented frameworks and

models provided tools and languages making them suitable for

formal architecture design. However, a discrepancy between

architecture level of abstraction and programming level of

abstraction prevailed. While the programming phase remained

focused on generating code within a preselected (typically

object-oriented) programming language, the architecture ph-

ase took place in the disconnected component world. The

discrepancies deepened as software gained features while not

being properly refactored, development teams changed over

time, worked under time pressure with incomplete documen-

tation and requirements that were subject to frequent changes.

Multiple development technologies, programming languages

and coding standards made this situation even more severe.

Unification of modeling languages failed to become the silver

bullet.

The discrepancy accelerated research on software archi-

tectures, model-driven development or automated software

engineering. Nowadays, we have ideas of how to craft the

architecture, though we still require ways to both monitor the

state of the architecture and enforce it during programming in

an automated manner. This is the problem that we aim at in

our reseach.

We start with a new vision for management of software

architecture based on the idea of an architecture warehouse. An

architecture warehouse is a repository of all software system

and software process artifacts. Such a repository can capture

architecture information which was previously only stored

in design documents or simply in the minds of developers.

Software intelligence is a tool-set for analysis and visualization

of this repository’s content [7], [8], [9]. That includes all

tools able to extract useful information from the source code

and other available artifacts (like version control history).

Position Papers of the Federated Conference on Computer

Science and Information Systems pp. 275–282

DOI: 10.15439/2016F587

ACSIS, Vol. 9. ISSN 2300-5963

c©2016, PTI 275

All software system artifacts and all software engineering

process artifacts being created during a software project are

represented in the repository as vertices of a graph. Multiple

edges of this graph represent various kinds of dependencies

among those artifacts. The key aspects of software production

like quality, predictability, automation and metrics are then

expressed in a unified way using graph-based terms.

The integration of source code artifacts and software process

artifacts in a single model opens new possibilities. They

include defining new metrics and qualities that take into

account all architectural knowledge, not only the knowledge

about source code. The state of software (the artifacts and

their metrics) can be conveniently visualized on any level

of abstraction required by software architects (i.e. functional

level, package level) or by software programmers (i.e. class or

method level).

Furthermore, the relations among those artifacts can be

automatically governed, in particular by implementing the idea

of assertions at the architectural level of abstraction.

In this article we introduce concepts and tools that allow

architects to enforce architectural principles (constraints) upon

programmers using architectural assertions, and we demon-

strate their proof-of-concept implementation using Microsoft

LINQ and Microsoft Visual Studio.

We introduce a new way of using internal Visual Studio

components to provide a universal tool for discovering vio-

lation of architecture constraints. Typically, tools of this type

provide functionality via a new standalone platform, doubling

existing functionality of integrated development environments;

or at best get integrated with existing environments (i.e. as

their plugins). We take a different approach. Since developers

spend most of their time using integrated development envi-

ronments as the main tool for producing source code, we aim

at reusing as much functionality of the developers’ well known

environment as possible. In this approach LINQ becomes

a universal language for describing architectural assertions

for all types of programming languages, and Visual Studio

becomes a universal environment with software intelligence

capabilities extending beyond its natively supported program-

ming stack.

The paper is organized as follows. Section II briefly sum-

marizes the works related to this research. Section III recalls

the graph-based model for representing architectural knowl-

edge that creates the backbone for architectural assertions,

while Section IV describes their implementation using Visual

Studio and LINQ. Section V demonstrates by example how

this approach can be applied to handle selected architectural

challenges. Section VI concludes.

II. RELATED WORK

In 2010 Tibermacine et al. [29] worked on a family of

languages for architecture constraint specification.

They argued that during software development architectural

decisions should be documented so that quality attributes

guaranteed by these decisions and required in the software

specification could be preserved. They stressed out that an

important part of these architectural decisions is getting them

formalized using constraint languages which differ between

stages of the development process. Therefore they suggested a

family of architectural constraint languages, where each mem-

ber of the family, called a profile, was to be used to formalize

architectural decisions at a given stage of the development

process. All profiles were based on a certain core constraint

language and a common architecture model. In addition to the

family of languages, they introduced a transformation-based

interpretation method for profiles and an associated tool.

