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Abstract—Fuzzy cognitive map (FCM) allows to discover
knowledge in the form of concepts significant for the analyzed
problem and causal connections between them. The FCM model
can be developed by experts or using learning algorithms
and available data. The main aspect of building of the FCM
model is concepts selection. It is usually based on the expert
knowledge. The aim of this paper is to develop and analyze
a new evolutionary algorithm for selection of key concepts and
determining the weights of the connections between them on the
basis of available data. The proposed approach allows to reduce
concepts during learning process based on metrics from the area
of graph theory: significance of each node and total influence
of the concept. A simulation analysis of the developed algorithm
was done with the use of real-life data.

I. INTRODUCTION

F
UZZY cognitive map (FCM) is a directed weighted graph

for representing knowledge [9]. It is an effective tool

for modeling dynamic decision support systems [13], [25].

Fuzzy cognitive maps allow to visualize complex systems as

a set of key concepts (nodes) and connections (links) between

them. The FCM model can be built based on expert knowl-

edge [3], [4]. Experts choose the most significant concepts

and determine type and strength of the relationships between

them (weights of the connections). Fuzzy cognitive map can

be also initialized with the use of learning algorithms [16]

and historical data. Standard supervised [8] and evolutionary

algorithms [13], [23], [24] allow to determine the structure

of the FCM model based on all available data. For each

data attribute new concept is created. Next the weights of the

connections are specified during learning process.

Fuzzy cognitive maps with the large number of concepts are

difficult to analyze and interpret. Moreover, with the growth

of the number of concepts, the number of connections be-

tween them that should be determined increases quadratically.

Several researchers have attempted to develop methods of

reduction of fuzzy cognitive map size. In [5] a new approach

for reduction of the FCM model complexity by merging

related or similar initial concepts into the same cluster of

concepts is presented. These clusters can be used then as the

real concepts in the reduced FCM model. Concepts clustering

technique based on fuzzy tolerance relations was used in [17]

for modeling of waste management system. The analysis of the

decision making capabilities of the less complex FCM shows

that proper concepts reductions make models easier to be used

keeping their original dynamic behavior. Also cluster validity

indexes were introduced to evaluate Fuzzy Cognitive Map

design before training phase in [6]. The resulting FCM models

are easy to interpret and properly perform the task of predic-

tion. Homenda et al. [7] introduced a time series modeling

framework based on simplified Fuzzy Cognitive Maps using

a priori nodes rejection criteria. The obtained results confirmed

that this approach for simplifying complex FCM models al-

lows to achieve a reasonable balance between complexity and

modeling accuracy. Selvin and Srinivasaraghavan proposed an

application of the feature selection techniques to reduce the

number of the input concepts of fuzzy cognitive map [21].

The feature selection methods were performed based on the

significance of each concept to the output concept. However

the influences of the connections between the concepts were

not taken into consideration. In [18], [19] the structure opti-

mization genetic algorithm for fuzzy cognitive maps learning

was presented. It allows to select the most significant concepts

and connections between them based on random generation of

possible solutions and the error function that takes into account

an additional penalty for highly complexity of FCM during

learning process. The usefulness of the developed approach

was shown on the example of the one-step ahead time series

prediction.

The advantage of the FCM model is its graph-based rep-

resentation that allows to use various methods and metrics

from the area of graph theory to analyze the structure and

behavior of the modeled system [26]. In this paper we propose

to use two various metrics to reduce concepts of the FCM

model during learning process. The first metric is the degree

of a node. It denotes its significance based on the number of

concepts it interacts with (is affected by and it affects) [4]. The

second metric is one of the system performance indicators: the

total (direct and indirect) influence of the concept [2], [22].

The aim of this paper is to develop the evolutionary learning

algorithm that allows:

• to reduce the size of the FCM model by selecting the
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most significant concepts,

• to determine the weights of the connections between

concepts,

• to approximate the real-life data [10], [15], [20].

The comparison of the developed approach with the standard

one based on the all possible concepts and data error and the

previously developed approach based on density and system

performance indicators [12] was done. The learning process

was performed using two effective techniques for FCMs

learning: Elite Genetic Algorithm (EGA) [14] and Individually

Directional Evolutionary Algorithm (IDEA) [11].

The outline of this paper is as follows. Section II briefly

describes fuzzy cognitive maps. Section III presents the pro-

posed approach for fuzzy cognitive map learning and concepts

selection. In Section IV, the results of the simulation analysis

based on real-life data are presented. Section V contains the

conclusions and further work.

