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Abstract
Biomedical research is now generating large amounts of data, ranging from clinical test results to
microarray gene expression profiles. The scale and complexity of these datasets give rise to
substantial challenges in data management and analysis. It is highly desirable that data warehousing
and online analytical processing technologies can be applied to biomedical data integration and
mining. The major difficulty probably lies in the task of capturing and modelling diverse biological
objects and their complex relationships. This paper describes multidimensional data modelling for
biomedical data warehouse design. Since the conventional models such as star schema appear to be
insufficient for modelling clinical and genomic data, we develop a new model called BioStar schema.
The new model can capture the rich semantics of biomedical data and provide greater extensibility
for the fast evolution of biological research methodologies.
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1 Introduction
Recent developments of high throughput technologies result in large datasets of genomic
sequences and gene functional profiles. Analysis of these datasets may lead to greater
understanding of the biological mechanisms behind diseases such as multiple sclerosis. For
example, microarray data contain valuable information for discovery of disease-associated
gene expression patterns and classification of patients (Golub et al., 1999; Ramaswamy et al.,
2001). The scale and complexity of genomic datasets give rise to substantial challenges in data
management and mining. It is also clear that full benefit of functional genomics may only be
obtained through seamless integration with clinical data and biological background knowledge.
However, the diverse resources of clinical and genomic information are typically distributed
at a range of sites. These information resources often allow the data to be browsed or
downloaded as flat files, but do not support efficient genome-wide data analysis and integration
with other data sources of interest.
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Data warehousing technology, which was originally developed in a business context, is
beginning to be used in the fields of biology and medical sciences to meet the requirement of
data mining for clean and consistent data. A data warehouse is defined as “a subject-oriented,
integrated, non-volatile and time-variant collection of data in support of management’s
decisions” (Inmon, 1996). Specifically, business data are extracted from several operational
databases, transformed, cleansed and loaded into a multidimensional database. The data in the
warehouse may be further filtered, aggregated and stored in smaller data stores, usually called
data marts, for specialised purposes. Thus, data warehouses are viewed as consolidated
repositories of historical data and their major role is to facilitate business decision making.

Online analytical processing (OLAP) applications are built to provide users a multidimensional
view of the data in the warehouse and to allow data analysis through ad hoc queries of the data
(Cabibbo and Torlone, 1998). An important feature of OLAP is the presentation of information
at different levels of detail through aggregating and disaggregating data over one or more
dimensions (Marcel, 1999). This feature is realised by two OLAP operations, called roll-up
and drill-down. Roll-up corresponds to summarisation of data for the next higher level of a
concept hierarchy associated with a dimension. Drill-down, which is the reverse of roll-up,
provides navigation from a higher-level summary to the lower-level detailed data. Other OLAP
operations include pivoting, slicing and dicing (Vassiliadis, 1998). Since measurable business
facts or the so-called measures are mostly numeric values (e.g., the dollar amount of a sale in
a retail business), roll-up usually uses simple aggregate functions such as sum and average,
though complex algebraic or statistical operators may also be defined for OLAP operations
(Datta and Thomas, 1999).

While data warehousing and OLAP have been successfully applied to the business domain, it
is clear that direct transfer of these technologies to biology is fraught with difficulties (Dubitzky
et al., 2001). The main reason is that the information need of biological research is
fundamentally different from that of customer-centred business. While business data analysis
such as market-driven trend analysis is to support management’s decision, the main goal of
biological data warehousing is probably to provide a global and integrated view of living
systems. Another major difficulty is due to the great complexity of biology. Unlike business
processes that are logically simple and temporally stable, biology has very complex research
methodologies and a huge fast-growing body of background knowledge. The task of capturing,
modelling and encoding some of the biological knowledge for a data warehouse appears to be
a great challenge.