In 2012 Fabresse et al. [13] have worked on bridging

the gap between design and implementation. They observed

that significant amount of software systems are designed

in component-oriented approach but programmed in object-

oriented languages. Unified Modeling Language (UML),

Corba Component Model (CCM) or Enterprise Java Beans

(EJB) were shown as examples of component-oriented models

that were only used at design time, while implementation

relied on object-oriented languages, with developers not actu-

ally adapting component-oriented programming. The authors

identified decoupling, adaptability, unplanned connections,

encapsulation and uniformity as important requirements for

component-oriented programming and proposed a language

that fulfilled these requirements, along with a prototype imple-

mentation and concrete experiments to validate their proposal.

As software evolution has become an integral part of the

software lifecycle, Lytra et al. [16] focused their research on

checking consistency between design decisions and design

models. In 2012 they proposed a constraint-based approach

for checking the consistency between the decisions and the

corresponding component models. They argued that since

maintenance of a software system involves among others the

maintenance of the software system architecture, then software

community must come up with additional models to capture

architectural design decisions and their design rationale, and

record the architectural knowledge. Their approach enabled

explicit formalized mappings of architectural design decisions

onto component models. Based on these mappings, component

models along with the constraints used for consistency check-

ing between the decisions and the component models were

to be automatically generated using model-driven techniques.

The approach was coping with changes in the decision model

by regenerating the constraints for the component model.

Thus, the component model got updated and validated as the

architectural decisions evolved.

In 2013 and 2014 Spacek et al. [24], [25], [26] worked

on wringing out objects for programming and for modeling

of component-based systems, and bridging the gap between

component-based design and implementation with a reflective

programming language. They recalled that languages and

technologies used to implement component-based software are

not component-based, i.e. while the design phase happens in

the component world, the programming phase occurs in the

object-oriented world; and when an object-oriented language is

used for the programming stage, then the original component-

based design vanishes, because component concepts are not

276 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016

treated explicitly. They suggested a pure reflective, component-

based programming and modeling language, where all core

component concepts were treated explicitly and therefore kept

the original component-based design alive. The language made

it possible to model and program software using the same

language, while its uniform component-based meta-model and

integrated reflection capabilities aimed at making the language

and its applications flexible.

III. MODEL

In our work we extend research summarized in sections I

and II.

We follow the unified representation of software architecture

as a collection of artifacts created during a software (devel-

opment) process and the relations among those artifacts. We

model it with a directed labeled multigraph [8].

Such model caters for the following key needs: (1) natu-

ral scalability, (2) abstraction from programming paradigms,

languages, specification standards, testing approaches, etc, and

(3) completeness, i.e. all software system and software process

artifacts are represented.

Our goal is to ensure that the designed architecture is kept

on track during the whole software process, in particular can

be enforced upon programmers during software development.

We obtain this goal by harnessing Microsoft technology to

deliver tools that allow to: (1) define architectural assertions

in concise notation; (2) monitor breaking the assertions by

programmers in automated way.

A. Architecture graph

Let software architecture be the structure or set of structures

defined by existing software elements, and the relationships

among them, best represented by software architecure graph.

Let software architecture graph be an ordered tuple:

(V, E)

where V is the set of vertices that reflect design and implemen-

tation artifacts created during a software project; E ⊆ V × V
is the set of directed edges that represent dependencies (rela-

tionships) among those artifacts.

For simplicity of reasoning, in this paper we limit the

model in respect to its original definition [7] by restricting

the range of information about a project being collected by

the architecture graph.

Let vertices of our architecture graph be limited to the

following types:

V = {module; class;method}.

These are the artifacts that are typically available in most

modern object-oriented languages (including lambda expres-

sions being anonymous methods).

Let edges of our architecture graph be limited to the

following types:

E = {association : class → class;

association : class → method;

association : method → class;

association : method → method;

creation : method → class;

inheritance : class → class;

call : method → method}.

For example: an association denotes that a method is

contained within (owned by) a class; also association relation

exists when a method takes or returns as an argument an

instance of a different class; or when a class defines a property

within a different class; creation represents special methods

responsible for construction statements in the source code,

ie. using new keyword; inheritance denotes class hierarchical

relations; call denotes steering being transferred from one

method to another.

For the simplicity of the reasoning, in this paper we assume

only static relations are represented in the architecture graph;

though dynamic aspects, ie. dynamic calls, are possible to be

automatically discovered and represented in the model [17].

We also omit types of static relations among artifacts, ie.

inclusion : module → module /∈ E .

However please note that our approach to implementation

of architectural assertions makes extending the scope of ar-

chitectural knowledge represented in our architecture graph’s

easy; for more details on possible extensions see section VI.

Also please note, that in our approach the relations can be

implicitly extended by folding existing relations into new types

of relations, ie.:

association : class → method

and

creation : method → class

in fact define

classcreation : class → class,

that is a creator relation in which one class is responsible for

creating objects of another class; see example of class factory

in section V.

B. Architecture assertion

Let source project P be a software project created in

any modern programming language (typically object-oriented)

that is to be constrained using architectural assertions. Let

G = G(P) be the architecture graph derived for the project

P (extracted from the project’s source code).

In the remaining part of the paper please observe, that

though we implement our approach using Visual Studio tools,

this does not restrict the range of languages that our approach

can be applied to.

Let architecture query denote a function that returns a

subgraph of the given architecure graph

Q : G → G′

BARTOSZ FRĄCKOWIAK, ROBERT DĄBROWSKI: USING LINQ AS A UNIVERSAL TOOL FOR DEFINING ARCHITECTURAL ASSERTIONS 277

where G and G′ are architecture graphs and G′ ⊆ G. Then we

can define architecture assertion as a comparison of the result

set of an architecture query to the empty set.

Let architectural assertion A denote such an architecture

query that the assertion is met (true) iff the executed query

returns an empty graph; otherwise the assertions is broken

(false):

A : Q → {true, false}

defined as

A(Q) := Q() == ∅ ? true : false.

C. Architecture processing

We assume that tasks of software architects include defining

constraints that bind software programmers during software

development process. Put otherwise, architects create asser-

tions that define desired (and also undesired) relations between

the components of the system. A library of such assertions,

when created, contributes to project’s architectural knowledge.

Consequently, the general approach to processing architectural

assertions is as follows.

Figure 1. General approach to assertion processing

1) Process the source project P to extract its architecture

graph G;

2) Process the architecture graph G into the design project

D denoted in a domain-specific language L;

3) Create a collection of architectural assertions A, where

each assertion is defined in L in a notation referring

to design project D (being an abstraction of the source

project P);

4) Evaluate assertions A to identify in D breaches of

architectural rules;

5) Retract from D via G into P to identify fragments of

P that violate architectural constraints imposed on the

project.

See the following section IV for details on how those

concepts have been assembled together using Microsoft tech-

nologies to constitute a general-purpose tool for defining and

monitoring architectural assertions; see section V for examples

of assertions.

IV. IMPLEMENTATION

Please recall the key design concept introduced in section

III: (1) extracting from a given source project an abstract

model that focuses only on architectural artifacts and their

relations; (2) expressing the artifacts and relations in an inter-

mediary layer denoted in a domain-specific language; (3) using

an existing calculation environment capable of processing

given domain-specific language as its calculation input.

For our proof-of-concept implementation of the design

concept described in section III we harness the following

Microsoft components:

• IDE Visual Studio Integrated Development Environment

providing graphical user interface framework we extend

for our purposes;

• DSL Visual Studio Domain Specific Language Tools

allowing us to define an own domain-specific language

to represent an abstraction of the source code;

• T4 tools providing processing and persistence capabilities

for our abstraction of the source code;

• LINQ syntactic sugar for concise notation of architec-

tural assertions, ie. thanks to using anonymous methods

(lambda queries);

• Roslyn for on-the-fly parsing, compiling and executing

of the assertions.

A high-level overview of processing steps is depicted on

figure IV. In subsequent parts of the section we provide more

details on the goals of each step and how the components

we selected are used to achieve those goals. We stress out

that using these components, especially LINQ as the assertion

notation, proves to be efficient in terms of: (1) high expressive

power of notation used to define architectural assertions;

and (2) small programming effort required to implement the

automated verification of such assertions.

Source code processing

Java

Python

C#

...