II. FUZZY COGNITIVE MAPS

Fuzzy cognitive map is a directed weighted graph for

representing causal reasoning [9]:

< X,W > (1)

where X = [X1, ..., Xn]
T is the set of the concepts, n is the

number of concepts determining the size of the FCM model,

W is the connection matrix, wj,i is the weight of the influence

between the j-th concept and the i-th concept, taking on the

values from the range [−1, 1]. wj,i > 0 means Xj causally

increases Xi, wj,i < 0 means Xj causally decreases Xi.

Fuzzy cognitive map allows to model behavior of dynamic

decision support systems and can be used in a what-if analy-

sis [1]. The values of the concepts determine the state of the

FCM model and can be calculated according to the selected

dynamic model. In the paper one of the most popular dynamic

models was used [23]:

Xi(t+ 1) = F





n
∑

j=1,j 6=i

wj,i ·Xj(t)



 (2)

where Xi(t) is the value of the i-th concept at the t-th iteration,

i = 1, 2, ..., n, t is discreet time, t = 0, 1, 2, ..., T . Transfor-

mation function F (x) normalizes values of the concepts to a

proper range. The most often used function is a logistic one,

described as follows [23], [24]:

F (x) =
1

1 + e−cx
(3)

where c is a parameter, c > 0.

III. PROPOSED APPROACH

The aim of the proposed approach is automatic concepts

selection in fuzzy cognitive map during learning process using

metrics from the area of graph theory. This approach requires

determination of the decision (output) concepts. Other con-

cepts are input concepts. The obtained model consists only key

input concepts that affect to the decision/output concept (or

concepts). During learning process we evaluate the candidate

FCMs based on data error calculated for decision concepts.

The significance of the concept (the degree of the concept)

and the total influence of the concept were taken into account

in the process of the key concepts selection.

The proposed approach contains the following steps:

STEP 1. Initialize random population.

An initial population is generated before starting evolution

loop. Each candidate FCM is described by the two vectors.

The first vector (4) describes values of weights between

concepts [23]:

W ′ = [w1,2, ..., w1,n, w2,1, w2,3, ..., w2,n, ..., wn,n−1]
T (4)

where wj,i ∈ [−1, 1] is the weight of the connection between

the j-th and the i-th concept, , j = 1, 2, ..., n and n is the

number of concepts.

The second vector (5) describes the state of each concept:

C = [c1, c2, ..., cn, ]
T

ci ∈ {AS, IAS,AAS}
(5)

where ci is the state of i-th concept and n is the number of

concepts.

Each concept can be in the one of the three states: active

(AS), inactive (IAS) and always active (AAS). The decision

concept is always active. This mean, that obtained model

always contains decision concept (concepts). The concepts

with AS state and the decision concepts creates the collection

of key concepts.

During the first step, the elements of the W ′ vector are

initialized with the random values form the interval [−1, 1].
The state for every node is active for all individual in the initial

population. For this reason, the elements of the C vector are

equal to AAS for the decision concept (concepts) and AS for

the other concepts.

STEP 2. Evaluate population.

Each individual is evaluated based on the following fitness

function:

fitness(Error) = −Error (6)

where Error is the objective function calculated on the basis

of data error for the decision concepts:

Error =

T
∑

t=1

nd
∑

i=1

|Zi(t)−Xi(t)| (7)

where Xi(t) is the value of the ith decision concept at iteration

t of the candidate FCM, Zi(t) is the value of the i-th decision

concept at iteration t in the input data, t = 0, 1, 2, ..., T , T is

the input data length, i = 1, ..., nd and nd is the number of

decision concepts.

STEP 3. Check stop condition.

If the number of iterations is greater than iterationmax then

the learning process is stopped.

STEP 4. Select new population.

The temporary population is created from a current base

population using roulette-wheel selection with dynamic linear

scaling of the fitness function [14].

90 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017



STEP 5. Select key concepts.

Process of selection of key concepts is carried out in 3 ways:

1) Key concepts are selected at random (SC_RND).

The state of each input concept for each individual

may be changed with a certain probability. The value

of state change probability is in the range (0, 1). The

concept, whose state is AS may be removed from the

key concepts collection by changing the state to IAS.

The concept, whose state is IAS may be added to the

key concepts collection by changing the state to AS. The

values of W ′ vector are not modified.

2) Key concepts are selected based on the degree of the

node (CS_DEG).