Although there is a pressing need for robust multidimensional models of biological data, only
a few papers have been published in this area. Markowitz and Topaloglou (2001) developed
conceptual models for multidimensional analysis of microarray gene expression data. The
modelling data spaces included sample, gene annotation and gene expression. The authors
proposed to use star or snowflake schemas for logical design, though the logical data models
were not specified in detail. In addition, various clinical and genomic data were not modelled.
Pedersen et al. (2001) investigated the structure of some clinical data and developed a
multidimensional data model that extended star schema. Although some of the challenging
problems of clinical data modelling were taken into consideration, the extended data model
was not comprehensive and did not cover microarray gene expression and other genomic data.

Biological data are also modelled using object-oriented and traditional entity-relationship (ER)
approaches. Paton et al. (2000) described a collection of object-oriented conceptual models for
various yeast data, including genetic, genomic sequence, gene expression and protein-protein
interaction data. The models were later implemented in the object database called GIMS
(Cornell et al., 2001). Many others used traditional ER models for microarray gene expression
and/or other genomic data (Gollub et al., 2003; Chen et al., 2004). These databases were aimed
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to provide management and integration of genomic data, and thus support for efficient
multidimensional data analysis was probably not considered in the database design.

We present in this paper a new model for clinical and genomic data in the warehouse design.
In our case, the data warehouse is designed to integrate various biomedical datasets for studies
of human diseases (e.g., multiple sclerosis and cancers). Clinical data, including clinical test
results, MRI images and drug responses of patients are provided by our collaborators. A
relatively large collection of microarray gene expression data from multiple sclerosis patients
is available for this research. Other genomic datasets, including sequences and annotations,
microarray gene expression data, protein-protein interaction data and protein domain
information, are obtained from public databases. Thus, our data modelling scope is quite
comprehensive and the work may provide a general framework for biomedical data
warehousing and mining.

The rest of this paper is organised as follows. Section 2 provides several examples of modelling
clinical and genomic data at the conceptual level. We discuss new challenges for the
multidimensional modelling of biomedical data in Section 3. In Section 4, a new model called
BioStar is described. We then use BioStar to model complex biomedical data spaces in Section
5.

2 Motivating examples
The data warehousing and mining lifecycle includes data modelling, data warehouse
construction, and development of visualisation and mining tools. The data models should
provide a multidimensional view of data and serve as a foundation on which a data warehouse
can be built. The data modelling process may be divided into three different design phases:
conceptual data modelling deals with high-level representation of the data space; logical data
modelling relates high-level concepts to a certain kind of database management system
(DBMS); and physical design specifies how data are actually stored using a specific DBMS.

In this section, we describe three typical examples of modelling clinical and genomic data at
the conceptual level. Due to the diversity and complexity of biomedical data, the warehouse
design may include several modelling data spaces. In our work, we used the following six data
spaces: clinical data space, sample data space, microarray data space, proteomic data space,
experiment data space, and gene data space.

Example 1 (clinical data space)
An entity-relationship (ER) diagram for the clinical data space is shown in Figure 1. An entity
is represented as a rectangle with the entity name and a relationship between two entities is
drawn using a line with the multiplicity label, which indicates the number of objects that may
participate in the relationship. For example, one Patient can have many (denoted by ‘n’) Clinical
Samples taken for laboratory assays (Figure 1). The attributes of the entities are not shown in
the conceptual models.

The clinical data space has a rich variety of entities, among which Patient is obviously the most
important entity and thus the fact entity in the multidimensional data model. All the other
entities can be viewed as dimensions to characterise patients. Disease and Drug represent two
important dimensions of patient data. Both dimensions have a many-to-many relationship with
Patient and their associated measures, namely disease diagnosis and drug use, which need bi-
temporal support to specify their valid time intervals. In addition, the relationship between
Disease and Patient can be uncertain in some cases.
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Clinical Sample is another important entity, which has a many-to-one relationship with Patient.
Clinical samples such as blood samples are taken from patients and used for various laboratory
assays. The Clinical Test entity captures information about simple clinical tests applied directly
to patients through physical examination or by asking patients to perform some simple routines.
Clinical Test has a many-to-many relationship with the Patient entity. Patient data from
sophisticated clinical studies are captured by the Medical Image and Physiology entities. These
studies use advanced medical equipment and result in complex data such as MRI images and
cardiograms. The Medical Image entity has a many-to-one relationship with Patient, whereas
the Physiology entity has a many-to-many relationship with Patient. Other dimension entities
in our design include Demographics, which characterises patients based on demographic
information and Followup, which captures patient status information in followup reports. Both
entities have a many-to-one relationship with Patient.

