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Abstract: We designed a semantic enabled metadata framework using ontology for
multi-disciplinary and multi-institutional large scale scientific data sets in a Data Grid
setting. Two main issues are addressed: data integration for semantically and phys-
ically heterogeneous distributed knowledge stores, and semantic reasoning for data
verification and inference in such a setting. This framework enables data interoper-
ability between otherwise semantically incompatible data sources, cross-domain query
capabilities and multi-source knowledge extraction. In this paper, we present the basic
system architecture for this framework, as well as an initial implementation. We also
analyze a real-life scenario and show integration of our framework into the PetaShare
Data Grid where multi-disciplinary data archives are geographically distributed across
six research institutions in Louisiana.
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1 INTRODUCTION

One of the key problems in Data Grids is interoperability
between different data sources and management of meta-
data for cross-domain projects. Metadata enables physical
data to be effectively discovered, interpreted, evaluated,
and processed. Today, the scientific research community
faces new challenges in metadata management as comput-
ing environments become increasingly large and complex.
For example, in the Atlas (2008) and CMS (2008) projects
alone, more than 200 institutions from 50 countries use a
data collection which increases by around 5 petabytes an-
nually. These large collaborations involve not only domain
scientists, but also computer scientists, engineers, and vi-
sualization experts who need to access the data to advance
research in their own fields. Traditional catalogue based
metadata services have limitations in such application sce-
narios. It is difficult to handle data integration across dif-
ferent domains; management of domain schema evolution
often leads to confusion; and data quality degrades since
the data verification/quality control cannot be easily built
in such a distributed environment from a catalogue meta-
data service.

Ontology is a fairly new data model tool based on formal
logic. It has a rich expressiveness while maintaining decid-
ability. Ontologies enable knowledge engineers to build
logic constraints to enable data quality checking, facili-
tate knowledge collaboration in highly distributed environ-
ments, and provide cross-domain data integration and in-
teroperability. Efforts have been made to use ontologies to
address metadata management challenges in Data Grids.
However, such attempts are still in their early stages.

In this paper we present an ontology enabled meta-
data management service capable of handling semantic
rich queries and tailored for the needs of scientific data
collections in Data Grids. This system takes advantage
of existing research efforts in ontology research and Data
Grid research. We apply this framework to PetaShare,
an NSF funded Data Grid project. PetaShare provides
an excellent testbed for such a framework since it spans
six geographically distant institutions across the state of
Louisiana, where each site contains multiple data archives
from different science domains.

The organization of this paper is as follows: we pro-
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vide background information on ontology-based metadata
in section 2; we present the motivating applications for
this framework in section 3; we explain our system design
and architecture in section 4; we give the details of our
implementation on PetaShare in section 5; and finally we
conclude in section 6.

2 ONTOLOGY-BASED METADATA

Metadata refers to information about data itself, com-
monly defined as “data about data”, and it is essential for
Data Grid systems. Without proper metadata annotation,
the underlying data is meaningless to scientists. Differ-
ent approaches based on conceptual modeling techniques
are available for building a metadata management service.
Controlled vocabulary, schema, and ontologies provide an
increasing level of description based on agreements con-
cerning the meaning of terms, allowable data hierarchies,
and the overall data model. In this section, we discuss the
issues of using ontology to build a metadata management
framework for scientific data sets in Data Grids.

Ontology is a data model that explicitly represents a
set of concepts and relationships in a particular domain,
defining which entries exist and how they relate to each
other (Gruber, 1993). One common use case is the Gene
Ontology (GOP, 2008) in which a structured represen-
tation of gene functions is used in a uniform way to be
queried across different gene databases. Gene Ontology is
an important collaborative effort and it is arranged in a
hierarchical manner using directed acyclic graphs. A con-
trolled vocabulary is provided by analyzing the semantic
structure of the data and then implementing a uniform rep-
resentation of metadata information. The metadata can be
queried at different levels over many databases that span
the world (GOP, 2008).