DSL T4

LINQRoslyn

IDE

Architecture

model

Figure 2. Implementation of processing steps using Microsoft components

A. Source code processing

A prerequisite for further adding and executing architectural

assertions is processing source code (of the source project)

in order to obtain its architectural model. In many cases

such processing can be implemented effectively by analyzing

the source code’s abstract syntax trees (AST); ie. in case of

languages like Java, Pythor or C# the compilers (interpreters)

allow to analyze the source code’s ASTs.

When examining a single node (of the tree) representing

a method, we deduce the fact that the method calls another

278 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016

method (in some other class). Next we perform type solving;

through a preliminary compilation of sources we check what

is the type (class) of this method. Please note that though

pre-compilation process is great for collecting information

about software archiecture, there might be some cases when

pre-compilation is not possible (ie. in case of interpreted

programming languages). In this research we narrow focus

only to languages for which source code compilers of adequate

capabilities exist, and assume in our approach that abstract

syntax trees constitute a first layer of abstraction between the

source code files and the architecture graph.

B. DSL

To represent source code abstraction collected during source

code processing, we utilize Visual Studio and its ability to pro-

vide an abstract mechanism for representing structures of any

selected domain; namely we implement our architecture model

using its Domain Specific Language Tools. To implement the

graph structure we extend the DSL Tools’ interfaces with own

implementation classes, main ones being as follows.

+Source : DSLType

+Destination : DSLType

DSLAssociation

+Nodes : List<DSLNode>

+Associations : List<DSLAssociation>

DSLProject

+Name : string

+Module : string

+Properties : Dictionary <string, object>

+Inherits : List<DSLType>

DSLType
+Name : string

+Module : string

+Properties : Dictionary <string, object>

+Calls : List<DSLMethod>

+Creates : List<DSLType>

DSLMethod

+Name : string

+Module : string

+Properties : Dictionary <string, object>

DSLNode

<<creation>><<inheritance>> <<call>>

Figure 3. DSL representation of architecture graph

1) DSLProject is a container for all the artifacts of archi-

tectural model and the relations among them.

2) DSLNode is the superclass for all types of artifacts,

sharing common properties of further entities. Those

common properties are: (1) name (string), (2) module

(string), and (3) dynamic dictionary of artifact’s proper-

ties.

3) DSLAssociation allows to represent all type of own-

ership relations among the artifacts, like classes own-

ing methods, methods owning (anonymous) methods,

methods owning (anonymous) classes, classes owning

(anonymous) classes.

4) DSLType represents the object-oriented concept of class

entity, or any other similar architectural artifact, like

structure, enumeration, etc.

5) DSLMethod represents architectural artifact for method

statements in the software source code. Please note that

to represent relation of binding methods to a class (like

in object-oriented source code) we use DSLAssociation;

however for several special relations (like creation, in-

heritance or call) we made a design decision of keeping

direct pointers.

C. T4

In the next processing step we transform the DSL-

represented data using T4 templates. The templates use in-

stances of objects described in a DSL model as the input and

generate any text containing the data from the DSL model.

Templates allow iterations through data collections, condi-

tional statements and text transformation using any software

libraries provided for the .NET platform. In our case the

templates are used to generate an intermediary code (in C#)

to be next appended with architectural assertions (in LINQ)

and interpreted (with Roslyn). Regardless of the programming

language of the source project, there are three types of C#
files that get generated (for one source project).

1) Architecture Model The first file contains definition

of artifacts that are used in definitions of architectural

queries. Put otherwise, it contains the data model derived

from the source code that gets referred to by architec-

tural assertions. Technically, its is a reflection of the

DSL representation of architecture graph. By design it

is constructed to provide read-only data, ie. it should

not be directly edited by software architects; if needed

it should be re-generated from the source code. In some

sense it resembles definitions of the objects in DSL layer

with methods omitted (ie. status changing methods).

2) Intermediary Code While the first file contains an

abstraction of the source code, the second file contains

C# translation of the given source project. In particular

the C# code contains the same structures as the corre-

sponding structures in the source project, ie. if the source

code includes some class, then in the intermediary C#
code a class with exactly same name and properties

will be created. The code inside the second file refers

to the definitions from the first file. The second file is

required for eventual execution of queries againts the

source code that the queries aim to constraint. This file

is also generated automatically from the source code and

should not be edited manually by software architects.