The clinical data space has a very complex structure and may include more entities such as
patient family history record. These dimensions characterise patients with different fact
measures. However, for a particular patient, only a few measures are usually available.

Example 2 (microarray data space)
The DNA microarray technologies allow genome-wide analysis of gene expression at the
mRNA level. In Figure 2, a conceptual model for the microarray data space is shown. The fact
entity in this data space is mRNA Expression, which has four dimension entities. The Clinical
Sample entity provides sample information for gene expression measurements and it links the
microarray data space with the clinical data space described above.

Array Probe captures the information about sequence or oligonucleotide probes that are placed
on the microarray. These probes are derived from gene sequences. Since multiple probes may
be used for a single gene, it is often necessary to summarise gene expression to the higher level
of non-redundant gene sequences.

The Measurement Unit entity can be used to keep information about what is measured for gene
expression. For example, the Affymetrix GeneChip platform provides two kinds of gene
expression measurements for each probe set, a presence/absence (PA) call and a numeric value.
In contrast, cDNA microarrays give the relative ratios of gene expression in two samples.

The Experiment entity captures metadata of each experiment. Microarray data are obtained
through complex experimental processes. The procedures and platforms used for such
experiments can affect the magnitude and quality of gene expression measurements. Since
datasets generated in different research laboratories and possibly using different platforms will
be combined in the data warehouse, it is very important to capture the experimental metadata
for both data quality control and future reference.

Example 3 (gene data space)
The gene data space contains gene function information integrated from a variety of public
domain data sources. Since NCBI’s non-redundant RefSeq or UniGene sequence dataset is
normally used as the reference set for functional annotations, we view Gene Sequence as the
fact entity of the gene data space (Figure 3).

There are many possible dimensions to characterise the gene functions and seven of these
entities are shown in Figure 3. The entity important for microarray data analysis is Array Probe,
which has a many-to-one relationship with Gene Sequence. The Array Probe entity links the
gene data space to microarray data space. Protein Expression represents another level of gene
expression measurement using proteomic approaches and has a many-to-one relationship with
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Gene Sequence. In the proteomic data space, Protein Expression is the fact entity (similar to
mRNA expression in the microarray data space).

The other gene data dimensions include Gene Cluster, Promoter, Protein Domain and Protein-
Protein Interaction. Co-regulated gene clusters are obtained by clustering analysis of gene
expression data in the warehouse and can be used to analyse gene regulatory networks, together
with information about promoters and their composition of sequence motifs. Protein interaction
and domain information are two important dimensions for annotating gene functions.

3 Problem description
One of the major requirements in operational database design is to avoid data redundancy in
database relations through normalisation. Normalised schemas are important for supporting
efficient online transaction processing (OLTP), which include pre-defined statements of
queries and updates. However, the data access characteristics of a data warehouse are quite
different from those of operational databases. In a data warehouse environment, users do not
initiate update transactions. On the other hand, a data warehouse needs to support complex ad
hoc queries that compute aggregate values over a huge amount of data for the purpose of data
analysis such as OLAP. If a data warehouse uses a standard Entity-Relationship schema with
many tables, a user may not be able to fully understand and utilise the integrated information
in the warehouse (Kimball, 1996). Thus, data warehouse design often adopts multidimensional
data modelling, which organises database entities into facts and dimensions.