One of the challenges in preparing an infrastructure for
metadata management is to automate the process of meta-
data formation. The data is formed by professionals in
the area who have knowledge about the structure. The
ambiguous vocabulary of the data leads to difficulties in
querying metadata systems to search for information. In-
correct outcomes could be obtained either by returning too
general terms or too deep terms according to the search
criteria (Shatkay and Feldman, 2003; Pérez et al., 2004;
Couto et al., 2007). However, a well designed semantic
structure can enhance the metadata system by providing
better precision in the search process. The ontology based
semantic metadata explained in this study helps to cover
and represent the majority of the concepts inside the data
in order to automate the integration of query process with
generation, classification and establishment of connections
of actual metadata

Based on description logic, ontology describes the con-
cepts and relations that can exist for an agent or a com-
munity of agents in a given domain. Generally it con-
sists of taxonomic hierarchies of classes and the relations
between these classes. Ontology has two key advantages

compared with traditional data modeling techniques: first,
it has more expressive power than other traditional data
model techniques; secondly, efficient reasoners are available
to perform constraint verification and checking.

The expressive power of ontology can improve knowl-
edge sharing and data integration. Knowledge sharing
refers to sharing knowledge or information between mem-
bers of an organization. Data integration means the pro-
vision of a uniform interface to a multitude of data sources
(Levy, 1999). Data integration is especially important in
a multiple-domain collaborating environment, where phys-
ical data sets can be geographically and administratively
heterogeneous; the data models and format can be het-
erogeneous; and the semantics of vocabularies describing
the contents of the data sets can be highly heterogeneous
among different domains. Data Grid software such as the
Storage Resource Broker (SRB) (Baru et al., 1998) and
iRODS (SDSC, 2008) have successfully addressed problems
related to storage system heterogeneity and administrative
heterogeneity. XML based approaches have helped in solv-
ing data format issues.

Ontology can be used to map concepts across different
knowledge stores and thus integrate the knowledge stores
effectively for scientific applications. Local as View (LaV)
and Global as View (GaV) are two main approaches to per-
form data integration (Charathe et al., 1994) (Levy et al.,
1996). In LaV, the content of the source schema is de-
scribed as a query over the global schema; in GaV, the
relation in the global schema is defined as a view over the
source schemas. LaV has the advantage of better scala-
bility, on the other hand, the maintainability of GaV is
better. Research, e.g. (Levy, 1999) (Calvanese et al.,
2001), has been conducted on formal logic enabled data
integration and some key challenges have been identified.
However, practical systems capable of integrating seman-
tically different knowledge stores using semantic tools are
uncommon.

A key advantage of the ontology model is the reason-
ing capability it provides. Constraints can be constructed
on top of the concepts and relations in an ontology. Such
constraints may or may not be consistent with the ontol-
ogy model. The relationships among instances inside an
ontology model could also be contradictory. An ontology
reasoner can be used to check the consistency between con-
cepts in an ontology model or whether a given instance is
allowable in the ontology model. High performance rea-
soners, such as FaCT++ (Tsarkov and Horrocks, 2006),
Racer (Haarslev and Moller, 2001), have been implemented
by the ontology research community.

Ontology data modeling has the potential to bring great
benefit for scientific data management. Stuckenschmidt et
al. proposed integrating different domain ontologies for
data integration (Stuckenschmidt et al., 2000) and identi-
fied different mapping approaches for concepts in different
ontologies. The Pegasus group developed a virtual meta-
data catalog which provides semantic rich information for
metadata catalogues (Gil et al., 2006). They integrated
data sets from three disciplines by constructing one vir-
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tual metadata catalog that hides all the underlying dis-
tributed domain ontologies from the query mediator. (Jef-
frey and Hunter, 2006) developed an ontology enabled se-
mantic search engine for the SRB/MCAT system to handle
heterogeneous data sources. Their system allows users to
load different ontology instance data sets into an mySRB
interface enabling user searches on heterogeneous ontology
repositories.

We argue that data integration using ontology can be
futher refined by applying different policies for different
ontology concepts. In a distributed environment where do-
main schemas are constantly evolving, such a framework is
more flexible than enforcing all the domain concepts maps
to the virtual data catalog. The ontology schema and the
ontology instance data should also have different update
policies. The ontology reasoner can be used for verifica-
tion to improve data quality and increase scalability. In
the following sections we describe a framework that ad-
dresses these issues.

3 GUIDING APPLICATION SCENARIOS

Numerical simulations play an increasingly important role
in modern scientific and engineering research. They are
used as an important tool for scientific investigation par-
ticularly when it is impossible or too expensive to per-
form experiments. With growing computing power, scien-
tists can routinely perform simulations with unprecedented
scale and accuracy. The scale and number of simulations
can generate huge amounts of data. These data sets are
then used for analysis and/or visualization by large dis-
tributed collaborations. Effectively storing these data sets
and then enabling users to retrieve them are of great im-
portance to scientific research.