3) Query Definitions The third file contains a collection of

architectural queries. Definition of each query refers to

definitions from the first file. Queries can be freely edited

by architects, according to their personal experience. For

the definitions of the queries to be interpreted correctly

by VS, it must be combined with the previous two files.

Please note, that the first two files are delivered as a result

of analysis of the source code and its transformation into C#.

They provide resources for software architects to define next

their own architectural assertions. The resources are provided

read-only, that is in case of architectural changes in the source

code, the intermediary C# files must be re-generated. On

the other hand, the third file contains a collection of queries

as defined by architects themselves. Software architects are

BARTOSZ FRĄCKOWIAK, ROBERT DĄBROWSKI: USING LINQ AS A UNIVERSAL TOOL FOR DEFINING ARCHITECTURAL ASSERTIONS 279

encouraged to build a collection of re-usable queries, so that

introducing architectural rules or restrictions into new projects

becomes quick and unexpensive.

D. Roslyn

Eventually the assertions are executed using Roslyn. It

begins with combining all three types of files created for the

given source project as described in the previous subsection

into a C# program, and reparsing the respective C# program.

What follows is an on-the-fly compilation of the program;

compilation on-the-fly is a fully-fledged compilation, the same

as for the creation of library files or other executables, with

the exception that the compilation unit immediately goes

into memory and is managed with a current thread. Within

execution of the current thread it is possible to call any

method of the loaded library and retrieve results, though

architecture query results must be of types available in the

unit of compilation.

In solution proposed in this paper, an architecture query

result (graph) can be represented using simple types. That is

the query may return either a tuple being a subset of vertices

(list of strings) and a subset of edges (list of strings) of the

architecture graph; or the subset of edges is empty, with a

nonempty subset of vertices; or both subsets are empty (empty

graph, with both lists being empty).

V. MAIN RESULT

Please recall that an assertion is a comparison of an architec-

ture query result to an empty set, where architecture query is a

function returning a subset of the project’s architecture graph.

Hence the assertion is satisfied if and only if the query returns

an empty graph. We demonstrate by the following examples

how our approach can be applied to enforce architectural

assertions:

(1) Unwanted Instability: only stable or unstable classes

are allowed; (2) Factory Violation: object are constructed in

factories only; (3) God Object: all-powerful objects are not

allowed. For each example we summarize: (1) the architectural

problem it aims to solve; (2) the subset of the graph model

relevant for the assertion; and (3) the definition of the resulting

query.

Please note the concise notation used to denote the query.

Also please recall, that using this approach the assertions can

be denoted in LINQ and C# for any type of source code, as

long as the source code can be abstracted into a unified model

of architecture graph; in particular it suffices that for the given

source code language there exists an AST toolset, as it does

ie. in respect to Java or Python.

A. Unwanted Instability

Problem: Instability metric (I) indicates module, package or

class readiness for change [18]. It is calculated as the ratio

of efferent coupling (Ce) to the efferent and afferent coupling

(Ca), namely I = Ce/(Ce+Ca). The range for this metric is

I ∈ [0..1]. Accorind to metric author a module with instability

close to value 0 is considered stable. A stable module has

no references to other modules, can have number of internal

references (among module’s own artifacts). On the other hand

a module with instability metric value close to 1 is considered

instable. An instable module usually has a vast amount of

outgoing references and a low amount of internal references.

Modules with instability I ∈ (0.3..0.7) are considered neither

stable or unstable, as such being typically unwanted in a

software project. The following query finds out which modules

are unwanted in terms of instability metric (as defined above).

Model:

V = {class;method}.

E = {association : class → method;

call : method → method}.

Query:

[AssertAttribute]
public static IEnumerable<string>

UnwantedInstability(){
var en = from types in Project.Types.Where(x =>
x.Callers.Count + x.Calls.Count > 0

)
group types by new {
types.FullName,
Ca = types.Callers.Count,
Ce = types.Calls.Count,
I = types.Calls.Count /

(double)(types.Callers.Count +
types.Calls.Count)

}
into rType
where
rType.Key.I >= 0.3 &&
rType.Key.I <= 0.7

select rType.Key.FullName;

return en.ToList();
}

B. Factory Violation

Problem: The purpose of factory pattern is to hide the logic

of creating individual objects. Creating objects outside the

designated class factories violates the pattern. We assume that

in our architecture model the factories are explicitly indicated,

that is each such artifact has a name that contains factory

suffix. We search for violations of factory pattern.

