[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 12, 2022

Pointwise A Posteriori Error Control of Discontinuous Galerkin Methods for Unilateral Contact Problems

  • Rohit Khandelwal and Kamana Porwal ORCID logo EMAIL logo

Abstract

In this article, we derive a reliable and efficient a posteriori error estimator in the supremum norm for a class of discontinuous Galerkin (DG) methods for the frictionless unilateral contact problem between two elastic bodies. The proposed error estimator generalizes the basic residual type estimators for the linear problems in linear elasticity taking into account the nonlinearity on a part of the boundary. The analysis hinges on the super- and sub-solutions constructed by modifying the discrete solution appropriately, and it is carried out in a unified manner which holds for several DG methods. The terms arising from the contact stresses in the error estimator vanish on the discrete full contact set. We illustrate the performance of the proposed error estimator via several numerical experiments in two dimensions.

MSC 2010: 65N30; 65N15

Funding statement: The first author’s work is supported by the Council of Scientific and Industrial Research (CSIR). The second author’s work is supported by SERB MATRICS Grant.

References

[1] M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, John Wiley & Sons, New York, 2011. Search in Google Scholar

[2] L. Ambrosio, Lecture notes on elliptic partial differential equations, unpublished lecture notes, Scuola Normale Superiore di Pisa, 2015. Search in Google Scholar

[3] C. Baiocchi, Estimations d’erreur dans L pour les inéquations à obstacle, Mathematical Aspects of Finite Element Methods (Rome 1975), Lecture Notes in Math. 606, Springer, Berlin (1977), 27–34. 10.1007/BFb0064453Search in Google Scholar

[4] F. Ben Belgacem, Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element methods, SIAM J. Numer. Anal. 37 (2000), no. 4, 1198–1216. 10.1137/S0036142998347966Search in Google Scholar

[5] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Texts Appl. Math. 15, Springer, New York, 2007. 10.1007/978-0-387-75934-0Search in Google Scholar

[6] F. Brezzi, W. W. Hager and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities, Numer. Math. 28 (1977), no. 4, 431–443. 10.1007/BF01404345Search in Google Scholar

[7] R. Bustinza and F.-J. Sayas, Error estimates for an LDG method applied to Signorini type problems, J. Sci. Comput. 52 (2012), no. 2, 322–339. 10.1007/s10915-011-9548-5Search in Google Scholar

[8] L. A. Caffarelli, Further regularity for the Signorini problem, Comm. Partial Differential Equations 4 (1979), no. 9, 1067–1075. 10.1080/03605307908820119Search in Google Scholar

[9] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics Appl. Math. 40, Society for Industrial and Applied Mathematics, Philadelphia, 2002. 10.1137/1.9780898719208Search in Google Scholar

[10] A. Demlow and E. H. Georgoulis, Pointwise a posteriori error control for discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 50 (2012), no. 5, 2159–2181. 10.1137/110846397Search in Google Scholar

[11] G. Dolzmann and S. Müller, Estimates for Green’s matrices of elliptic systems by L p theory, Manuscripta Math. 88 (1995), no. 2, 261–273. 10.1007/BF02567822Search in Google Scholar

[12] F. Fierro and A. Veeser, A posteriori error estimators for regularized total variation of characteristic functions, SIAM J. Numer. Anal. 41 (2003), no. 6, 2032–2055. 10.1137/S0036142902408283Search in Google Scholar

[13] A. Friedman, Variational Principles and Free-Boundary Problems, John Wiley & Sons, New York, 1982. Search in Google Scholar

[14] R. Glowinski, Lectures on Numerical Methods for Nonlinear Variational Problems, Tata Institute of Fundamental Research, Bombay, 1980. Search in Google Scholar

[15] T. Gudi and K. Porwal, A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem, J. Comput. Appl. Math. 292 (2016), 257–278. 10.1016/j.cam.2015.07.008Search in Google Scholar

[16] S. Hofmann and S. Kim, The Green function estimates for strongly elliptic systems of second order, Manuscripta Math. 124 (2007), no. 2, 139–172. 10.1007/s00229-007-0107-1Search in Google Scholar

[17] S. Hüeber and B. I. Wohlmuth, A primal-dual active set strategy for non-linear multibody contact problems, Comput. Methods Appl. Mech. Engrg. 194 (2005), no. 27–29, 3147–3166. 10.1016/j.cma.2004.08.006Search in Google Scholar

[18] O. A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal. 41 (2003), no. 6, 2374–2399. 10.1137/S0036142902405217Search in Google Scholar

[19] T. Kashiwabara and T. Kemmochi, Pointwise error estimates of linear finite element method for Neumann boundary value problems in a smooth domain, Numer. Math. 144 (2020), no. 3, 553–584. 10.1007/s00211-019-01098-8Search in Google Scholar