At the Center for Computation & Technology, LSU, we
are building data archives for various research disciplines,
including coastal modeling, astrophysics, and petroleum
engineering, along with a separate archive for visualiza-
tions and other digital media. Most of the data sets main-
tained in these archives are related to numerical simula-
tions.

Coastal Modeling - SCOOP Archive. The SURA
Coastal Ocean Observing and Prediction (SCOOP) pro-
gram is building a modeling and observation cyberinfras-
tructure to provide new enabling tools for a virtual com-
munity of coastal researchers. Two goals of the project are
to enable effective and rapid fusion of observed oceano-
graphic data with numerical models and to facilitate the
rapid dissemination of information to operational, scien-
tific, and public or private users (MacLaren et al., 2005).
As part of the SCOOP program, the team at LSU has
built an archive to store simulation and observational data
sets. Currently the archive contains around 300,000 data
files with a total size of around 7 Terabytes. Three main
types of data files are held in the archive: wind files; surge
(water height) files; and data model files. The basic meta-
data information for these files are: the file type, the model

used to generate the file, the institution where the file was
generated, the starting and ending date for the data, and
other model related information.

Astrophysics - NumRel Archive The Numerical
Relativity group at LSU is building an archive of simu-
lation data generated by black hole models. One of the
motivations is to analyze experimental data from gravita-
tional wave detectors such as LIGO. These simulations are
typical of many other science and engineering applications
using finite element or finite difference methods to solve
systems of partial difference equations. The simulations
often take many CPU hours on large supercomputers and
generate huge volumes of data. Software packages such as
Cactus (Goodale et al., 2003) enables scientists to develop
their code in a modular fashion. Each numerical library in
the package defines a set of attribute names which can be
used as controlled vocabulary. The attribute names could
describe input parameters or computation flags. Such in-
formation is crucial for user’s later retrieval.

Petroleum Engineering - UCoMS Archive. Reser-
voir simulations in petroleum engineering are used to pre-
dict oil reservoir performance. This often requires parame-
ter sweeping, where large numbers (thousands) or runs are
performed.

In this scenario, users need to provide the initial range
of parameter settings. In such a setting, the important
metadata can be expressed as follows: parameter name;
the range of the parameter in the simulation; the particular
parameter value which is set for the run.

Visualization - DMA Archive. Scientific data, after
being generated by simulations, needs to be further ana-
lyzed. One important tool to help scientists is visualiza-
tion. The Digital Media Archive (DMA) at CCT is being
built to store the resulting images from scientific visualiza-
tion, along with other media such as movies, sound tracks,
and associated information. Visualization metadata can
be fairly simple: Image Name, Image Size, Image Width,
Image Height, and File Format.

4 SYSTEM DESIGN

We propose a semantic enabled metadata framework for
Data Grid systems. The framework addresses two key is-
sues: (i) the integration of semantically heterogeneous data
stores using ontology techniques; (ii) the construction of
meaningful constraints for data verification and quality au-
diting using logic inference tools. We use current data sets
in the different CCT data archives to provide test cases.

The metadata system will be coupled with a storage sys-
tem to provide the necessary data grid functionality. We
envision our system to work with iRODS (a Rule Oriented
Data System also termed the next generation SRB) as it
provides a coherent view over the heterogeneous under-
lying physical storage hardware. The metadata system
should provide a friendly user interface and a set of API
functions. The metadata service will take a user query
and answer with a set of logical file names when applica-
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Figure 1: Basic architecture for semantic enabled Data
Grid

ble. Such logical file names are then resolved by iCAT,
which offers a replica metadata service and is tightly cou-
pled with iRODS. The actual physical file is then fetched
from iRODS to the user. Figure 1 shows the architecture
of our system.

4.1 Data integration

Data integration means providing a uniform interface for
users. Such an interface should be independent of the un-
derlying data schema.

The information stores we plan to integrate are highly
heterogeneous: (i) The physical storage geographical lo-
cations, administrative domains, and the storage systems
are heterogeneous; iRODS can address this problem; (ii)
The data type, format, vocabularies are heterogeneous; for
each given domain, scientists from different organizations
may use completely different controlled vocabulary to de-
scribe or annotate the data; (iii) The semantic meaning
are heterogeneous; in a collaborating environment, scien-
tists from different domains need to work together and
understand each other.

The integrated information store should be able to an-
swer queries similar to the Local as View (LAV) approach
we described above. The user needs not be aware of the
underlying schema differences. The knowledge store will
be responsible for query reformulation, making the local
queries and submit them accordingly.