Model:

V = {class;method}

E = {association : class → method;

creation : method → class;

call : method → method}

Query:

280 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016

[AssertAttribute]
public static IEnumerable<string> FactoryViolation() {
const string factoryLabel = "factory";

var v = Project.Types
.Where(x => x.Name.ToLower()
.Contains(factoryLabel));

if (!v.Any())
return new[] { "" };

var factoryArtifacts = Project.Types
.Where(
conn => conn is CreationConnection &&
v.Any(y => y == x.Source)

).Select(x => x.Destination);

return Project.Types
.Where(
conn => conn is CreationConnection &&
factoryArtifacts.Any(y => y == x.Destination) &&
!x.Source.Name.Contains(factoryLabel)

);
}

C. God Object

Problem: One of previous examples shows how to use our

approach to find out a violation of design patterns. Same idea

can be used to find out if anti-patterns exist in the source

project. One of well-known anti-patterns is God Object. This

anti-pattern is a violation of Single responsibility principle rule

defined as a part of SOLID rules [18]. Single responsibility

principle constrains one class to provide logic for only just

one functionality. Keeping classes inside source code simple

and responsible for one thing each increases source code

maintainability and software scalability. Placing one class

which does too much things is a tempting phenomenon for

inexperienced developers, hence we search for existence of

God Objects.

Model:

V = {class;method}

E = {association : class → class}

Query:

[AssertAttribute]
public static IEnumerable<string> GodObject()
{
var types = Project.Types.Select(x => new
{
Type = x,
Count = Project.Connections.
Count(y => y.Destination == x || y.Source == x)

});
var v = types.OrderByDescending(x => x.Count);
return v.Take(3).Select(x => x.Type.FullName);

}

VI. CONCLUSIONS

Our paper follows the research on architecture of software

and software process. It promotes an approach that avoids

separation between source code, software process and software

architecture (design) artifacts. In this paper we demonstrate

that an implementation of such approach is feasible. We

demonstrate that LINQ, being a syntactic extension of C#,

can become a concise and expressive notation for defining

architectural assertions. We also demonstrate that Visual Stu-

dio, being an integrated development environment, is a good

platform to create a tool that allows software architects to

enforce assertions upon software projects, uniformly treating

source and architectural layers of the project.

The idea to extend functionality of existing integrated devel-

opment environments is not novel, it has been alredy confirmed

in practice and there exist plugins for specific domains of

software engineering. The actual novelty of our approach lies

in representing architectural artifacts using the same artifacts

as the ones in the source code. More precisely, in parallel to

the source project we generate an additional design project

describing architecture of the source project. Additinally, if

both projects follow the same syntactical rules (of the same

programming language, ie. C# like in our example), then

architectural artifacts can even melt with the actual source

code hence be accessed and automatically processed just as

any other parts of the source code, both from the perspective

of integrated development environment, and from the perspec-

tive of a software programmer or software architect. Parallel

execution of both projects - the source project and the design

project - opens new opportunities. While the first project

preserves its original business purpose, the second project

becomes responsible for watching over internal architecture

of the first project - validation of the architectural constraints

placed upon artifacts and their interconnections. Another novel

observation is the fact that to denote and automatically validate

architectural assertions, software architects do not need to

explore all the details of the source code. For this purpose

only a certain abstraction of the source code is satisfactory -

focusing on signatures of types and methods, their relations,

but disregarding implementation specifics, ie. method condi-

tional statements. Therefore we have observed that a source

project in programming language A (ie. Java or Python, or any

other language of similar characteristics) can be automatically

transformed into a design project in another programming

language B (ie. in C#) such that we can express in language

B architectural assertions in respect to architectural artifacts

of the project in language A. It is actually practicable due to a

common abstraction behind majority of current object-oriented

programming languages. Thanks to this, for ie. a program in

Java we can denote architectural assertions in LINQ, melt them

into an automatically generated C# abstraction of the Java

program and compile and execute the new C# program to get

the assertions validated. In some sense this way C# becomes a

calculation description and Visual Studio a calculation engine.

