Abstract
The inverse problem for simultaneously identifying the space-dependent source term and the initial value in a time-fractional diffusion equation is studied in this paper. The simultaneous inversion is formulated into a system of two operator equations based on the Fourier method to the time-fractional diffusion equation. Under some suitable assumptions, the conditional stability of simultaneous inversion solutions is established, and the exponential Tikhonov regularization method is proposed to obtain the good approximations of simultaneous inversion solutions. Then the convergence estimations of inversion solutions are presented for a priori and a posteriori selections of regularization parameters. Finally, numerical experiments are conducted to illustrate effectiveness of the proposed method.
Funding source: Guangdong Province Key Laboratory of Computational Science
Award Identifier / Grant number: 2020B1212060032
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 11571386
Award Identifier / Grant number: 11961002
Award Identifier / Grant number: 12171248
Funding source: Natural Science Foundation of Jiangxi Province
Award Identifier / Grant number: 20212ACB201001
Funding statement: The work of S. Yu is supported in part by the NSF of China under grant 11961002. The work of S. Yu and H. Yang is supported in part by the Key-Area Research and Development Program of Guangdong Province (No. 2021B0101190003), by Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University (2020B1212060032), by the NSF of China under grant 11571386. The work of Z. Wang is supported in part by the NSF of China under grants 11961002 and 12171248, and by Jiangxi Provincial Natural Science Foundation (20212ACB201001).
A Proofs of Theorems 1–3
Proof of Theorem 1
From (3.3) and the Hölder inequality, we have
Obviously,
we have
Similarly, we get
In addition, from Lemma 4, there exists a constant
Denoting
by the inequality
The proof is completed. ∎
Proof of Theorem 2
By the triangular inequality, we have
We first estimate
Denote
From inequality (A.3), we obtain
On the other hand, we get
Lemma 3 yields
Therefore, there exist a constant
satisfying
with constant
From Lemma 5 and
This inequality, combined with estimate (A.4), yields the estimate
By choosing the regularization parameter
Similarly, when
The proof is completed. ∎
Proof of Theorem 3
For
Considering different ranges of 𝛾, we have the following estimates:
we get
Therefore, denoting
Then
Similarly, the estimate for initial values is
Furthermore,
Similarly, we have the same result on
From noise assumptions (1.2), there exists
From Lemma 3, we get
Therefore, by the Morozov discrepancy principle (4.7), we get
Similarly, for the operator
Therefore, we have
From inequality (3.5) in Theorem 1, we get
where
where
Therefore, denoting
we have the conclusions
The proof is completed. ∎
References
[1] W. Audeh and F. Kittaneh, Singular value inequalities for compact operators, Linear Algebra Appl. 437 (2012), no. 10, 2516–2522. 10.1016/j.laa.2012.06.032Search in Google Scholar
[2] B. Berkowitz, H. Scher and S. E. Silliman, Anomalous transport in laboratory-scale, heterogeneous porous media, Water Resources Res. 36 (2000), no. 1, 149–158. 10.1029/1999WR900295Search in Google Scholar
[3] J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation, Inverse Problems 25 (2009), no. 11, Article ID 115002. 10.1088/0266-5611/25/11/115002Search in Google Scholar
[4] M. Giona, S. Cerbelli and H. E. Roman, Fractional diffusion equation and relaxation in complex viscoelastic materials, Phys. A 191 (1992), no. 1–4, 449–453. 10.1016/0378-4371(92)90566-9Search in Google Scholar
[5] G. Floridia, Z. Li and M. Yamamoto, Well-posedness for the backward problems in time for general time-fractional diffusion equation, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 31 (2020), no. 3, 593–610. 10.4171/RLM/906Search in Google Scholar
[6] D. Hou, M. T. Hasan and C. Xu, Müntz spectral methods for the time-fractional diffusion equation, Comput. Methods Appl. Math. 18 (2018), no. 1, 43–62. 10.1515/cmam-2017-0027Search in Google Scholar
[7] D. Jiang, Z. Li, Y. Liu and M. Yamamoto, Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations, Inverse Problems 33 (2017), no. 5, Article ID 055013. 10.1088/1361-6420/aa58d1Search in Google Scholar
[8] S. Jiang, K. Liao and T. Wei, Inversion of the initial value for a time-fractional diffusion-wave equation by boundary data, Comput. Methods Appl. Math. 20 (2020), no. 1, 109–120. 10.1515/cmam-2018-0194Search in Google Scholar
[9] G. Li, D. Zhang, X. Jia and M. Yamamoto, Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation, Inverse Problems 29 (2013), no. 6, Article ID 065014. 10.1088/0266-5611/29/6/065014Search in Google Scholar
[10] Z. Li, Y. Liu and M. Yamamoto, Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients, Appl. Math. Comput. 257 (2015), 381–397. 10.1016/j.amc.2014.11.073Search in Google Scholar
[11] Z. Li and M. Yamamoto, Initial-boundary value problems for linear diffusion equation with multiple time-fractional derivatives, preprint (2013), https://arxiv.org/abs/1306.2778. Search in Google Scholar