Due to the complexity of the problem, it will be unreal-
istic to hope one system can solve all the heterogeneity we
mentioned above uniformly. Various approaches have been
proposed to integrate data stores using ontology. We argue
that in a real world setting, there are certain information
which can be easily integrated, and there are information

iCAT
iRODS

Figure 2: Data integration architecture

which is very difficult to be integrated, these situations
need different handling mechanism.

We designed a system which treat the differences with
different policies. As shown in Figure 2, the central com-
ponent in the system is called the mediator. The media-
tor has access to an integrated ontology store(IOS) which
will store the common objects, their relationships, and the
instance data. The domain ontology stores (DOS) are dis-
tributed and will be maintained by domain experts. The
DOSs publish the common objects, their relationships, and
their instance data to the IOS. The mediator also main-
tains a registry, which contains the mappings between all
the DOS and the concepts each DOS knows how to handle,
Figure 3 shows the relationships between ontology stores
in our current implementation.

The common concepts to be stored in IOS are in the dif-
ferent underlying domains and have an explicit relationship
between each other. Only the concepts that are completely
free of inter-domain relationships should be preserved in
the DOS.

When a user enters a query, the mediator analyzes the
query first. It is possible that the query can be answered
by the integrated ontology directly, one or more under-
lying ontologies, or a combination of these two. Query
reformulation is needed if the query can not be completed
answered by the integrated ontology.

The query reformulation is based on the registry infor-
mation published by the underlying ontologies. Naively it
publishes a set of concept names, which are the vocabular-
ies it can understand. When the mediator sees the terms
or concepts which it can not handle in integrated ontol-
ogy, it looks up the registry and assign the query to the
ontologies which claimed can answer it.

The ontology store has two major components: the
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Figure 3: Relationship between ontology stores

schema which defines the domain concepts and relation-
ships, and the instance sets which are instantiated from
the domain concepts. The IOS needs the instance data to
perform query answering. The registry for mediator does
not need to maintain instance data, since the query will be
answered by the domain ontology store.

The system should be constructed with a set of DOSs in
mind. A set of common concepts which can be integrated
into IOS are chosen first. The distributed DOSs publish
the instances data of this common sets to the IOS. The dis-
tributed DOS also needs to publish other keywords which
it can handle query to the mediator’s registry.

When a new ontology store is added, the knowledge store
administrator needs to identify the relevant common con-
cepts in the new store, and map these concepts to the
system’s IOS. By doing this the new instance data which
enters the new store will get published into the IOS as well.
Other than this, the new store also needs to register what
terms it can answer by publishing to the IOS’s registry.

When the concepts and relationships in certain knowl-
edge domain changes, the DOS needs to notify the medi-
ator about its changes. The mediator decides whether the
change needs to be populated to IOS or not. If there is
such needs, the mediator notifies the DOS, and DOS will
publish those instance data to the IOS.

4.2 Logical inference and constraint verification

One of the key advantages ontology holds over traditional
knowledge representation technologies is its stronger rea-
soning capabilities. Being able to perform logical reasoning
on ontology not only provides domain experts and system
developers with a necessary tool to check and verify logical
consistency, but also potentially increases scalability.

As discussed in previous sections, the key concept in our

data integration model is the Mediator, which will handle
a set of high level concepts commonly agreed upon by the
underlying distributed ontology stores. On the other hand,
certain implicit connection between ontology from different
domains may not be able to be explicitly expressed in the
ontology because of the heterogeneous and dynamic nature
of the domain involved. Logical reasoning based on a core
set of concepts and relations can be performed to discover
these hidden connections, thus ensure that scientists get
all the knowledge he needs from all the domains available
when he performs the search.

4.3 Constraint verification

As the size of the ontology grows, it becomes increasingly
unrealistic for a human to check the correctness of the
knowledge stored in the ontology. As a result, certain log-
ical constraints need to be introduced to ensure the con-
structed ontology is logically sound. To do this, two ques-
tions need to be answered: (i) How to represent the logical
constraint? (ii) How to perform the reasoning?