Our research can be extended in a few directions. Practical

BARTOSZ FRĄCKOWIAK, ROBERT DĄBROWSKI: USING LINQ AS A UNIVERSAL TOOL FOR DEFINING ARCHITECTURAL ASSERTIONS 281

aspects include creating a publicly-available extension for

Visual Studio containing all the described functionality, inte-

grated and operationally verified. Theoretical aspects include

extending the scope of graph model of software architecture

(available as the domain for the architecture assertions) to

include subsequent artifacts and subsequent relations; also

researching its properties, expressive power, and the scope of

programming languages compatible with this model; generally

expanding the concept of collecting architectural knowledge

[8], [1], [28]. Our approach requires also thorough verification

and comprehensive, comparative testing; in particular creating

a publicly available test-bed consisting of multiple source

projects in multiple programming languages is a must. It can

be anticipated that examples that include reflections, functional

programming, dynamic method definition or other program-

ming concepts may require refactoring of DSL implementation

of the model, or redefinition of T4 transformations used for

model processing, or introducing other concepts of model

transformations [10]. In parallel we intend to start building a

default library of architectural assertions denoted in LINQ, that

would cover existing good architectural and design practices

[4], [5]. Such library - created in abstraction from the source

code language - would trigger another research stream, namely

existing software projects could be systematically verified

against the predefined architectural assertions. Another topic

of research is appending information of architectural assertions

into visual representation of software as a graph [2], [6], [15],

[20]. Yet another direction is empowering software architects

with tools (hence a notation) that would implement the long

defined postulate that software process is a software as well

[21], or even extended such approach to actually include all

software project artifacts, not only source code artifacts [22],

[27], [12].

REFERENCES

[1] M. A. Babar and I. Gorton, editors. Software Architecture, 4th European

Conference, ECSA 2010, Copenhagen, Denmark, August 23-26, 2010.

Proceedings, volume 6285 of Lecture Notes in Computer Science.
Springer, 2010.

[2] C. Bartoszuk, R. Dąbrowski, K. Stencel, and G. Timoszuk. On
quick comprehension and assessment of software. In B. Rachev and
A. Smrikarov, editors, CompSysTech, pages 161–168. ACM, 2013.

[3] K. Beck. Embracing change with extreme programming. IEEE

Computer, 32(10):70–77, 1999.
[4] H. P. Breivold, I. Crnkovic, and M. Larsson. Software architecture

evolution through evolvability analysis. Journal of Systems and Software,
85(11):2574–2592, 2012.

[5] N. Brown, R. L. Nord, I. Ozkaya, and M. Pais. Analysis and man-
agement of architectural dependencies in iterative release planning. In
WICSA, pages 103–112, 2011.

[6] C. S. Collberg, S. G. Kobourov, J. Nagra, J. Pitts, and K. Wampler.
A system for graph-based visualization of the evolution of software.
In S. Diehl, J. T. Stasko, and S. N. Spencer, editors, SOFTVIS, pages
77–86, 212–213. ACM, 2003.

[7] R. Dąbrowski. On architecture warehouses and software intelligence. In
T.-H. Kim, Y.-H. Lee, and W.-C. Fang, editors, FGIT, volume 7709 of
Lecture Notes in Computer Science, pages 251–262. Springer, 2012.

[8] R. Dąbrowski, K. Stencel, and G. Timoszuk. Software is a directed
multigraph. In I. Crnkovic, V. Gruhn, and M. Book, editors, ECSA,
volume 6903 of Lecture Notes in Computer Science, pages 360–369.
Springer, 2011.

[9] R. Dąbrowski, G. Timoszuk, and K. Stencel. One graph to rule them
all software measurement and management. Fundam. Inform., 128(1-
2):47–63, 2013.

[10] J. Derrick and H. Wehrheim. Model transformations across views. Sci.

Comput. Program., 75(3):192–210, 2010.
[11] E. W. Dijkstra. Letters to the editor: go to statement considered harmful.