[12] K. Liao and T. Wei, Identifying a fractional order and a space source term in a time-fractional diffusion-wave equation simultaneously, Inverse Problems 35 (2019), no. 11, Article ID 115002. 10.1088/1361-6420/ab383fSearch in Google Scholar
[13] J. J. Liu and M. Yamamoto, A backward problem for the time-fractional diffusion equation, Appl. Anal. 89 (2010), no. 11, 1769–1788. 10.1080/00036810903479731Search in Google Scholar
[14] Y. Liu, Z. Li and M. Yamamoto, Inverse problems of determining sources of the fractional partial differential equations, Handbook of Fractional Calculus with Applications. Vol. 2, De Gruyter, Berlin (2019), 411–429. 10.1515/9783110571660-018Search in Google Scholar
[15] Y. Luchko, Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation, Comput. Math. Appl. 59 (2010), no. 5, 1766–1772. 10.1016/j.camwa.2009.08.015Search in Google Scholar
[16] Y. Luchko, Initial-boundary problems for the generalized multi-term time-fractional diffusion equation, J. Math. Anal. Appl. 374 (2011), no. 2, 538–548. 10.1016/j.jmaa.2010.08.048Search in Google Scholar
[17] R. Metzler and J. Klafter, Subdiffusive transport close to thermal equilibrium: From the Langevin equation to fractional diffusion, Phys. Rev. E 61 (2000), no. 6, 6308–11. 10.1103/PhysRevE.61.6308Search in Google Scholar
[18] R. Metzler, J. Klafter and I. M. Sokolov, Anomalous transport in external fields: Continuous time random walks and fractional diffusion equations extended, Phys. Rev. E 58 (1998), no. 2, 1621–33. 10.1103/PhysRevE.58.1621Search in Google Scholar
[19] V. A. Morozov, Methods for Solving Incorrectly Posed Problems, Springer, New York, 2012. Search in Google Scholar
[20] R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Status Solidi (b) 133 (1986), no. 1, 425–430. 10.1002/pssb.2221330150Search in Google Scholar
[21] I. Podlubny, Fractional Differential Equations, Math. Sci. Eng. 198, Academic Press, San Diego, 1999. Search in Google Scholar
[22]
H. Pollard,
The completely monotonic character of the Mittag-Leffler function
[23] Z. Ruan, J. Z. Yang and X. Lu, Tikhonov regularisation method for simultaneous inversion of the source term and initial data in a time-fractional diffusion equation, East Asian J. Appl. Math. 5 (2015), no. 3, 273–300. 10.4208/eajam.310315.030715aSearch in Google Scholar
[24] Z. Ruan and S. Zhang, Simultaneous inversion of time-dependent source term and fractional order for a time-fractional diffusion equation, J. Comput. Appl. Math. 368 (2020), Article ID 112566. 10.1016/j.cam.2019.112566Search in Google Scholar
[25] Z. Ruan, W. Zhang and Z. Wang, Simultaneous inversion of the fractional order and the space-dependent source term for the time-fractional diffusion equation, Appl. Math. Comput. 328 (2018), 365–379. 10.1016/j.amc.2018.01.025Search in Google Scholar
[26] K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl. 382 (2011), no. 1, 426–447. 10.1016/j.jmaa.2011.04.058Search in Google Scholar
[27] R. Schumer, D. A. Benson and M. M. Meerschaert, Fractal mobile/immobile solute transport, Water Resources Res. 39 (2003), 10.1029/2003WR002141. 10.1029/2003WR002141Search in Google Scholar
[28] I. M. Sokolov and J. Klafter, From diffusion to anomalous diffusion: A century after Einstein’s Brownian motion, Chaos 15 (2005), no. 2, Article ID 026103. 10.1063/1.1860472Search in Google Scholar PubMed
[29] Z. Wang, S. Qiu, S. Yu, B. Wu and W. Zhang, Exponential Tikhonov regularization method for solving an inverse source problem of time fractional diffusion equation, J. Comput. Math. 41 (2023), no. 2, 173–190. 10.4208/jcm.2107-m2020-0133Search in Google Scholar
[30] T. Wei, X. L. Li and Y. S. Li, An inverse time-dependent source problem for a time-fractional diffusion equation, Inverse Problems 32 (2016), no. 8, Article ID 085003. 10.1088/0266-5611/32/8/085003Search in Google Scholar
[31] T. Wei and Y. Luo, A generalized quasi-boundary value method for recovering a source in a fractional diffusion-wave equation, Inverse Problems 38 (2022), no. 4, Paper No. 045001. 10.1088/1361-6420/ac50b9Search in Google Scholar
[32] J. Wen, Z.-X. Liu, C.-W. Yue and S.-J. Wang, Landweber iteration method for simultaneous inversion of the source term and initial data in a time-fractional diffusion equation, J. Appl. Math. Comput. 68 (2022), no. 5, 3219–3250. 10.1007/s12190-021-01656-0Search in Google Scholar
[33] W. Wyss, The fractional diffusion equation, J. Math. Phys. 27 (1986), no. 11, 2782–2785. 10.1063/1.527251Search in Google Scholar
[34] X. Xiong and X. Xue, A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation, Appl. Math. Comput. 349 (2019), 292–303. 10.1016/j.amc.2018.12.063Search in Google Scholar
[35] X.-B. Yan, Z.-Q. Zhang and T. Wei, Simultaneous inversion of a time-dependent potential coefficient and a time source term in a time fractional diffusion-wave equation, Chaos Solitons Fractals 157 (2022), Paper No. 111901. 10.1016/j.chaos.2022.111901Search in Google Scholar
[36] Y. Zhang, T. Wei and Y.-X. Zhang, Simultaneous inversion of two initial values for a time-fractional diffusion-wave equation, Numer. Methods Partial Differential Equations 37 (2021), no. 1, 24–43. 10.1002/num.22517Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston