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1 Introduction

The first topic is the discrete Poincaré inequality on a simplex K with diameter
hyx and a refinement 7 by newest-vertex bisection (NVB) of K. Then any com-
patible piecewise Sobolev function vy such as Crouzeix-Raviart functions with
integral mean zero over K and the piecewise gradient V ycvyc satisfies

lvncllizag < C()hglIVcvnell iz (1.1)

with a universal constant C(n), which exclusively depends on the dimension
n. This paper provides bounds of C(n) for any dimension n in terms of the
refinements from [Ste08; GSS14] with C(2) < v/3/8 or C(3) < v/5/3 and utilizes
them to prove an explicit constant in an interpolation error estimate for a dis-
crete nonconforming interpolation operator. The discrete Poincare inequality
(L1I) is utilized e.g. in [Rab15;/CR12] without further specification of the discrete
Poincare constant.

The second topic is an enrichment operator J; : CRy(7°) — S3(7°) between the
nonconforming and conforming P, finite element spaces with respect to a reg-
ular triangulation 7 into triangles for n = 2 with local mesh-size hs (defined by
hs|x = hxg = diam(K) on K € 7°) and the approximation property

|Ih}1(UCR — Jiver)lliz) < CapxllVncvcrllizq)  forall veg € CR(% 7)) 1.2

and some global constant c,px < C(7)v/cot(wy) for the minimal angle w, in
the triangulation and some topological constant C(7°) which depends only on
the number of triangles that share one vertex in 7. The combination of
with an inverse estimate implies stability of J; with respect to the piecewise H!
normes.

Another application of (I.2) is the discrete Friedrichs inequality for Crouzeix-
Raviart functions

lverllizi) < carllVacverlzqy  forall ver € CRy(T) (1.3)

and some global constant cg4g.

The third topic is the quasi-interpolation J := J; o Iyc : Hy(Q) — S3(7°), which
combines the nonconforming interpolation operator Iy¢ with the enrichment
operator J;, and guarantees the error estimate

Ih (id =) vl 20 < callvll for all v e Hy(Q)



for some global constant cq;. This first-order approximation property with cg;
and some stability constants are derived explicitly in terms of c,px. A special
case of this operator yields a discrete quasi-interpolation J;qr : S; 7) — So(T)
for a triangulation 7~ with refinement 7 such that any U¢ € S(I, (1) satisfies D¢ =
Jaqr¥c on unrefined elements 7 N 7. This enables applications to the discrete
reliability e.g. in [CGS13] and generally in the axioms of adaptivity [CFPP14;
CR16] and leads to constants, which allow for a lower bound of the bulk param-
eter in adaptive mesh refining algorithms for guaranteed optimal convergence
rates.

The remaining parts of this paper are organized as follows. The necessary nota-
tion on the triangulation and its refinements follows in Section[Zlwith a discrete
trace identity. The discrete Poincare inequality (I.1) is established in Section[3l
The analysis provides an easy proof of the Poincare constant in 2D for a triangle
with constant 1/v/6 which is not too large in comparison with the value 1/ j; ;
from [LS10] for the first positive root j; ; of the Bessel function of the first kind.
Section 4l introduces and analyses the enrichment operator J; with bounds on
Capx in (L.2) and c4r in (L3). The quasi-interpolation follows in Sectionfland the
application to discrete reliability in Section[6l concludes this paper.

The analysis of explicit constants is performed in 2D for its clear geometry of a
nodal patch with an easy topology. The 3D analog is rather more complicated as
there is no one-dimensional enumeration of all simplices, which share one ver-
tex in a triangulation. The results are valid for higher dimension as well but the
constants are less immediate to derive. The work originated from lectures on
computational PDEs at the Humboldt-Universitdt zu Berlin over the last years
to introduce students to the discrete functions spaces without a deeper intro-
duction of Sobolev spaces.

2 Notation

For n = 2,3 and any bounded Lipschitz domain Q < R" with polyhedral bound-
ary, let 7~ denote a regular triangulation of Q into n-simplices. Let & (resp. &(Q)
or £(0Q)) denote the set of all sides (resp. interior sides or boundary sides) in
the triangulation and N (resp. N (Q2) or N (0Q2)) denote the set of all nodes (resp.
interior nodes or boundary nodes) in the triangulation. For any n-simplex T €
7 with volume |T|, let E(T) denote the set of its sides (edges for n = 2 resp.
faces for n = 3), N(T) the set of its nodes, and let it := diam(T) be its diameter.
For any L? function v € L*(w), define the integral mean f, v dx := |w|™ [ v dx



forw =T €7 or w = E € & with surface measure |E|. For any node z € N, let
T (2) ={T € T |ze N(T)} and w, := Ures (5 T the nodal patch. For E € &, let
wg =Urer pegn T- For T € T, let wr := Uzen(n . and let (T, z) denote the
interior angle of T at the node z € N (T).

The unit normal vector vy along 0T points outward. For any side E = 0T, N
0T_ € & shared by two simplices, the enumeration of the neighbouring sim-
plices T. is fixed. Given any function v, define the jump of v across an inner
side E€ &E(Q) by [VIg:=vIr, — VI € I[?(E) and the jump across a boundary side
E € E(0Q) by [v]g:=v.

Definition 2.1 (bisection) Any n-simplex T = conv{Py,..., P,;1}is identified with
the (n + 1)-tuple (Py,...,P,+1). Its refinement edge is P, P,; and bisec(T) :=
{Ty, T»} is defined with T; := conv{P,, (P; + P,,+1)/2,P>,..., P,} and

T, := conv{P, 1, (P1+P,1)/2,P,,...,P,}. The ordering of the nodes in the (n+1)-
tuples and thus, the refinement edges, for the new simplices T; and T are fixed
and for n = 3 additionally depend on the type of the (tagged) n-simplex [Ste08].

Remark 2.2 There exists M = M(n) € N such that any n-simplex K and 7 :=
bisec™ ({K}) := bisec(bisec(... (bisec({K}))...)) satisfies

max{hy| T €T} < hgl/2.

It holds that M(2) = 3 and M(3) = 7. (The latter follows from mesh-refining of
the reference tetrahedron of all types [Ste08] by undisplayed computer simula-
tion.)