For the first question, there are several ways to rep-
resent the constraints as logical rules that the ontology
must follow, such as SWRL (2008) submitted by the Na-
tional Research Council of Canada, Network Inference
and Stanford University, SWRL provides a high-level ab-
stract syntax for Horn-like rules in OWL DL and OWL
Lite; Racer (Haarslev and Moller, 2001) also offers partial
SWRL support through its SWRL-based rule language.
Besides SWRL, DLP (Description Logic Programming)
(Motik et al., 2007) and various semantic web service rule
languages WSMO (2008) and RuleML (2008) also can be
used to represent logical rules. After consideration, we de-
cided to use SWRL to describe our constraints because
SWRL combines OWL and RuleML and integrates con-
straints into ontology. Further, Protege, currently the
most popular ontology development platform, provides an
extension for SWRl that can greatly reduce the workload of
developing and testing constraints on existing OWL-based
ontology.

Beside constraint representation, different reasoners pro-
vide different levels of reasoning capabilities. Chief among
them are Racer (Haarslev and Moller, 2001) developed
at University of Hamburg, Pellet (Sirin et al., 2005), de-
veloped by University of Maryland’s Mindswap Lab, Jess
(Friedman-Hill, 2008), developed at Sandia National Lab-
oratories, etc. These reasoners have different degrees of
shortcomings. Racer, as the most prominent reasoner is
also the most mature with the strongest reasoning capa-
bilities, but its current status as a commercial product
limits its interoperability with some of the other impor-
tant products needed in the development ontology, such as
Jena (2008). Pellet is open source, which makes it the rec-
ommended reasoner of Jena, but currently Pellet only sup-
ports an subset of SWRL, and it doesn’t support SWRL
built-in functions. On the other hand, as far as we know,
Jess is the reasoner with the fullest SWRL support avail-
able right now, also Jess can be incorporated into Protege
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Figure 4: SWRL rules

to check and verify the SWRL rule added into ontology.
So at this stage, we plan to use Jess as the underlying in-
ference engine to test ontology verification capabilities we
intend to introduce into our data integration application
in the future.

In our current implementation, there are several scenar-
ios under which logical inference will be needed to ensure
the consistency of the ontology. For instance, in the
SCOOP ontology, each instance of a surge file requires a
corresponding wind file to ensure its validity. According to
the naming convention agreed upon by participants of the
SCOOP project, the name of the surge file will begin with
”S”; and name of the wind file will begin with ”W”; At the
same time, the file name of the surge file will contain the
file name of its corresponding wind file. For example, if
there is a surge file named SWW3LLFNBIO WANAFe01-
UFL 20050825T0000 20050826T1300 20050826T1300 12hs-
T272 Z.txt, the name of its correspond-
ing wind file would be WANAFe01-
UFL 20050825T0000 20050826T1300 20050826T1300 12hs-
T272 Z.txt. That feature of the SCOOP ontology will be
used to check the validity of surge files, thus ensuring the
logical consistency of the SCOOP ontology.

The three SWRL rules shown in figure 4 were written in
Protege’s SWRL tab extension, and they took advantage
of the SCOOP naming convention to check the existence of
a wind file corresponding to a particular surge file. Our ini-
tial experimental run on Jess showed that they can ensure
that all the valid Surge instances of SCOOP ontology can
have their property isValid set true, thus making sure the
scientists using our Data Grid middleware will be informed
about the validity of the files they are dealing with.

The SCOOP surge file validity is just one example for
which logical inference will be needed for constraint veri-
fication. As the size and complexity of our ontology store
grows, other scenarios requiring constraint verification will
likely emerge. As our initial experiment shows, SWRL and
Jess are capable of handling the current requirement of
constraint verification. We will continue our effort of in-
corporating inference in our future implementation while
at the same time, investigate other possible alternative rea-
soner and rule representing languages that may offer better
capabilities to ensure that our ontology stores are properly
verified.

4.3.1 Inference and increased scalability

Beside ontology verification, inference can also be used to
reduce the hurdle to add new ontology. Since the domain
ontology will be maintained separately by domain experts

distributed across different institutions and geographic ar-
eas, and they may know little about other domain ontol-
ogy, it may be difficult to establish semantic connections
among concepts existed in multiple domain ontology and
described in different terms. Inference can be employed to
connect multiple domain ontology via the mediator ontol-
ogy. What we envision is to create a mediator ontology
that will be agreed upon by all the involved domains to
represent the common concept and relationships existed
in more than more domains, current underlying domain
ontology only needs to negotiate with the authority re-
sponsible for the creation and maintaining of the mediator
ontology. New ontology expected to join the ontology store
also need to negotiate with mediator to establish connec-
tion between them and the mediator ontology. As a result,
the effort needed to enlarge the ontology store will be re-
duced, and scalability of our Data Grid middle-ware will
then be increased. When scientists perform search, infer-
ence can be performed on multiple domain ontology via
the mediator ontology so that all knowledge related to the
search term, even if the knowledge came from a totally
different domains, can be retrieved from ontology store.