[20] S. Kesavan, Topics in Functional Analysis and Applications, John Wiley & Sons, New York, 1989. Search in Google Scholar

[21] N. Kikuchi and J. T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, Society for Industrial and Applied Mathematics, Philadelphia, 1988. 10.1137/1.9781611970845Search in Google Scholar

[22] D. Kinderlehrer, Remarks about Signorini’s problem in linear elasticity, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 8 (1981), no. 4, 605–645. Search in Google Scholar

[23] R. Krause, A. Veeser and M. Walloth, An efficient and reliable residual-type a posteriori error estimator for the Signorini problem, Numer. Math. 130 (2015), no. 1, 151–197. 10.1007/s00211-014-0655-8Search in Google Scholar

[24] M. Li, D. Hua and H. Lian, On P 1 nonconforming finite element aproximation for the Signorini problem, Electron. Res. Arch. 29 (2021), no. 2, 2029–2045. 10.3934/era.2020103Search in Google Scholar

[25] K.-S. Moon, R. H. Nochetto, T. von Petersdorff and C.-S. Zhang, A posteriori error analysis for parabolic variational inequalities, M2AN Math. Model. Numer. Anal. 41 (2007), no. 3, 485–511. 10.1051/m2an:2007029Search in Google Scholar

[26] J. Nitsche, L -convergence of finite element approximations, Mathematical Aspects of Finite Element Methods (Rome 1975), Lecture Notes in Math. 606, Springer, Berlin (1977), 261–274 10.1007/BFb0064468Search in Google Scholar

[27] R. H. Nochetto, Pointwise a posteriori error estimates for elliptic problems on highly graded meshes, Math. Comp. 64 (1995), no. 209, 1–22. 10.1090/S0025-5718-1995-1270622-3Search in Google Scholar

[28] R. H. Nochetto, M. Paolini and C. Verdi, An adaptive finite element method for two-phase Stefan problems in two space dimensions. II. Implementation and numerical experiments, SIAM J. Sci. Statist. Comput. 12 (1991), no. 5, 1207–1244. 10.1137/0912065Search in Google Scholar

[29] R. H. Nochetto, A. Schmidt, K. G. Siebert and A. Veeser, Pointwise a posteriori error estimates for monotone semi-linear equations, Numer. Math. 104 (2006), no. 4, 515–538. 10.1007/s00211-006-0027-0Search in Google Scholar

[30] R. H. Nochetto, K. G. Siebert and A. Veeser, Pointwise a posteriori error control for elliptic obstacle problems, Numer. Math. 95 (2003), no. 1, 163–195. 10.1007/s00211-002-0411-3Search in Google Scholar

[31] R. H. Nochetto, K. G. Siebert and A. Veeser, Fully localized a posteriori error estimators and barrier sets for contact problems, SIAM J. Numer. Anal. 42 (2005), no. 5, 2118–2135. 10.1137/S0036142903424404Search in Google Scholar

[32] F. Scarpini and M. A. Vivaldi, Error estimates for the approximation of some unilateral problems, RAIRO Anal. Numér. 11 (1977), no. 2, 197–208. 10.1051/m2an/1977110201971Search in Google Scholar

[33] J. L. Taylor, S. Kim and R. M. Brown, The Green function for elliptic systems in two dimensions, Comm. Partial Differential Equations 38 (2013), no. 9, 1574–1600. 10.1080/03605302.2013.814668Search in Google Scholar

[34] R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-refinement Techniques, Wiley, Chichester, 1996. Search in Google Scholar

[35] M. Walloth, Adaptive numerical simulation of contact problems: Resolving local effects at the contact boundary in space and time, Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2012. Search in Google Scholar

[36] M. Walloth, A reliable, efficient and localized error estimator for a discontinuous Galerkin method for the Signorini problem, Appl. Numer. Math. 135 (2019), 276–296. 10.1016/j.apnum.2018.09.002Search in Google Scholar

[37] F. Wang, W. Han and X. Cheng, Discontinuous Galerkin methods for solving the Signorini problem, IMA J. Numer. Anal. 31 (2011), no. 4, 1754–1772. 10.1093/imanum/drr010Search in Google Scholar

[38] A. Weiss and B. I. Wohlmuth, A posteriori error estimator and error control for contact problems, Math. Comp. 78 (2009), no. 267, 1237–1267. 10.1090/S0025-5718-09-02235-2Search in Google Scholar

Received: 2021-10-20
Revised: 2022-03-24
Accepted: 2022-06-20
Published Online: 2022-08-12
Published in Print: 2023-01-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.1.2025 from https://www.degruyter.com/document/doi/10.1515/cmam-2021-0194/html
Scroll to top button