Definition 2.3 Given any initial triangulation 7y, let T = T(7;) be the set of all
regular triangulations obtained from 7; with a finite number of successive bi-
sections of appropriate simplices. Forany 7 € T and w € Q, let 7 (w) := {K €
7 |K < w}. Let UT the set of all admissible simplices T with T € 7 for some
7 € T. The level of an n-simplex T € UT with T < K € 7, is defined as ¢(T) :=
log, (IK|/1T1) € Np.

Remark 2.4 Forany7 € T and T € UT (not necessarily T € 7), 7 (T) satisfies
exactly one of the following statements.
(@) There exists K € 7 such that T < K.

(b) 7 (T) e T{T}), in particular, 7 (T) is a regular triangulation of T with 2 <
|7 (T)].



Definition 2.5 Define the spaces
H'T):={vel>(Q)|VTeT, vlre H (int(T)) = H'(T)},
H}VC(T) :={vyce H(T)|VEEe 8(9),][ [Uncle ds = 0}.
E

Define the discrete spaces

P(T):={v; € L2(Q)|VT T, vlris polynomial of degree <1 on T} < H 7)),
Sy(T) := Py (T) N Hy(Q) < Hy (),
CRy(T) :={vcgr € P1(T)| VE € E(Q), vcg continous at mid(E),
VE € E(0Q), vcr(mid(E)) = 0} € Hy (7).

For v € H' (7)) let Vycv denote the piecewise weak gradient and for any mea-
surable subset w < Q, let |VlIncw) = IVNncVllzw), IVline := lVlince the non-
conforming energy norm.

A piecewise application of the Gaul} divergence theorem leads to the following
discrete trace identity.

Lemma 2.6 (Discrete trace identity) Let T = conv{E, P} be an n-simplex with
vertex P € N (T) and opposite side E € E(T) and T a regular triangulation of T.
Then any vnc € Hy (T satisfies the trace identity

1
][ Unc ds 2][ Unc dx+—][ (x—=P)-Vycvnc dx.
E T nJr

Proof. The proof is a generalization of the continuous trace identity [CGR12].
Let &(int(T)) the interior sides with respect to the triangulation 7. The identity
divyc((+ = P)vne) = nvnc+ (« — P)-Vycvne, where (- — P)(x) = (x—P) forxe T,
a piecewise application of the Gaul! divergence theorem, and the definition of
the normal jumps [vnclr-VE = Unclr, VT, + Unclr.vr for F=0T,noT_, T. €T,
lead to

I’Zf UNC dx+f(x—P)-VchNc dx = Z (vnclp(x—P) -vE ds
T T Fe&(int(T) Y F

+ > fFvNc(x—P)-vpds+fvNc(x—P)-vEds.

Fe&(T)\{E} E

The observation of (x — P) -vrp =cp € Ron any F € E(int(7)), (x—P)-vp =0 on
Fe&(T)\{E} and (x — P)-vg =dist(B E) = n|T|/|E| on E conclude the proof. []



Lemma 2.7 Any n-simplex T with vertex P € N (T) and the identity mapping -
(i.e. (- —P)(x) = x— P for x € T) satisfy

n
-—P <1\/——=h7|T|".
| 2y </ B Tl T|

Proof. Let Ay,...,1,,+1 € P;(T) be the barycentric coordinates of the n-simplex
T = conv(Py,...,P,1). Without loss of generality, assume P = P,;; = 0. The
identity x = Z”“/l (x)P; implies

I- Pllem—IIZA Pills, = Y Py Py f AAe dx
k=1

=(Z P,--Pk+Z|P,-|2)|T|/((n+1)(n+2))
jk=1 j=1

with the integration formula for the barycentric coordinates [ A ;A dx = | T|(1+
6/ (n+1)(n+2)). The Cauchyinequality and | P;| < hr lead to the assertion.[]

3 Discrete Poincareé Inequality

This section establishes a discrete Poincaré inequality on an n-simplex K < R”
with a constant C(n) = (4M(n) —3)/(3n(n +2)))"/? with M(n) from Remark 2.2
and so C(2) = v3/8 and C(3) = V/5/3.

Theorem 3.1 (Discrete Poincaré inequality) Let K be an n-simplex and T €
T({K}) be a regular triangulation of K. Then any vyc € Hy (T satisfies

lvne —][ vne dxll 2 < C() hgllvncelllnex-
K

The proof of this theorem utilizes a distance function

d*(f,T):= ||f—][dex”i2(T)

and its behavior under bisection for any f € L*(T) in an n-simplex T < R".

Lemma3.2 Let 7 € T({K}), T € uT({K}), and {Ty, T,} = bisec(T). Then any
Unc € Hyo(T) satisfies

d*(vne, T) < (n(n+2)~" maXhT |||UNC|||NC(T)+ Z d® (Une, T)).
j=12



Proof. Let F := 0T, n0T, and Py, P, € N(T) with T; = conv{F; P;} for j = 1,2.
Since T e UT({K}) and 7 € T({K}), it holds either T < T € 7 for some T € 7 or
7 (T)is aregular triangulation of T. Hence, vnc € Hy (7)) implies [i.[vnclr ds =
0 in both cases and v := f, vnc ds is well-defined. Similarly, for j = 1,2, either
T; < Tj € 7 for some Tj €7 or 7 (T;) is a regular triangulation of T;. Therefore,
UNC|T]. € Hl(Tj) or UNC|T]. € H}\,C(T(Tj)) and thus, Lemma [2.6]is applicable on
Ty and T,. With v; := ij vnc dx for j = 1,2, the Cauchy Schwarz inequality and
Lemmal[2.7]imply

nvj—uvpl= )J[ (x—Pj)-VncUnc dx|
Tj
<\I- = Pjlizerpllvncllvecry /17Tl
el 3.1
< v ) :
TEDI NclliNc(T)
With 7 := f, vnc dx = (1 + 72)/2, the triangle inequality yields

— —2_ = =02 — 2
Y -7 =v1-1l?2< ) [V;—vrl”
iS12 iS12

A

This, the orthogonality of vyc —7V; onto v -7, in LZ(T]-), and |T;| = | T»| show
&*(ne, T) = llvne = lja gy, + 1one = D52,

_ — 12 - — 2

j=12
< Y (lvne =7jli5eg, + 1 T11V; = vpl?).
j=12 !
The combination with (3.I) concludes the proof. [l