The degree of the node (8) denotes its significance based

on the number of concepts it interacts with (is affected

by and it affects) [4]:

degi =

∑n

j=1,j 6=i θ(wi,j) +
∑n

j=1,j 6=i θ(wj,i)

2n− 1
,

θ(wi,j) =

{

1 , wi,j 6= 0
0 , wi,j = 0

(8)

where n is the number of the concepts; wj,i is the weight

of the connection between the j-th and the i-th concept;

i, j = 1, 2, ..., n.

The state of some concept without the decision concept

(concepts) for each individual may be changed with a

certain probability. The value of state change probability

is in the range (0, 1). The i-th concept with minimum

value of degi (8) from the set of key concepts (concepts

whose state is AS) will be removed from the key

concepts collection. The value of state attribute of this

concept will be changed to IAS. The i-th concept with

maximum value of degi (8) from concepts whose does

not belong to the key concepts collection (concepts

whose state is IAS) will be added to the key concepts

collection. The value of the state attribute of this concept

will be changed to AS. The value of the state attribute

change probability is equal to 0.5.

3) Key concepts are selected based on total influence of

each concept (CS_INF).

The total (direct and indirect) influence between con-

cepts is described as follows [2], [22]:

infi =

∑n

j (pi,j + pj,i)

2n
(9)

where n is the number of the concepts, pj,i is the total

(direct and indirect) influence between the j-th concept

and the i-th concept calculated on the basis of the total

causal effect path between nodes [12], i, j = 1, 2, ..., n.

The state of input concept for each individual may

be changed with a certain probability. The value of

state change probability is in the range (0, 1). The i-th

concept with minimum value of the total influence infi
(9) will be removed from the key concepts collection.

The value of the state attribute of this concept will be

changed to IAS. The i-th concept with maximum value

of the total influence infi (9) from concepts whose

does not belong to the key concepts collection (concepts

whose state is IAS) will be added to the key concepts

collection. The value of the state attribute of this concept

will be changed to AS. Also, in this case the value of

the state attribute change probability is equal to 0.5.

STEP 6. Apply genetic operators with the use of selected

evolutionary algorithm.

In this paper Elite Genetic Algorithm [14] and Individually

Directed Evolutionary Algorithm were used [11]. The genetic

operators were applied only to the W ′ vector. The C vector

was processed by independent procedure described in STEP

5.

STEP 7. Analyze population.

Evolution loop is extended by the process of the analysis

of potential solution according to the previously developed

approach [12]. The values of weights from [−0.05, 0.05] are

rounded down to 0 as suggested in [23]. Next, the matrices

with the total influence between concepts pj,i are calculated. If

the value of pj,i is in the interval [−0.1, 0.1], the corresponding

weight value wj,i is rounded down to 0. Moreover, genetic op-

erators implement density control method of potential solution

for consistency of the algorithm. Go to STEP 2.

STEP 8. Choose the best individual and calculate evaluation

criteria.

To evaluate performance of the proposed approach, we used

two criteria that are commonly used in fuzzy cognitive map

learning:

1) Initial error allowing calculation of similarity between

the input learning data and the data generated by the

FCM model for the same initial state vector:

initialerror =
1

T · nd

T
∑

t=1

nd
∑

i=1

|Zi(t)−Xi(t)| (10)

where Xi(t) is the value of the i-th decision concept at

iteration t of the candidate FCM, Zi(t) is the value of

the i-th decision concept at iteration t of the input model,

t = 0, 1, 2, ..., T , T is the input data length, i = 1, ..., nd,

nd is the number of decision concepts.

2) Behavior error allowing calculation of similarity be-

tween the input testing data and the data generated by

the FCM model for the same initial state vectors:

behaviorerror =
1

P · T · nd

P
∑

p=1

T
∑

t=1

nd
∑

i=1

|Zp
i (t)−X

p
i (t)|

(11)

where X
p
i (t) is the value of the i-th decision concept at

iteration t of the candidate FCM started from the p-th

initial state vector, Z
p
i (t) is the value of the i-th decision

concept at iteration t of the input model started form the

p-th initial state vector, i = 1, ..., nd, nd is the number

of decision concepts, p = 1, 2, ..., P , P is the number

of the initial testing state vectors.
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IV. EXPERIMENTS

To analyze the performance of the developed evolutionary

algorithm for concepts selection real-life data were used. The

aim of the analysis is to select the most significant concepts,

determine the influence between them and approximate the

real-life data for the output concepts.

Standard approach for fuzzy cognitive maps learning (STD),

the approaches: for random concepts selection (CS_RND), for

selection based on the degree of the concept (CS_DEG), for

selection based on the total influence of the concept (CS_INF)

and two previously analyzed algorithms based on density

(DEN) [12] and based on system performance indicators

(SPI) [12] were compared.