Commun. ACM, 11(3):147–148, 1968.
[12] A. Egyed and P. Grünbacher. Automating requirements traceability:

Beyond the record & replay paradigm. In ASE, pages 163–171. IEEE
Computer Society, 2002.

[13] L. Fabresse, N. Bouraqadi, C. Dony, and M. Huchard. A language to
bridge the gap between component-based design and implementation.
Computer Languages, Systems & Structures, 38(1):29–43, 2012.

[14] R. Kaufmann and D. Janzen. Implications of test-driven development: a
pilot study. In Companion of the 18th annual ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and applications,
OOPSLA ’03, pages 298–299, New York, NY, USA, 2003. ACM.

[15] R. Koschke. Software visualization for reverse engineering. In S. Diehl,
editor, Software Visualization, volume 2269 of Lecture Notes in Com-

puter Science, pages 138–150. Springer, 2001.
[16] I. Lytra, H. Tran, and U. Zdun. Constraint-based consistency checking

between design decisions and component models for supporting software
architecture evolution. 2011 15th European Conference on Software

Maintenance and Reengineering, 0:287–296, 2012.
[17] V. Markovets, R. Dąbrowski, G. Timoszuk, and K. Stencel. Know

thy source code. is it mostly dead or alive? In C. K. Georgiadis,
P. Kefalas, and D. Stamatis, editors, Local Proceedings of the Sixth

Balkan Conference in Informatics, Thessaloniki, Greece, September 19-

21, 2013, volume 1036 of CEUR Workshop Proceedings, page 128.
CEUR-WS.org, 2013.

[18] R. C. Martin. Agile Software Development: Principles, Patterns, and

Practices. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003.
[19] J. McCarthy, M. I. of Technology. Computation Center, and M. I.

of Technology. Research Laboratory of Electronics. Lisp one five

programmer’s manual. Massachusetts Institute of Technology, 1965.
[20] R. L. Nord, I. Ozkaya, and R. S. Sangwan. Making architecture visible

to improve flow management in lean software development. IEEE

Software, 29(5):33–39, 2012.
[21] L. J. Osterweil. Software processes are software too. In W. E. Riddle,

R. M. Balzer, and K. Kishida, editors, ICSE, pages 2–13. ACM Press,
1987.

[22] S. P. Reiss. Dynamic detection and visualization of software phases.
ACM SIGSOFT Software Engineering Notes, 30(4):1–6, 2005.

[23] W. Royce. Managing the development of large software systems:
Concepts and techniques. In WESCOM, 1970.

[24] P. Spacek, C. Dony, and C. Tibermacine. A component-based meta-level
architecture and prototypical implementation of a reflective component-
based programming and modeling language. In Proceedings of the 17th

International ACM Sigsoft Symposium on Component-based Software

Engineering, CBSE ’14, pages 13–22, New York, NY, USA, 2014.
ACM.

[25] P. Spacek, C. Dony, C. Tibermacine, and L. Fabresse. Bridging the Gap
between Component-based Design and Implementation with a Reflective
Programming Language. Technical report, Laboratoire d’Informatique
de Robotique et de Microélectronique de Montpellier - LIRMM , Unité
de Recherche Informatique et Automatique - URIA, July 2013.

[26] P. Spacek, C. Dony, C. Tibermacine, and L. Fabresse. Wringing out
objects for programming and modeling component-based systems. In
Proceedings of the Second International Workshop on Combined Object-

Oriented Modelling and Programming Languages, ECOOP’13, pages
2:1–2:6, New York, NY, USA, 2013. ACM.

[27] G. Spanoudakis and A. Zisman. Software traceability: a roadmap.
Handbook of Software Engineering and Knowledge Engineering, 3:395–
428, 2005.

[28] M. T. T. That, S. Sadou, and F. Oquendo. Using architectural patterns
to define architectural decisions. In T. Männistö, A. M. Babar, C. E.
Cuesta, and J. Savolainen, editors, WICSA/ECSA, pages 196–200. IEEE,
2012.

[29] C. Tibermacine, R. Fleurquin, and S. Sadou. A family of languages for
architecture constraint specification. Journal of Systems and Software,
83(5):815–831, 2010.

282 POSITION PAPERS OF THE FEDCSIS. GDAŃSK, 2016