Proof of Theorem[3.1. Let 7, := {K} and 7, := bisec” (70) € T(7y) for any ¢ € N,.
For any multiindex a = (a1, ...,a,) € {1,2} of length dima = ¢ € N, define the
n-simplex K, recursively by K := K and {K(4,1), K(4,2)} = bisec(K,) for extended
multiindices (a,1) and (a,2) in {1,2}¥*!. This implies 7, = {K, | dima = ¢} and
he := maxreq, hr satisfies hyy < hy. Remark[2.2] shows that any £ € N, satisfies
hoon < hel2 for fixed M = M(n) €N, thus hiy < o2~ ¥ for k € Ny. This implies

00 oo (k+1)M-1 00 00
Yhi=Y Y RW=M) hi,<M) hi27*F=4Mh]/3. (3.2)
=0 k=0 ¢=kM k=0 k=0

With d2 := d*(vn¢, Ky) for any ¢ € Ny and any « € {1,2}¢, Lemma 3.2 and the
abbreviation y := (n(n +2))"! show

2 2 2 2
d; < Yhdimaﬂ”l UNC|||NC(Ka) T Z d(a,j)'
j=12



The sum over all multiindices of length k € N, reads

Y dsyhdlvnclic+ Y d.

aefl,2}k Bell,23k+1

Successive applications of this result and any choice of L = maxycs ¢(T) lead to

2 2 2 ;
dy <yhillvnclliyveg + X d7

(=12
2, 12 2 2
<y(hi + I)llvnellyea + ), da
ae{l,2}?
Lo, , )
<---<v( Z ho)lvnellye + Z d . 5:3)
=1 aef1,2}t

Since L = maxyes £(T), 7; = bisec”(K) is finer than 7. Therefore vyclk, €
H'(K,) for dima = L and the Poincaré inequality shows

2 2 21.2 2
2 = llune - f vne dxl ., < B2 llncll,.
a

Thus, any L = maxyes £(T) satisfies

2 2.2 2
Z d ShLCp|||VNC|||Nc(K)-
ac{l,2}L

The combination of this result with (3.2) — (3.3) yields
2 S 2 2.2 2
” Unc _ﬁ Unc danz(K) = Y(Z hg)l” VNC”lNC(K) + hLCp”l VNC”|NC(K)
0=1

< (Y(Z hi — hg) + hicfz))”l UNCl”?VC(K)
=0
< (y(@M - 3)hi /3 + hi cp)llvneliyew

The passage to the limit L — oo and h; — 0 concludes the proof with C(n)? =
(4M —-3)/(Bn(n+2)). O]

The remainder of this section is devoted to an alternative proof of the Poincaré
inequality in 2D in the continous case with suboptimal constant 6 '/2. The
proof utilizes the techniques of the previous proof with red-refinement instead
of bisection for a slightly better constant. Note that the proofs of Theorem [3.1]
and[3.3]utilize only the existence of a Poincaré constant cp, with neither its value
nor its optimality. Compared to the optimal constant 1/ j; ; = 0.26 in 2D [LS10],
the suboptimal constant 62 = 0.41 of Theorem[3.3lis competitive although it
utilizes elementary tools.



Figure 1: Red refinement of T
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Theorem 3.3 (Poincaré inequality) Ler K € R? be a triangle and 7 € T(K) a reg-
ular triangulation of K. Then any v € H'(K) satisfies

v —][ v dxll 2k < hic! V6IIVlik-
K

The proof relies on the subsequent key lemma.

Lemma3.4 Anyve H YK)ina triangle T < K and its red-refinement{T,, T», T3, T} =
red(T) satisfy

4
2 2 2 2
d*(v,T) < jr:r}%ﬁthlllvlllT/Z +;d (v, T)).

Proof. Let F;:=0T;n0T, and Q;,Q,, Qs € N (T,) with T, = conv{F};,Q;} for j =
1,...,4 as depicted in Figure 4. For j =1,2,3, define w; := fFj vds and for j =

1,...,4,letv;:=f. vdx. Lemmal.6-2.7imply, for j =1,2,3,
j-=Jr

\/ﬁth T \/ﬁhTzl
vz, and 1|7, — w)l £ ——m=

With 7:= f; v dx = (X}, 7;)/4, a minimization in R and the weighted Young's
inequality yield

nlv;—wjl = vlliz,. 3.4)

4 4 3

Y @;-)’=min) @;-0°<) 0;-V4)°
: xeR £ .

j=1 j=1 j=1

3
<) 4W;— w;)* +4/3(w; - V4)*.
j=1



This, the orthogonality of v—7; onto v-v; in L*(T}), and | Ty| = --- = | Ty = | T|/4
show

2

IIM»J; \

vjniz(m + |T|/4(Zl(4(vj —w;j)* +4/3(w; —Ty)?).
]:

The combination of this with (3.4) concludes the proof. L

Proof of Theorem (3.3l Analogeously to the proof of Theorem [3.1] but with red-
refinement instead of bisection, let 75 := {K} and 7; := red” (75) € T(¥;) for any

¢ € Ny. For any multiindex a = (a;,...,a/) € {1,...,4}¢ of length dima = ¢ € N,
define the n-simplex K, recursively by Ky := K and {K4,1), ..., K4} = red(Ky)

for extended multiindices (a, 1),..., (a,4) in {1,...,4}*1. This implies 7, = {K, | dima =
¢} and hy := maxreq, hr satisfies hy,, < hy/2. Consequently,

Y W< hiy 47f=4ni/s. (3.5)
(=0 =0
Successive applications of Lemma(3.4]as in the proof of Theorem[3.1]lead to

lv— ][ v dxlrzm < (Z R)NVIE 12+ hicllvilik
=1

< (h%/6+ hicpllviliy
The passage to the limit as L — oo and h; — 0 concludes the proof. ]
The following theorem utilizes the discrete Poincaré inequality to prove a gen-

eralization of the error estimate for nonconforming interpolation [CG14a] to
nonconforming functions and also for n = 3.

Theorem 3.5 (Discrete Nonconforming Interpolation) Setx3,.:= C*(n) + (n+
D' (n+2)"'n"? and let IncOcr € CRy(T") with (IncOcg)(mid(E)) = f; Dcr ds for
all E € & denote the nonconforming mterpolatlon of the Crouzeix-Raviart func-
tion Dcr € CRy (7°) on the refinementd € T(T") of T . Then

_1 A A A A
hi l10cr — IncUcrllzi) < KncllDcr — IncUcrlincxy forany K e T .