A. Dataset

Real-life data were obtained based on the three FCMs

reported in literature [10], [15], [20]. The first real-life model

is a decision support system in radiotherapy [15]. It contains

16 concepts: the factor-concepts (X1-X5), that represent the

depth of tumor, the size of tumor, the shape of tumor, the

type of the irradiation and the amount of patient thickness

irradiated, the selector-concepts (X6-X13), representing size of

radiation field, multiple field arrangements, beam directions,

dose distribution from each field, stationery vs. rotation-

isocentric beam therapy, field modification, patient immobiliz-

ing and use of 2D or 3D conformal technique, respectively and

the three output-concepts (X14-X16): dose given to treatment

volume, amount of irradiated volume of healthy tissues and

amount of irradiated volume of sensitive organs. The second

model is a notional FCM model for the evaluation of mining

jurisdiction investment favorability [20]. It contains 11 input

concepts: national gov. stability (X1), regional gob. stability

(X2), support for mining industry (X3), workforce educa-

tion (X4), workforce skills/experience (X5), infrastructure

availability(X6), permitting delays (X7), gov. royalty rates

(X8), tax rates (X9), environmental activism (X10), union

activism (X11) and one output node: investment favorability

(X12). The last fuzzy cognitive map for modeling the behavior

of soldiers consists of 10 concepts: cluster (X1), proximity of

enemy (X2), receive fire (X3), presence of authority (X4),

fire weapons (X5), peer visibility (X6), spread out (X7), take

cover (X8), advance (X9) and fatigue (X10) [10]. Concepts:

X5, X8 and X9 were selected as an output of the system.

The input data for the learning process were generated

starting from the one random initial vector for every map.

The resulting FCM models were tested on the basis of 10

testing state vectors (P = 10) and evaluated with the use of

criteria (10)–(11) and the number of concepts n.

B. Learning parameters

The following parameters were used for the EGA algorithm:

• selection method: roulette wheel selection with linear

scaling

• recombination method: uniform crossover,

• crossover probability: 0.75,

• mutation method: non-uniform mutation,

• mutation probability: 0.02,

• population size: 100,

• number of elite individuals: 2,

• maximum number of iterations: 100,

The following parameters were used for the IDEA algorithm:

• selection method: roulette wheel selection with linear

scaling

• mutation method: directed non-uniform mutation,

• mutation probability: 1

n2−n

• population size: 100,

• maximum number of iterations: 100,

10 experiments were performed for every set of the learning

parameters and the average values (Avg) and standard devia-

tions (Std) were calculated.

C. Results

Table I summarizes the average results of the experiments

with the real-life data: the number of the concepts for the

resulted FCM models n, initial and behavior error.