The above discusses some very preliminary ideas we have
in term of increasing scalability and reducing the difficulty
for new domain ontology to join. As of now, feasibility of
our idea has not yet been tested, our future research will
involve experiments to test the feasibility and do-ability of
our ideas, if successful, it will be included in our future
implementations.

5 CURRENT IMPLEMENTATION

In our initial implementation, there are three basic com-
ponents: Web Interface, Query Translator and Ontology
Base, corresponding to User Interface, Query Translator
and Ontology RDF Store respectively.

Among their functions, the Web Interface, mainly serves
to provide the user with a easy-to-use interface, commu-
nicate with Query Translator, display the query result in
a easy-to-understand manner and provides various filter-
ing/sorting capabilities. The objective is to create a query
engine interface with maximum dynamism to increase us-
ability. To meet this objective, in the current implementa-
tion, various AJAX technologies are employed and certain
level of dynamism has been injected into the interface de-
sign.

The ontology base for our system is constructed with
several domain ontology stores. The concepts in each do-
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Figure 5: Ontology metadata query interface

main ontology can only be related to the concepts in the
same ontology, or mapped to the concepts in the integrated
ontology. There is no direct inter-domain concept map-
ping. The integrated ontology keeps track of all the inter-
domain concepts and their mappings.

Currently, only metadata of SCOOP and DMA domains
and their instances are put into the ontology. To integrate
data from multiple domains, concepts that are available
to and can be extended to multiple domains must be de-
fined in the ontology and shared across multiple domain
ontology. In the current implementation, only the shared
concept ”keyword” is defined. Keyword can carry differ-
ent meaning for different ontologies. It usually annotates
the distinct meaning which can be searched and classified.
The ”keyword” here is used to describe the content of files.
Users can use various keyword to ask for files from SCOOP
and DMA archives. Another common concepts is the time
when the data file was generated, such concepts are com-
mon for the numerical simulation data sets and thus should
be maintained in the integrated ontology store.

To query the ontology base and iRODS storage system,
the query needs to be understood by these systems. On
the other hand, a easy-to-use web interface is also neces-
sary for users who aren’t necessarily proficient in ontology
query languages and iRODS commands. To bridge the di-
vide between human understandable and machine under-
standable, Jena JENA libraries and iRODS scripts are
used to translate user query into machine understandable
ontology and iCAT query.

Finally, the Ontology Base stores the various domain
ontologies, currently, only metadata of SCOOP and DMA
domains and their instances are put into the ontology. To
integrate data from multiple domains, concepts that are
available to and can be extended to multiple domains must
be defined in the ontology and shared across multiple do-
main ontology. In the current implementation, only the
shared concept ”keyword” is defined, ”keyword” here is
used to describe the content of files. Users can use various
keyword to query file information from SCOOP and DMA
ontology. Users can also require the file to be fetched di-
rectly from iRODS server back to his local machines to
display in user’s web browser.

Figure 6: Ontology query result

5.1 Use Scenario

The primary objective of our research is to enable knowl-
edge sharing among multiple disciplines and projects. Of-
ten data needed by the scientists belongs to different
projects or disciplines. For example, in meteorology, raw
observational/experimental data are often not enough, vi-
sualizations of model data are also needed to achieve bet-
ter understanding. Suppose there is a meteorologist per-
forming research on Hurricane Katrina using data collected
in the SCOOP project, he may need to visualize SCOOP
data to help him achieve his research objective. But there
may not be the required visualization data in the SCOOP
archive, and performing the visualization may require con-
siderable time and effort or more expertise than the scien-
tist has. Our current implementation provides a solution
to the scenario mentioned above, the meteorologist can
simply query ”Katrina”, as shown in Figure 5,

the query result will return data related to Hurricane
Katrina in the SCOOP project, also data of visualized
SCOOP data (from DMA archive) related to Hurricane
Katrina will also be returned as part of the query re-
sult, as shown in Figure 6, the underlying Integrated On-
tology Store will link together two conceptually distinct
archives stored on different physical locations and enable
cross-querying on both archives. After the query result is
returned, the meteorologist can fetch the file, SCOOP or
DMA, back remotely from iRODS servers via a web inter-
face. Figure 7 shows a visualized Hurricane image fetched
from iRODS servers.

5.2 PetaShare Data Grid

PetaShare is a state-level data sharing cyberinfrastruc-
ture effort in Louisiana. It aims to enable collaborative-
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Figure 7: Data fetched from remote site

data-intensive research in different application areas such
as coastal and environmental modeling, geospatial anal-
ysis, bioinformatics, medical imaging, fluid dynamics,
petroleum engineering, numerical relativity, and high en-
ergy physics. PetaShare manages the low-level distributed-
data handling issues, such as data migration, replication,
data-coherence, and metadata management, so that the
domain scientists can focus on their own research and the
content of the data rather than how to manage it.

Currently, there are six PetaShare sites online across
Louisiana: Louisiana State University, University of New
Orleans, University of Louisiana at Lafayette, Tulane Uni-
versity, Louisiana State University-Health Sciencies Cen-
ter at New Orleans, and Louisiana State University-
Shreveport. They are connected to each other via 40Gb/s
optical network, called LONI (Louisiana Optical Network
Initiative). In total, we have 250TB of disk storage and
400TB of tape storage on these sites.

PetaShare brings the idea of a data-aware system model
which includes a data-aware scheduler, Stork (Kosar and
Livny, 2004), resource allocation and resource selections
services, higher lever planners, and workflow managers.
Due to the huge data requirements of current scientific
applications, there has been extra effort to provide ef-
ficient data access methods favoring application perfor-
mance while effectively utilizing the system and network
recourses. PetaShare introduces the data management
subsystem to be the I/O module in distributed comput-
ing systems (Balman et al., 2008).

5.3 Ontology Integration into PetaShare

At each PetaShare site, we have an iRODS server deployed,
which manages the data on that specific site. Each iRODS
server communicates with a central iCAT server that pro-
vides a unified name space across all PetaShare sites. The
clients can access PetaShare servers via three different in-
terfaces: petashell, petafs, and pcommands. These inter-
faces allow the injection of semantic metadata information
(i.e. any keywords regarding the content of the file) to
the ontology whenever a new file is uploaded to any of the
PetaShare sites. The physical metadata information (i.e.
file size and location information) is inserted to iCAT using
the iRODS API. This is illustrated in Figure 8.

Figure 8: PetaShare architecture

When a user requests an operation on a file, the iCAT
server provides information on where the file resides phys-
ically, and provides metadata information regarding that
file. An uploaded file can be accessed via different log-
ical paths on each site. As an example, a file called
‘share-this-file‘ can be physically located at LSU PetaShare
resource (/petashare/lsu/home/user1/share-this-file), and
it can be accessed over a different PetaShare resource
(e.g. /petashare/tulane/user1/share-this-file). This is il-
lustrated in figure 9. In this illustration, a user wants
to upload a file to the PetaShare resource in LSU (step
1). The iRODS server at LSU sends metadata informa-
tion (physical location of file, size of file, permissions, user-
defined metadata) of the file to the iCAT server (step 2).
Eventually, file is stored on PetaShare resource at LSU
(step 3). Another user at LSUS site wants to download this
file and sends a request to iRODS server (step 4). iRODS
server translates this request, and queries the iCAT server
regarding the file (step 5). iCAT server returns a physical
location(and metadata) of the file(step 6). Then, iRODS
server asks for the file(step 7) and corresponding file is
sent to iRODS server back(step 8). Finally, iRODS server
returns the file to the user(step 9).

One major objective of the PetaShare architecture is to
enhance the overall performance while maintaining a cy-
berinfrastructure for easy and efficient storage access. In
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Figure 9: Interaction among components in PetaShare

our framework, the upper level metadata management also
returns information about number of replicas and location
of each element in the data archive by querying the iRODS
module. The ontology based metadata search gives logi-
cal filenames that match the semantic search criteria, and
then, each logical file name has corresponding set of phys-
ical file names, for the searched data entity. One other
benefit of our framework is that we do take advantage of
locating multiple replicas while transfering data using mul-
tiple archives for both reliability and performance.

The data-aware scheduler, Stork, is responsible for orga-
nizing the data placement activities in PetaShare project,
especially for data movement activities between geograph-
ically distributed data archives. Replica information along
with the data transfer job enables data placement sched-
uler to make better decisions. One key factor is that data
transfer operation is performed over multiple connections
by accessing to multiple data storage servers; such that, we
gain performance by using more than a single connection
to data archives (Balman and Kosar, 2007).

Replicated files provide a redundant environment in
PetaShare architecture. Although PetaShare also offers
a location independent data access mechanism, the over-
all framework will not be affected by site failures through
the use of replica management. The integration of replica
information into the metadata framework increases the re-
liability of the overall structure and also enhances the per-
formance of data transfers by distributing the load into
multiple data storage servers.

Semantic analysis of data is not limited to locating files
corresponding to a search criteria. One recent study (Bal-
aji et al., 2008) uses metadata information along with the
semantic structure of the data to reduce the size of the ac-
tual data files and re-generate the data in the remote site
instead of transfering the file from the data archive. Se-
mantic compression has a broad perspective and it is suc-
cessfully applied to compact database files (Jagadish et al.,
2004). Since data generated by scientific applications are
usually structured, semantic analysis and semantic com-
pression are important research topics in Data Grids in
terms of performance issues.

Figure 10: Performance Comparison of Metadata Insertion
between iRODS and Protege Database

5.4 Performance Evaluation and Comparison

In our current implementation, there are two ways to en-
able semantic metadata in Petashare:

(i) take advantage of iRODS’s built-in metadata support
and our far more semanticly richer metadata into iRODS’s
metadata system. Advantages of this approach includes
potentially better query performance because of fewer lay-
ers a query has to go through; This approach also comes
with disadvantages, namely, the added requirement to fig-
ure out a way to encode semantic metadata into iRODS’s
metadata system which, so far, only supports simple query
over triples.

(ii) build a middleware between currently mostly Java-
based ontology infrastructure and traditionally C-based
iRODS. Advantages of this approach includes more estab-
lished support for ontology insertion, modification, merg-
ing and query which our system can readily tap into. Dis-
advantages may involve develop a whole set of tools re-
quired to bridge the inherent differences, also our prelim-
inary testing of the browser based ontology system indi-
cated less than satisfactory performance.

To make a better determination on which approach of-
fers better performance, we did some preliminary bench-
marking on two different experimental implementation we
have done so far. We picked a test case involving the in-
sertion of from 1 to 10000 set of metadata corresponding
to 1 to 10000 experimental files produced by the SCOOP
project. As shown in figure 10, as the size of insertion
metadata set grows, the system based on Protege database
displays far superior performance than the system built on
iRODS metadata, the performance discrepancy turned out
to be a surprise for us as Protege database is required to
handle semanticly far more complicated data. Our pre-
liminary conclusion is that the iRODS based system han-
dles metadata insertion by repeatedly inserting triples into
databases, while the system based on existing ontology
tools, namely Protege database, handles large set of meta-
data insertion by bundling them together in the memory,
then bulk-insert them into the database. Further investi-
gation is needed to determine the exact cause of the per-
formance differences we witnessed.
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Figure 11: iRODS Query Performance

Although our preliminary performance evaluation indi-
cates the second approach delivers better performances,
we decided to take the first approach in our current im-
plemented Petashare system because of the complicity
involved in building a functioning middle-ware between
iRODS and Protege based semantic metadata system.

Figure 11 illustrates the query performances of our cur-
rent iRODS-based metadata system, our test cases ranges
from query result set of size from 1 to 10000 files, our cur-
rent system delivers performances ranging from less than
0.2 second to more a little bit more than 2.2 seconds, an
acceptable performance in our current implementation.

6 CONCLUSION and FUTURE WORK

Metadata management for scientific data faces new chal-
lenges as cross-domain collaboration improves in modern
science. We designed a metadata system which provides a
mechanism to integrate data sets from heterogeneous do-
mains. We showed the initial implementation of this sys-
tem by applying inference on constraint verification. We
have tested our system on a small set of files with limited
number of domains and domain concepts. We discussed
our attempt to integrate the ontology metadata system
into the Petashare Data Grid and showed some prelimi-
nary performances benchmarking we did on different ap-
proaches we may take. We also did benchmarking on our
metadata system already implemented on Petashare data
grid. There are still issues that need to be addressed. We
need to test the scalability of our framework. We predict
there will be performance bottlenecks in terms of ontol-
ogy persistence and inference. We need develop appropri-
ate middleware to bridge the differences between Petashare
and current generation of ontology developing tools. There
is also the question of how much inference can be done to
increase scalability by alleviating the difficulty of adding
new domain ontology and how much negative effect the
resulting additional overhead will have on system perfor-
mance. Another open problem is how to integrate such a
system with other metadata-intensive grid software, such
as workflow management and provenance systems. These
issues need to be further investigated.
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