10



Proof. Let M = mid(K), E(K) ={Ey,...,Eya},and T = conviE;, M} for j =1,..., n+
1. Then teg = (Dcr — IncVcr)Ik € Hyo(T (K)) satisfies ij Wer ds = 0 and so
Lemma 2.6/ shows

n+l 1
LDK'Kl:f LDCR dx = Z lI/CR dx=—[(M—X)'VNclI/CR dx.
K j=1JT; nJk

This and the discrete Poincaré inequality prove

~ 2 ~ A2 Y 12
| erls g, = 1Wer — WlZa g, + 1K ]

2 2 A 2 -2 -1y .4 2 2
<C (n)hK”leRlllNc nthn |K] ”leR”lNc K |- — M]|
(K) (K)

L2(K)*
A modification in the proof of Lemma 2.7lwith M = 0 and therefore Z?f,”cl:l P;-

Py =0 proves || - — M||i2(K) < hilKl/((n + 1)(n + 2)). This concludes the proof. []

4 Enrichment Operator

This section contains an interpolation estimate for a discrete interpolation op-
erator Jc : CRy(7") — S3(77) and the discrete Friedrichs inequality. Throughout
this section, consider n = 2.

Remark 4.1 (3D case) The techniques of this section apply to the threedimen-
sional case as well, butlead to more complicated constants and are not minutely
detailed for brevity. The point is that there is no elementary enumeration of all
simplices in a nodal patch. Therefore, the examination of different configura-
tions leads to an eigenvalue problem with constants depending on the shape of
the simplices.

Lemma4.2 Forany2 < ]JeNandxe€ R/, let x;.1 := x;, minx := min{xy,..., x;},
and maxx := max{xy,...,x;}. Then it holds

| x| |yI?
max 7 = Imax 7
xeR/\{0},min x<0<max x Zj:l(ijrl — xj)Z yeR/\{0} Zj:l(yj+1 — yj)Z + (yl + y])z
1

- 2(1 —cos(/)))’

Proof. Define

Ky :={xeR’\{0}| minx <0 < maxx},
K, := {x € R\ {0} | min x = 0},
Ky :={xe R\ {0} x; = 0}.

11



.....

This quadratic function of p attains its maximum at min x or maxx, then

| x|? _ max{|x — min x|?, | x — max x|’}

- J
X (g = xp)? ¥ (e — X))

Consequently, (x—min x), —(x—maxx) € K, and the permutability of the indices
show that

| x|? |x|? |x|?
max = max = max

7 .
xek; Z;zl(xj+l _ x])z xeK> Z?:l(xj‘f'l _ x])z x€K3 ijl(x]'+1 - x])z

Furthermore, any x € K3 satisfies Z?Zl(xjﬂ —x)*=x5+ Z?;é(xjﬂ — X))+ X5 =
X - Ax with X = (x,...,x;) and the tridiagonal (J/ — 1) x (J — 1) matrix

A= e RU-DxU-1.
AR |

-1 2

A direct calculation with the trigonometric addition formulas for the sine func-

tion shows that for any k = 1,...,J — 1, the vector x* with components x* =

sin(kjm/]) is an eigenvector of A with eigenvalue Ay := 2(1 — cos(kn/])) > 0

[YC08, Thm. 3.2(v)]. Since 0 < A; <--- < A;_;, Ais positive definite and Alx]? =
A11%|? < X+ Ax concludes the proof of the first equality.

For the second equality, observe that any y € R/ \ {0} satifies Z;Zl(yjﬂ -y +
(y1 + ¥))? = y- By with the tridiagonal matrix

3 -1
-1 2

2 -1
-1 3

A straight-forward calculation shows that the vectors y* € R/ with components
y;? = (1+cos(kn/]))sin(kjr/]J)—sin(kn/])cos(kjn/]) fork=1,...,J—1and y][ =

12



cos(jm/]) are eigenvectors of B with eigenvalues A := 2(1 —cos(kn/J)) > 0 for
k=1,...,] [YC08, Thm. 3.4(iii)]. Consequently, /lllyl2 <y-By. U]
Let vcg € CRy(T7) and ve := Jc(ver) € S§(T) with

vc(z) e conviverlr(2) | T €T (2)}  forany z € N (Q). 4.1)

The shape regularity of 7 leads to a minimum angle wy in 7, i.e. 0 < wy <
min<(7 . Let M, := max{|7 (2)||1z € N(Q)} =2, Mpq := max{|T (2)||z € N(0Q)},
Mpaich := max{Mn, Mpq}, and define c2 = (v/3/2)cot(wy)/ (1 —cos(m/ Mpatcn)).

apx

Remark 4.3 The estimate (1 — cos(x))™! < 4/x? for 0 < x < /2 leads to the sim-
pler estimate

Capx < (2V/3 cot(@o))'* Mpaien/ 7.

Remark 4.4 For the case of a triangulation with right isosceles triangles, c,px =
(v/3/(2—2cos(w/8)))"/* <3.3729.

Theorem 4.5 (Interpolation error for Jc) Any interpolation operator Jc: CRy(T) —
So(T) with @) satisfies

Ih7 1 = JQverllz@q < capxllverline.
This estimate also holds forany T € T in that
Ih7' Q= JQverllzer < capxlll verll Ncwy-

Proof. Forany T € 7 and z € N (T), let er(z) := vcrlr(2) — vc(z) and e(z)? :=
> TeT (2) er(z)?. With er := (e7(2)) .en(m) € R3, a direct calculation with mass ma-
trix

211
T

MZUIZIEIRSX?’
12111 2

of the barycentric coordinates with eigenvalues |T|/12 and |T|/3 and the esti-
mate | T| < v3h%/4 shows

hi?lver—vcll?, g = hiter-Mer < |T|/Bh})ler <1/(4V3) ) er(2)®. (4.2)
zeN(T)

13



Any T € 7 and p, € P,(T) satisfy

v 1p1(21) — pr(22)|* < W3 Tl pa 5.

This, h2./|T| < 4cot(w,) and the triangle inequality show that any 47, Nn9T- €
EQ) with ze N(E) and T, € 7 satisfies

ler, (2) —er_(2)| = |vcrlT, (2) — verlr_(2)]
< |vcrlr, (2) — vep(Mid(E))| + |[vcr(mid(E)) — verlr (2)]

<1/2 max |vcglr, (21) = verlr, (22)]
21,22€ N (T4)

+1/2 max |verlr (z21) — verlr (22)]
21,22 N (T-)

1/2
< cot(wo) " “(llverlllr, +lverllr)

< (2 cot(wo)) Il verllncws- (4.3)

Analogeously, E € E(0Q) with T € 7, E € E(T), and z € N (E) satisfies |er(z)| <
cot(wo)*llverllnem-

Consider z € N (0Q) with 7 (z) ={T},..., T;} and E; := 0T, N0Q, E;;; :=0T;n 0L,
and Ej1:=0T;ndTj,€&EQ) for j=1,...,]—1. With ¢; := er;(2) forj=1,...,J
and ey, := e;, the previous estimates show that |e;|* < cot(w)l UCRHI?VC(T],) for
j=1Jandle;~ej.|*=2cotwollverllycy, ) for j=1,...,J ~ 1. Hence

J J-1
2 2 2 2 2 2
lerte™+ ) lejae;l”=2lei+ ) leju—e; +2le)l" < dcottwollvenllvci,:
J= J=

(4.4)
This and Lemmal4.2lshow that e = (ey,...,e;) " € R/ satisfies

e(2)? = lel> < 2cot(wo) /(1 - cos Gt/ Nverllici,-

For z € N(Q) with 7 (2) = {Th,..., Tj}, Tj41 =Ty and 0T; N 0T, € E(Q) for j =

., J=1and 0T;nAT; € E(Q), @.3) shows that |e;j—e;.1|* < 2 cot(wo)l vCRl”?VC(TjUTjH)
for j=1,...,]. Since 0 € conviey, ..., ej}, it follows mine < 0 < maxe and Lemma
[4.2]1eads to

e(2)” = le|* < 2cot(wo)/ (1 — cos(@/ Mlverlliycie,)- (4.5)
Altogether, any z € N satisfies

e(z) = ZCOt(wO)/(l COS(”/Mpatch))Hl UCR”lNC(wZ) 4/\/_Capx”| UCR”lNC(wZ)
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This, (4.2), and an overlapping argument show the local estimate

-2 2 2 2 2 2 2
hT ”UCR_VC”LZ(T) < 1/(4\/5) ;ET)Q(Z) = ;(T) Capx/3“|UCR”|NC(wZ) = CapmeCRl”NC(wT)-
z€ z€

The sum over all T € 7 and the previous arguments lead to

-1 2 2 2 2 2
17 (Wer = vy < Coe/3 Y verlc,) = Cullverllie. (4.6)

zZeN ]

Examples 1. One example of Jc : CRy(7) — Sy(77) with (@) is the enrich-
ment operator J := J; [BS08, p. 297] with

Jwer(@ =T @™ Y (verlr)(2) forany ze N (Q). 4.7)
TeT (2)

2. Another is the (possibly new) precise representation Jcvcg := Ic v, with

Icvaq(z)::(Zn)_1 Z L(T,2)(vcrlT)(2) foranyze N(Q). (4.8)
TeT (2)

3. Other examples are the maximum or minimum at each node,

Jcvcr(2): ]mrragc)(vcg |7)(z) foranyze N(Q) or

Jcvcr(2) = Tren’lil(lz)(UCR |7)(z) foranyze N(Q).

4. A discrete quasi-interpolation for the proof of optimal convergence rates
of adaptive methods motivates the next example in a general formulation
here. In the context of adaptive methods, ¢« =7 N9 < 7 for a trian-
gulation 7~ and refinement 7, see Remark In a general setting, let
UcRr € CR& (7°) and suppose there exists U« < 7 such that for any K3, K; €
U with ashared node z € N (K;)NN (K>), the value of vy at z coincide, e.g.
Vcerlk (2) = verlk, (2). Hence, Jorvcr € Sé (77) is well-defined and satisfies
for

Verlx(z)  if there exists K € U with z € N (K),
Jorvcr(2) = { CRIE (4.9)

Jivcr(z) else.

15



Remark 4.7 Similar calculations with 2|er, (z) — er_(2)| < ng = |E||[0vcr/0S] g
for E € £(Q) in @.3), 2|er(z)| < ngfor E € E(0Q), and Y pcg 15 < 30 cot(wo) ll ver—
Vlllnc forany v € H(} (Q) lead to a generalized version of Theorem [4.5]with Cf =
15 cot(wg)/ (8v/3min{l — cos(7w/ Miy), 1 — cos(m/ (Mpq + 1))}),

-1 .
lhe (1= Jo)verllz) < Ci min |lveg — vllinc.
veH) (Q)

Lemma 4.8 For the special case J¢c = ], from (4.7), an improved constant in the
estimate of Theorem[4.5 reads

capx(h)2 = (v/3/2) cot(wg)/ min{l — cos(2m/ Min), 1 — cos(m/ Mpq)}.

Proof. The only change with respect to the proof of Theorem 4.5 concerns the
estimate of e(z)? for inner nodes z € N (Q). Recall that for z € N (Q) with
patch 7 (z) ={T1,...,T)}and e¢; = UCR|T].(Z) —vc(z) for j=1,..., ], (4.3) shows

2 2 .
lej—ejnl” =2cotwo)llverlline r;ut, forj=1,...,]

+1)

(with e, := ey and T}, := Tp). Define e = (ey,...,e;)" € R and

2 -1 -1
-1 2
C= e R/
.2 =1
k—l -1 2
Consequently,
d 2 2
e-Ce=) lej—e;nl* < 4cotwo)llverllyee,)- (4.10)
j=1

For an approach similar to the one in the proof of Lemma [4.2], compute the
eigenvalues 0 = 1o < A; < -+- < Ag of the matrix C € R”/ with K := |J/2] with
floor function |-| (i.e. K = J/2 for even J and K = (J—1)/2 for odd J), Ay =
2—2cos(2kn/]) [YCO8, Thm. 3.4(v)] for k =0,...,|J/2]. Indeed, the trigonomet-
ric addition formulae for sine and cosine show that the vectors xX, yX € R/ with
x}“ =cos(2jkmnl]), y}c =sin(2jkn/]) for j =1,...,], are the 0-vector or non-zero
eigenvectors of C with eigenvalue Ay for k =0,..., K. An analysis of linear inde-
pendence of x*, y* # 0 for even and odd J shows that there are J linearly inde-
pendent eigenvectors. In any case, C is positive semi-definite with eigenvalues

16



0=A<A; <--<Ag and Ay = 0 is a simple eigenvalue with the eigenvector
u=(1,...,1)7 thatis orthogonal to all other eigenvectors of C.

The identities e = (vcrl7, (2),..., vCRIT](z))T — vc(z)u and the definition of v¢(2)
imply the orthogonality e-u = 0. Hence, A,|e|? < e-Ce and therefore (£.10) shows

e(2)* = le|* = (4 cot(wo)/ A verllncw, = @cotwe)/ (1 —cos2m/ N lverllvcw,)-

The remaining parts of the proof of Theorem 4.5 apply verbatim with different
constants. 0

Example 4.9 For the case of a triangulation of a convex domain with right isosce-
les triangles, capx(J1) = (vV3/(2 — 2 cos(m/4)))/? < 1.6002.

The use of this discrete interpolation estimate enables a proof of the discrete
Friedrichs inequality and an interpolation estimate for a new quasi-interpolation
operator J : Hy(Q) — S;(7) with the help of an inverse estimate.

Lemma 4.10 (inverse estimate) Any T € 7, p; € P,(T), and the constant
cZ = 24cot(w) (2 cot(wg) — cot(2wg) + (2 cot(wg) — cot(2wg))* —3)'?)
satisfy
IIpillr < Cinvh}1||]91||L2(T)-

Proof. An analysis of the eigenvalues of the stiffness and the mass matrix and
0 =) .en(r) COt(L(T, 2)) leads to the local inverse estimate

Ipll7 < 6(0 + Vo2 =3)/ITlIpil7 -

A maximization shows o < 2cot(wg) — cot(2wy) and 1/|T| < h:‘r24 cot(wg) con-
cludes the proof. (]

For right isosceles triangles, the constant ¢,y = v72 and all estimates in the
proof are sharp.

Corollary 4.11 (discrete Friedrichs inequality) Any vcg € CRy(T) and the con-
stants cqr = NmaxCapx(J1) + ce(Q) (1 + CinyCapx(J1)) and cg(Q2) = width(Q) /7 satisfy

lverlliz) < carlllverllne.
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Proof. Given vcp € CR& (7)), let vc = J;(vcgr) for the enrichment operator J;
from Remark[4.6/so that Lemma[4.8 shows

lver — velli2@) < PmaxCapxUD Il verlll ne-

Lemma4.10} the Friedrichs inequality [|vcllj2q) < diam(Q)||vclll/ 7, and the tri-
angle inequality yield

lvellzq < cr@llvellve < ce @) Ulverll + cinvll 7 (ve = ver)lr2()
< () (1 + CinvCapx (1) lverlline. (4.11)

The triangle inequality || vcrll 2 ) < lver—vell 2+ vell 12y concludes the proof.L]

5 Quasi-Interpolation

This section proves an estimate for a quasi-interpolation operator J : H; (Q) —
Ss(77) as conclusion of the enrichment operator of Section @ For n = 2, let
Inc: H& Q) — CR& (7°) denote the non-conforming interpolation operator with
(IncV)(mid(E)) = fyvdsforall E€ & and v € H;) (Q).

Theorem 5.1 (Quasi-interpolation) The bounded linear projection J := Jcolyc:
H}(Q) — S3(T) forany Jc: CRy(T) — Sy(T") with 1) and any v € H; (Q) satisfy

1R (L= NVl 20y < P+ ¢z P llvll and
IT2IL A = Dol < ep( Q) A + CinyCap VI

with the constantx = (1/48+ 1/ j;,)''* and the first positive root j,; of the Bessel
function of the first kind. Additionally, forany T € T, fly, € S'(T (w7)) implies

flr=UNIr. (5.1)
With Cy := (kK +1)/ j11 + (1 + Cinv) € Capx(1/ j1,1 +¢(T)), €0 = sin(wg) ™ & Moa=1,Minc/2}
¢(T) = maxrer zen () (1/4+21 j2,)1 (1=| cos(£L(T, 2))I)''?, any v € H*( Q)N H; (Q)
additionally satisfies the second-order approximation property

1R (1= Dvllz + 1h7 V(A = D)l 2@ < Coll D? vl 2(q)-

Proof. For the proof of the first estimate, the triangle inequality implies

I (v — JeIne 2 < I1hy (v — IncV)llz) + 1y A = J) Ine V)l 120 -
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The interpolation estimate for the non-conforming interpolation operator with
K =(1/48 + 1/j12,1)”2 = 0.29823 [CGl4a], Theorem 4.5} and the orthogonality of
Ve(v = Incv) onto Vyelycvin L2(Q) yield

-1 2, 2 \1/2
lhg (v —JcInc V2 < (K™ + cup) VL

For the second estimate, observe that J : H) (Q) — H; (Q) isa projection in (H; (), (V+,V+);
and thus, 1= Jll 1)1 ) = 11| ;12 ) [Kat60]. Consequently, from

the proof of the discrete Friedrichs inequality and

Ilncvllne < vl show

”]”L(H(}(Q);Hé @) = Cr(Q) (1 + CinyCapx)-

For T €7 and f|,, € SY(7 (wr)) asin (G.I), any z € N (T) satisfies

UcUnec(@) = UcUncflu) (@) = Uc(flo ) (2) = f(2).

For the proof of the second-order approximation property, let v € H*(Q)N H; (Q)
and Iv € S}(7), Iv(z) = v(z) the nodal interpolant. (1 - Jc)Iv = 0 implies (1 —
Nv=>0-Inc)v+ (1 —-Jc)(Uncv— Iv). The triangle inequality yields

1h7? A= Nvllz) < 1h7 (1= In) vz + I1h72 A = Jo) Uncv = I0) [ 12 0-

The second-order interpolation errors of non-conforming [CGl4a] and nodal
interpolation [CGR12] read

Ih7* (1 = Inc) Ul 2y < K Vive (1= Inc) V2 < K/ j11 1D Vil 2y,
1BV (L= D vlliz0) < e(TID? vl 2.

Consequently, a slight modification of the proof of Theorem in (4.6) with
the estimate hy < maXges () hx < ¢, hr forany ze€ N, T € 7 (z), and a triangle
inequality implies

I1h7* (1 = Jo) Uncv = IVl 2q) < CoCapsll 7 Vive(Inet = I0) 2
< CoCapx(1/ j11 + c(TNID* vl 12 qy-

This results in the estimate of the first term in the assertion,

Ih?(1 = Dvll 2 < &K/ ji+ CoCapx(1/ j1,1 + (Tl D* vl 2 (-
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The split from above yields
1AV (A =Dl 2 e < 1h ' V(A =Ine) V2 +ITh- V(A= T Uncv—=Tv) 120

The inverse estimate leads to [|h'V((1 — Jo) Uncv — Iv) |12 < Cinvll (1 = J0)
(IncV — IV)|l;2(q) and therefore

I V(1= DVl 2 < A/ i1+ CinvCo Capx(1/ J1,1 + (7))l D* vl ;2 (- O

Remark 5.2 (Discrete quasi-interpolation) Consider a triangulation 7 and re-
finement 7 . For any ¢ € S(l)(‘f") and Ke U =T nT, Inchclk = Dclx. Hence,
any Kj, K; € U with z € N (K;) N N (K) satisty IncDclk, (2) = Uc(2) = IncDclk, (2).
Consequently, the application of Theorem L.Ilwith Jc = Jo; from (4.9) yields a
discrete quasi-interpolation Jaq; := Joro Inclgyi * St(77) — SL(7) such that any
Dc € S(l,(‘f”) satisfies U¢c = JaqorPcon7 N 7 and

17 (1= JagD Dcllz) < (% + c5, ) 2l Dl (5.2)

A thorough inspection of the proofs of Theorems and [5.1] shows that this
interpolation operator can be extended to J4qr : SY(7) — SY(7") with the same
properties and constant cgpx = (v/3/2) cot(wg)/ min{l—cos(7w/ Min,), 1—cos(rm/ (2 Mg —
1))} arising from the eigenvalue problem [YC08, Thm. 3.2 (viii)].

6 Constants in the Axioms of
Adaptivity

This section recapitulates the proof of optimal convergence rates of the Courant
and the Crouzeix-Raviart FEM in 2D in the axiomatic framework of [CFPP14;
CR16] with explicit constants. Define a(u, v) := (Vu, Vv)2(q) forany v, w € H(} Q).
Given f € L*(Q), the CFEM seeks uc € Sy(7) with

a(uc,ve) = (f,ve) 2 forany ve € Sy(7). (6.1)

For any admissible triangulation 7~ € T with CFEM solution uc € CRy(7) to
(6.1) and K € 7, define

N, K) = Kl fllf g +IKIY2 D0 Ve vell

2
L2(E)’
Ee&(K)NEQ)
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For 7" € T and refinement 7~ with solutions u¢ € S}(77) and iic € S}(7"), define
8c(T,T) = lluc—tcll.

The optimality proof of [CFPP14] relies on the axioms (A1)-(A4) below with con-
stants 0 < Ay, Az, A3,Ay<ocoand 0 < p, < 1. Any 7 € T and refinement 7~ satisfy
Stability (A1)

M T, T 0T)=nc T, T NI <Mbc(T,7) (6.2)
and Reduction (A2)

NeT T \NT) < 0T, T\NT )+ Mobc(T, 7).

Moreover, [CFPP14] shows discrete reliability (A3) on a simply-connected do-
main Q € R?,

82T, T) < A (T, T\ ). (6.3)

The quasi-orthogonality (A4) shows that the output 7%, k = 1,2,... of the adap-
tive algorithm with corresponding quantities ny := n¢(7x, 7x) and any ¢, m € N
satisfy

l+m

Y 68T, Tean) < Aamy.
k=¢

The main result [CFPP14, Theorem 4.5] and the axioms of adaptivity state that
(A1)-(A4) with the above-mentioned constants yield optimal convergence rates
of the adaptive Crouzeix-Raviart FEM with Dorfler marking for any bulk param-
eter

0<0<0y:=1+A A" (6.4)
This is a sufficient condition for optimal rates and requires the quantification of
0y and so to calculate A; and A3 explicitly.

The proof of stability (A1) is essentially contained in [CKNS08] but is included
here for explicit gathering of the constants.

Theorem 6.1 (Stability (A1) for CFEM) The constants
Cquot := MAXk, KeT E(kNE K20 [ K1l /| Kz| < 2 cot(w)/ sin(wy) and AT = 6.cot'’? (wy)
(1 + cl/2 )2 satisfy (6.2).

quot
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Proof. The reverse triangle inequality for vectors with entries | T|"4|[[Vuc-vEl gll 25
resp. | T|"*[00c/0s]gll 2 forany T€ T N7 and E € E(T) shows

T, T NT)=nc T, T nT)?

1/2 A 2
Yo Y T (IVuc - vEl Bl @ — 1V e - VEEll 2 )
TeT ng E€&(T)

Furthermore, the reverse triangle inequality in L?(E) imply thatany T€ 7 N7
and E € &E(T) satisfy

[IVuc-velpl 2 = IV ac - VEIEN 25| < Ve (e — 2] el r2p).-

The trlangle inequality and the trace 1dent1ty shows that pg := Vyc(uc —tc) €
Po(7;R?) satifieson 0T, NOT-=E€ EQ) with T, T_€ T,

A 2 A A 2
||[P0]E||L2(E) < (Ipolr, 22 + 1 Pol -l 12(E))
2o =1/2) A =112 A 2
=E[UT N poll 2y + 1T-1" N Poll 2(1-))
1 1
<|EI(1 T +1T-17H1Poll?

L2(wp)"

The estimates |7, |"/2 +|T_|V2 < [T_|"2(1 + c}{2 ) and | T2 |72 < 2 cot"? (w) | E| ™
show

T2+ | T2 BT+ 1T 7Y
< |E|(L+ 2T 172+ | T, 1T M?)

quot
< 2cot'?(we) (1 + e A+ | T4 V21T
< 2cot"?(w) (1 + cyn)? =

The estimates | T.|™" < 4 cot(w)|E| %, | T.| < |Elhy,/2, and hg, < |E|/sin(w,) im-
Ply Cquot < 2 cot(wy)/ sin(wy).

The summation over 7 N7~ and the finite overlap of (@) ;s leads to

e, T nT)=ncT, T NI <ce Y. IVacluc— il

A L2(@F)
Ee&

~ N2
= 3¢ull Ve (ue = il q)- O

Theorem 6.2 (Discrete reliability (A3) for CFEM) The constant As = 4 cot(w,) (k*+
)(1+6cot(wy)'?(1 + ciny)) satisfies 6.3).

apx

22



Proof. With solution uc € S}(7) (resp. iic € S} (7)) to the discrete problem with
respect to 7 € T (resp. 7 € T(7)), define é¢ := fic — uc and discrete quasi-
interpolation ec € S'(7) of éc € S'(7") from Remark[5.2l The Galerkin orthog-
onality a(éc,ec) =0, éc—ec=00n7 N7 and a piecewise integration by parts
show

82(7,7) = aliic, éc — ec) — aluc, éc — ec)

= |t poniecec) a
i

\T

f [Vuc-viel(éc—ec) ds.
EeEQNET\T)YE

The Cauchy and the trace inequality prove

6%(T,9) < (||hfrf||L2(¢\ff)+\/§Ctr Y |E|||[Vuc‘VE]EHiz(E))||hf_r1(éc—ec)||L2(Q)-
Ee&(T\T)

The estimates h% < 4cot(wy)|K], |E| < 2cot(wg)/?|K|'? for any K € 7~ and the
first-order approximation property (5.2) prove the assertion with Az = (x* +
c2,,) (4 cot(wy) + B¢ cot(wg)'?). O

Example 6.3 For right isosceles triangles, A? < 40.36, Az < 9201 and (6.4) lead
to 6y = 2.6 x 107° for the Courant FEM, despite the general wisdom that 6 = 0.3
leads to optimal convergence.

The remaining part of this section proves an explicit bound for the bulk parame-
ter for the Crouzeix-Raviart FEM with solution ucy € CR& (7)) to anc(ucr, Vcr) =
(f, ver) 12 for any veg € CRy(T7) with anc(ver, wer) == (VncVer, VNCWER) 12(q)-
For any admissible triangulation 7 € T and K € 7, define

Mer(T, K) = 1K flI2 0 + 1K1Y Y- 10uck/ 98], -
Ee&E(K)

For 7 € T and refinement ~ with solutions ucg € CR}(7) and ficg € CRL(T),
define

Scr(T,7) := lluck — ticrllne.

The proof of stability (A1) from Theorem applies verbatim with 0/0vg re-
placed by 7 in 0/0s.
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Theorem 6.4 (Stability (A1) for CRFEM) The constants cquec from Theorem
and A? = 48 cot(wy) (2sin(w,)) "2 satisfy (6.2).

Theorem 6.5 (Discrete reliability (A3) for CRFEM) For a simply-connected do-
main Q < R?, the constant A3 = 12 cot(wg) (x* + ¢ ) (1 + ciny) satisfies (6.3).

apx

Proof. Given the solution ucg € CR}(7) (resp. iicg € CR}(7)) to the discrete
problem with respectto 7 € T (resp. 7 € T(7)), consider a discrete Helmholtz
decomposition of Vycuicg € Po(T;R?) € Py(7;R?),

VinclUcgr = VchCR + Curl,[%c (6.5)
for unique dcr € CR}(7) and B¢ € S1(7)/R so that
Ser(T,7) = lluck - dcrlliye = lldcr — acrllye + lBell. (6.6)

Abbreviate Dcg := fick — @cg € CRY(T) and veg := IncDcr € CRL(T). An analo-
geous proof to interpolation estimate for Inc : Hy (Q) — H,(Q) [CG14b, Theo-
rem 2.1] with the discrete Poincaré constant ¢p = v/3/8 from Theorem 3.1 and
the discrete trace identity (Lemma2.6) yields xcg := (1/8 + ¢3)/* = 2712 with

—1,A A~
|hg (Dcr — ver)ll2@) < Kerlll crlllve. (6.7)
Since {icp solves the discrete problem on 7,
~ ~ 2 ~ ~ A ~ N N N
lltcr — @crlllyc = anc(licr, Vcr) —anc(Qcr, Vcr) = F(Ucr) — anc(@cr, Ucr)-

The orthogonal decomposition (6.5) and I1oVycUcr = VncIncDcr = Ve Ucr IM-
ply

anc(@cr, Ucr) = (Vncucr, VcUcr) = (Vnclucr, VneVer) = F(ver).

The three last displayed formulas, the Cauchy inequality and D¢g — vecgr = 0 on
T N7 yield

~ ~ 2 ~ ~
litcr — @crllye = F(Dcr — ver) = (f, Dcr — VeRr) 27

<Kcrllhr fll 2\ lldcr — @crlllne.

This and h% < 4 cot(wo)|K] for K € 7~ show

2lllicr = acrlline < 1hr fllfs oz S 4c0t@o) D IKIIFIIT: - (6.8)
KeT\7

24



l:he estimate of ||| ,BCIII utilizes the discrete quasi-interpolatiqn Bc € SY(T) of
Bc € SY(7) from RemarkB.2l A piecewise integration by parts, fc = fcon7 N7,
and E(7 \7) := Ugeq 7 E(K) shows

”lﬁC”lz = f CUI‘I,BC . VNCuCR dx = f Clll‘l(,BC — ﬁc) . VNcuCR dx

[CUI’I(,BC ﬁc) VNCuCR dx = f (,BC ﬁc)duCR/as ds
KeT\T KeT\T
= ) f(ﬁc Bc)[Oucr/0s]g ds.
Ee&E(T\T)

The trace identity on any T € 7 and E € &(T) with v := (B¢ — Bc)? and the
Cauchy inequality lead to

[EI" B =Belfai < 1TI7 (1B =Bl o + hrll Be = Bell el Be = Bellveen)-

The estimate |T|™! < 4cot(w,)h;* and the weighted Young inequality for any
A >0 show

EI Be—Bcll g < Acot(o) ((1+@A) IR (Be—Blzz g+ A 121 Be—Bclliyem)-

Hence, the inverse estimate and the direct minimization miny.o((2A) ™' +c3 A/2) =
Ciny prove, for ctr :=4cot(wy) (1 + ciny), the trace inequality

Bl Be = Bl g < cill by (Be = BT, (6.9)

This and the Cauchy inequality imply

TAEES f B2 B — Bl lE1M210ucn/ 051l ds

E€&(T\T)

Y IEUBc—Belty, [ X IENBuc/9sIEl,

Ee&E(T\T) Ee&ET\T)

<V3eullhy Be—Bollzy. | Y. |ElOucr/dsll?

E€E(T\T)

L*(B)

The first-order approximation property (5.2) of the discrete quasi-interpolation,
|E| < 2cot(we)"*|T|"?, (6.6) and (6.8) with 2 cot(wy) < 24 cot(we)*'*(k* + 5, ) (1 +
Ciny) conclude the proof. U]
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Example 6.6 For rightisosceles triangles, it holds A3 <34.97 and A3 < 4521 and
(6.4) leads to 6, = 6.3 x 107° for the Crouzeix-Raviart FEM, despite the general
wisdom that 6 = 0.3 leads to optimal convergence.
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