TABLE I
AVERAGE RESULTS WITH REAL-LIFE DATA

Approach Method n initialerror behaviorerror
Avg Avg ± Std Avg ± Std

STD 16 0.013 ± 0.002 0.014 ± 0.002

CS_RND 14 0.013 ± 0.001 0.013 ± 0.001

DEN IDEA 16 0.011 ± 0.002 0.010 ± 0.002

CS_DEG Model 1 14 0.011 ± 0.002 0.010 ± 0.001

SPI 16 0.010 ± 0.001 0.010 ± 0.002

CS_INF 15 0.010 ± 0.002 0.010 ± 0.002

STD 16 0.014 ± 0.002 0.015 ± 0.001

CS_RND 14 0.013 ± 0.002 0.013 ± 0.001

DEN EGA 16 0.011 ± 0.002 0.011 ± 0.001

CS_DEG Model 1 14 0.012 ± 0.002 0.012 ± 0.002

SPI 16 0.011 ± 0.001 0.012 ± 0.002

CS_INF 14 0.011 ± 0.002 0.011 ± 0.002

STD 12 0.016 ± 0.002 0.016 ± 0.003

CS_RND 11 0.012 ± 0.003 0.013 ± 0.001

DEN IDEA 12 0.009 ± 0.002 0.010 ± 0.004

CS_DEG Model 2 11 0.009 ± 0.001 0.009 ± 0.002

SPI 12 0.010 ± 0.001 0.009 ± 0.003

CS_INF 11 0.009 ± 0.002 0.010 ± 0.004

STD 12 0.008 ± 0.002 0.011 ± 0.002

CS_RND 8 0.006 ± 0.001 0.009 ± 0.004

DEN EGA 12 0.006 ± 0.001 0.007 ± 0.001

CS_DEG Model 2 10 0.006 ± 0.001 0.008 ± 0.002

SPI 12 0.006 ± 0.001 0.008 ± 0.003

CS_INF 10 0.006 ± 0.002 0.008 ± 0.002

STD 10 0.019 ± 0.003 0.022 ± 0.004

CS_RND 9 0.017 ± 0.002 0.023 ± 0.002

DEN IDEA 10 0.013 ± 0.001 0.018 ± 0.002

CS_DEG Model 3 10 0.014 ± 0.001 0.019 ± 0.002

SPI 10 0.013 ± 0.002 0.018 ± 0.002

CS_INF 9 0.014 ± 0.001 0.019 ± 0.002

STD 10 0.018 ± 0.002 0.024 ± 0.004

CS_RND 9 0.016 ± 0.001 0.022 ± 0.004

DEN EGA 10 0.013 ± 0.001 0.018 ± 0.002

CS_DEG Model 3 7 0.013 ± 0.001 0.018 ± 0.001

SPI 10 0.012 ± 0.001 0.018 ± 0.001

CS_INF 9 0.013 ± 0.001 0.018 ± 0.002

Table II shows the best results of the experiments. The

highlighted values in bold show the best values achieved for
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a) b)

c) d)

Fig. 1. Structures of the best FCM models for the analyzed approaches: a) STD, b) CS_RND, c) CS_DEG, d) CS_INF
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Z1 2 (t)

X1 2 (t) STD

X1 2 (t) CS_RND

X1 2 (t) CS_DEG

X1 2 (t) CS_INF

t

X12(t)

Z12(t)

Fig. 2. Sample results of testing

initial and behavior error. Figure 1 presents the structures of

the best models received using the standard method and the

developed approaches for the second real-life model and EGA

algorithm. Figure 2 shows the sample results of testing of the

presented FCM models.

The obtained results show that the developed approach for

fuzzy cognitive maps learning allows to approximate the real-

life data with satisfactory accuracy comparable to the other

approaches. It is observed that the proposed algorithm, in most

of the cases, gives the lowest or very close to the lowest values

of initial and behavior error. The advantage of the developed

algorithm is the ability to reduce the size of the FCM models

(the number of concepts n) by selecting the most significant

concepts using graph theory metrics.

V. CONCLUSION

This paper introduces the evolutionary algorithm for se-

lection of key concepts and determining the weights of the

connections between them on the basis of real-life data. Graph

theory metrics were used to reduce the number of concepts

of fuzzy cognitive map during learning process. Effectiveness

of the proposed approach was analyzed with the use of Elite

Genetic Algorithm and Individually Directional Evolutionary

Algorithm. The experiments confirmed that the developed

approach allows to reduce the size of the FCM model by

selecting key concepts and determine the weights of the

connections between them keeping satisfactory level of error

data. We are going to continue analysis of the developed

technique for fuzzy cognitive maps learning with the use of
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TABLE II
THE BEST RESULTS OF THE EXPERIMENTS

Approach Method n initialerror behaviorerror

STD 16 0.011 0.011

CS_RND 15 0.011 0.013

DEN IDEA 16 0.008 0.013

CS_DEG Model 1 13 0.008 0.010

SPI 16 0.008 0.007

CS_INF 12 0.009 0.010

STD 16 0.010 0.014

CS_RND 12 0.009 0.012

DEN EGA 16 0.008 0.010

CS_DEG Model 1 16 0.009 0.010

SPI 16 0.008 0.009

CS_INF 12 0.009 0.008

STD 12 0.012 0.014

CS_RND 11 0.009 0.013

DEN IDEA 12 0.007 0.007

CS_DEG Model 2 10 0.007 0.008

SPI 12 0.008 0.007

CS_INF 8 0.005 0.006

STD 12 0.004 0.010

CS_RND 10 0.005 0.007

DEN EGA 12 0.004 0.010

CS_DEG Model 2 7 0.004 0.012

SPI 12 0.004 0.014

CS_INF 7 0.003 0.006

STD 10 0.015 0.017

CS_RND 9 0.013 0.023

DEN IDEA 10 0.012 0.017

CS_DEG Model 3 9 0.011 0.017

SPI 10 0.011 0.020

CS_INF 7 0.012 0.015

STD 10 0.014 0.025

CS_RND 10 0.014 0.018

DEN EGA 10 0.011 0.017

CS_DEG Model 3 8 0.011 0.018

SPI 10 0.011 0.016

CS_INF 8 0.011 0.015

historical data. We plan also to extend our approach with other

graph theory metrics.
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