3.1 Application of existing multidimensional models
The application of multidimensional models to biomedical data warehousing is a recent effort.
Most of the multidimensional models documented in the literature are based on business data
(Abello et al., 2001) and thus may not meet the requirements of biomedical data warehousing.
Pedersen et al. (2001) evaluated 14 existing multidimensional models against the requirements
of clinical data warehousing and found that none of these models support all the requirements.

In a relational online analytical processing (ROLAP) architecture, a star or snowflake schema
is commonly used for the data warehouse design (Vassiliadis and Sellis, 1999). A star schema
consists of one central fact table, which stores measures for OLAP aggregation and several
denormalised dimension tables. The major advantages of star schemas are their support for
efficient OLAP operations and high understandability to warehouse users. The normalised
version of a star schema is called a snowflake schema, in which dimension hierarchies can be
explicitly defined using separate tables. If there are multiple fact tables to share dimension
tables, such a collection of star schemas is called a fact constellation.

We are building our biomedical data warehouse using a relational database management system
(RDBMS). Our data modelling work suggest that star or snowflake schemas may be used to
model semantically simple data spaces including the microarray and proteomic data spaces.
These data spaces represent well-defined experimental processes and contain many-to-one
relationships between facts and dimensions. For example, Figure 4 shows the snowflake
representation of the microarray data space. The schema has mRNAExpression as the central
fact table, which has many-to-one relationships with its four dimension tables. The
mRNAExpression fact table stores the measure of gene expression using the field ‘Expression’.
The measure can be absolute gene expression values or PA calls from the Affymetrix GeneChip
platform. The type of the measure is specified using MeasureUnitID, which is the primary key
of the MeasurementUnit dimension table and a foreign key in the fact table (Figure 4). The
other three tables (ClinicalSample, ArrayProbe and Experiment) store information about the
respective dimensions as described in the previous section. Note that Experiment is also the
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fact table of the experiment data space and ArrayProbe relates mRNAExpression with
GeneSequence, the fact table of the gene data space (see below).

However, star schemas do not appear to be sufficient for modelling the semantics of complex
data spaces such as the clinical data space (Figure 1) and gene data space (Figure 3). These
data spaces have several features that introduce new challenges to multidimensional data
modelling.

3.2 New challenges
We now discuss the major characteristics of clinical and genomic data and compare them with
business data to show the different requirements between biomedical and business data
warehousing (Table 1). First, the structure of clinical and genomic data is very complex and
fast evolving, which reflects the great complexity of biological research and constant advances
of experimental approaches. Specifically, many current entity types can be defined as
dimensions in both clinical and gene data spaces and even more dimensions may be added over
time. Furthermore, each dimension often has its own fact measures, which are coupled loosely
with and can change independent of other dimensions’ measures. For example, a patient may
have clinical tests with associated test results (clinical test measures) and may also be given
one or more drugs, giving rise to the drug usage measures. However, the clinical tests may or
may not be directly related to the drug usage.

Second, many-to-many relationships between fact and dimension objects are common in the
clinical and gene data spaces. For example, a patient can be treated with one or more drugs
and a drug can be used by many patients. A gene can have several protein domains, and a
domain can be present in many genes. These natural many-to-many relationships are not easily
modelled using star schemas, which are originally designed to handle the many-to-one
relationships between a business fact and a dimension.

Third, the relationships between fact and dimension objects may be uncertain in some cases.
For example, a gene can be annotated to have some functions using gene ontology terms based
on currently available evidence. However, the functional annotation may be completely
changed when new evidence becomes available. Similarly, the diagnosis of a patient, i.e., the
relationship between the patient and diseases, may be uncertain at a given time point, depending
on the available clinical test results.

Fourth, one important property of clinical data is that some measures are only valid in specific
time intervals. For example, a patient may have a disease at a specific time interval and the
effect of a drug on patients often lasts a certain time period. Thus, some clinical data need bi-
temporal support (starting and ending time points) to specify their valid time intervals. This
advanced temporal concept, although very important for multidimensional analysis of clinical
data, is not supported by conventional models.

Finally, clinical and genomic datasets are often incomplete and the values can be imprecise.
For example, the data of a particular patient can be a few clinical test results, with no other
measures available. The imprecision of data often results from imperfect understanding of
biological objects. For example, a gene may only be assigned to a high-level functional
category, but its exact function is still unknown.

The above characteristics of biomedical data should be considered as the critical requirements
of the multidimensional data model for the biomedical data warehouse. The existing
multidimensional models do not fully support these requirements. For example, the clinical
data space features complex relationships between the fact entity (Patient) and dimension
entities and need bi-temporal support for some clinical measures. A conventional star or
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snowflake schema has problems to model the clinical data space. If a single fact table is used
to store all the different clinical measures, most entries (including foreign keys of the fact table)
would contain null values due to the incompleteness of data.

For the gene data space (Figure 3), extensibility of the model is one of the major requirements.
Due to the fast evolution of genomics, new dimensions may need to be added to the model.
The conventional models do not support this requirement. For example, introduction of a new
dimension into a star schema would require re-computing all the data entries in the fact table.

4 BioStar: a new model for biomedical data
In Section 4, we describe a new multidimensional model, called BioStar, which supports all
the requirements of our biomedical data warehousing. We first describe the basic elements of
the model and then discuss its properties important for modelling complex biomedical data
spaces.

4.1 The basic model
A BioStar fact schema is a quadruple F = (C, D, M, S), where C is the central entity schema,
D is a set of dimension schemas, M is a set of measure schemas and S is a set of summarisability
constraints. The central entity is viewed as a special dimension, which is associated with every
fact measure. For example, in the clinical data space, Patient is the central entity; and in the
gene data space, Gene Sequence is the central entity.

C or Di ∈ D is a pair (L, ≺), where L is a set of dimension levels and ≺ is a partial order of
the elements in L. A level l ∈ L is a dimension attribute, which is associated with a domain of
values, dom(l). For example, the Demographics dimension of Patient (Figure 1) may have the
following levels: Street Address, City, County, State and Country. The dimension levels
specify the granularities that can be used to represent the fact objects. For example, patients
may be classified by their living places in an increasing order of granularities: Street Address
≺ {City; County} ≺ State ≺ Country. Note that it is a partial order since there are two
possibilities of ordering City and County (Street Address ≺ City ≺ County; or Street Address
≺ County). Therefore, (L, ≺) is a lattice specifying the classification hierarchy of C or
Di∈D. The classification hierarchy determines how fact objects may be summarised over the
dimension. In the biomedical data warehouse, however, some dimension hierarchies are still
undefined or very complex. Definition of standard hierarchies for these dimensions requires
significant background knowledge of biology (e.g., gene ontology and disease ontology). In
this study, we are focused on modelling the structures and semantics of biomedical data and
assume that some kind of classification hierarchy exists for these dimensions.

A measure schema, Mj∈M, is a triple (Am, As, Dm), where Am is a set of attributes called
measures, As is a set of supporting attributes for the measures (e.g., single- or bi-temporal
support) and Dm is a set of dimensions that are associated with the measures. In a relational
database, a measure schema may be implemented as a separate table, which we call it an m-
table. An m-table is associated with the central entity and one or more dimensions. Note that
Am can be an empty set. In such cases, the m-table just keeps the relationships among the central
entity and the associated dimensions, and the records in the m-table may be used for counting
occurrences instead of numeric aggregation.

Each summarisability constraint, Sk ∈S, is a triple (Di, Mj, Ω), where Di ∈D, Mj ∈M, and Ω is
an aggregation operator. In our biomedical data warehouse, the commonly used aggregation
operators are {SUM, AVG, MAX, MIN, COUNT, CORRELATION, T-TEST, ANOVA}. The
last three are statistical operators that are widely used in biomedical research. The
CORRELATION operator is used to compute the Pearson or Spearman correlation coefficient
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between two random variables, T-TEST is used to determine if there is a significant difference
between two random variables by computing the t-statistic and ANOVA (analysis of variance)
is used to test whether there are differences between any pairs of random variables.

Summarisability constraints are critical for meaningful OLAP analyses of clinical and gene
expression data. For example, it may not make sense to simply take the sum or average of
microarray data for a group of genes (summarisation over the gene dimension). However, it is
of interest to mine microarray data for gene relationships using the CORRELATION operator
(pair-wise analysis of gene expression correlation). We are currently applying the traditional
and statistical operators to biomedical data, and defining summarisability constraints for the
OLAP operations.

Figure 5 shows the typical structure of a BioStar schema, which has one table for the central
entity (CentralEntity), six dimension tables (Dimension1–6) and five m-tables (MTable 1–5).
Note that MTable 5 is associated with two dimensions (Dimension5 and Dimension6). This is
allowed by the BioStar model, in which an m-table may be associated with multiple dimensions.
The m-tables often represent many-to-many relationships between the central entity and
dimensions. Each m-table includes the primary key of the central entity table and the primary
key(s) of the associated dimension table(s) as the foreign keys of the m-table. An m-table may
contain zero, one, or more measures. In Figure 5, MTable 3 does not have a measure attribute,
but it is necessary for keeping the many-to-many relationship between CentralEntity and
Dimension3; MTable 4 has two measures (Measure 3 and Measure 4) associated with
Dimension4; and the other m-tables have one measure attribute. Each m-table may also include
non-measure attributes that are used to characterise the relationship between the central entity
and dimension(s), or specify the temporal validity of the measure. The dimension tables in a
BioStar schema may be denormalised as in a star schema, or normalised so that explicit
dimension hierarchies can be defined.

4.2 Addressing the requirements
The BioStar model supports all the requirements described in Section 3.2. First, the BioStar
model has the property of great extensibility, which is important for some fast-evolving data
spaces such as the clinical and gene data spaces. In these data spaces, existing dimensions may
need to be modified, and new dimensions may be added over time. BioStar’s extensibility is
realised by storing different measures in separate m-tables. In such a configuration, an existing
dimension and its associated m-table can be modified independently from the other dimensions
and m-tables. If a new dimension needs to be added, we can create a new dimension table and
a new m-table without affecting the existing tables. The new m-table simply uses the primary
key of the central entity as one of the foreign keys to establish the relationship between the
new dimension and the central entity. The representation of different measures using separate
m-tables also reflects the natural situation of some complex biomedical data spaces, in which
different dimensions are loosely coupled and each dimension often has its own measures.

Second, the many-to-many relationships between the central fact entity and dimensions are
handled using the m-tables. For each of the many-to-many relationships, an m-table is created.
This is similar to the treatment of many-to-many relationships in a standard Entity-Relationship
schema.

Third, uncertain relationships between the central entity and dimensions may be kept in the
m-tables. An additional field may be included in the m-table to specify if a relationship instance
is uncertain. Furthermore, an m-table is normally small in size, when compared with the large
central fact table of a star schema. It may be more efficient to update individual m-tables for
uncertain relationships or imprecise data entries than the large fact table of a star schema.
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Fourth, the BioStar model allows an m-table to have non-measure attributes that include single-
or bi-temporal support for a measure. This feature is important for clinical data analysis, and
is discussed further in the Section 4.3.

Finally, the BioStar model can be used to handle the commonly incomplete data from
biomedical studies. If incomplete data are stored in the central fact table of a star schema, null
values may need to be used for some missing measures and their associated dimension keys
(foreign keys of the fact table). In a BioStar schema, since each m-table and its associated
dimension table(s) can be populated independently from the other tables, incomplete data can
be stored in the data warehouse by using only the relevant m-tables, and thus no null values
are needed for the missing measures of some dimensions.

4.3 Support for OLAP
We now discuss BioStar’s properties for supporting OLAP operations. We assume that
classification hierarchies are defined for the dimensions and the central entity. For example,
gene ontology (GO) may be used to classify gene functions, and disease ontology may be used
as the Disease dimension hierarchy in the clinical data space. These ontologies encode
significant background knowledge of biology and thus are important for meaningful OLAP
analyses of clinical and genomic data. The classification hierarchies of the other dimensions
may also be defined in a similar way based on domain-specific knowledge.

For each measure in a BioStar schema, a data cube is pre-computed and applied to OLAP
operations using the classification hierarchies of the dimension(s) and the central entity. While
the dimension hierarchy is defined according to the characteristics of the dimension entity, the
hierarchies associated with the central entity may be based on the other dimensions and
measures in the data space. For example, the hierarchies shown in Figure 6 may be used for
data cube construction and OLAP of the patient drug use measure. While the hierarchy of the
Drug dimension is constructed based on the various drug classes, classification hierarchies of
the central entity (Patient) may be defined according to the disease (the Disease hierarchy),
demographics (the Residence and Age hierarchies), clinical test result (the Clinical Test
hierarchy), and other dimensions. Note that, except for the Residence hierarchy, we do not
show in Figure 6 the detailed structure of the hierarchies because some are very complex (e.g.,
disease ontology and drug classification) and the others may depend on application context
(e.g., classes of age and clinical test result). The top element in the hierarchies (All) corresponds
to the highest concept level. Numeric values of the clinical test result may be discretised and
used to construct a classification hierarchy for Patient.

Thus, one novel feature of BioStar is that the central entity can have many classification
hierarchies, some or all of which may be used for constructing any particular data cube and
subsequently for OLAP operations. Conventional models may define alternative hierarchies
for a given dimension, but they do not support the above feature. For example, if star schema
is used to model the drug use example shown in Figure 6, the central fact table may need to be
directly linked to all the dimensions that provide the classification hierarchies. This reduces
model flexibility and results in redundancy in the fact tables, considering there are many
measures in a single data space.

5 Case studies
We now use BioStar to design logical models for the clinical and gene data spaces. Figure 7
shows part of the BioStar schema for the clinical data space. The idea is to split the different
clinical measures along the dimensions, which often results in separate m-tables. For example,
ClinicalTest is a dimension table, and the clinical test results are kept in the m-table, TestResult.
We include the primary keys of the central entity and dimension(s) in the corresponding m-
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table. Note that the one-to-many relationship between Patient and ClinicalSample allows the
clinical sample measure to be included in the ClinicalSample table.

Two types of temporal support are provided for the different m-tables in Figure 7. One is the
typical one-point support to indicate when the result is obtained or sample taken. The other is
bi-temporal support, which specifies the time interval during which the measure is valid. For
example, the Diagnosis measure table has ValidFrom and ValidTo to specify the valid time
interval of a patient’s disease.

Figure 8 shows part of the BioStar schema for the gene data space. GeneSequence is the central
entity table, which has UID (unified gene identifier) as the primary key. Each of the m-tables
(GOAnnotation, GeneCluster and GeneDomain) or dimension tables (ArrayProbe and
Promoter) uses UID as a foreign key. There are probably no meaningful numeric measures for
aggregation in this data space. The advantages of the BioStar schema, when compared with a
standard Entity-Relationship schema, include high understandability to users and support for
efficient navigation and selection of specific gene subsets and related information.

An important consideration for the gene data model is extensibility. Due to the fast evolution
of genomics, new dimensions may need to be added in the gene data space. For example,
assume that we have implemented the BioStar schema shown in Figure 8, and populated the
data warehouse. Now, we want to add a protein structure information dimension to the gene
data space. We only need to add two additional tables, ProteinStructure and StructureSequence.
ProteinStructure is the dimension table, which may use Protein Data Bank (PDB) identifiers
as the primary key (PDBID) and store protein structure information such as compound name,
structure resolution, etc. Since ProteinStructure has a many-to-many relationship with
GeneSequence (i.e., one structure may consist of many chains, and one sequence may be related
to many structure records), we add the StructureSequence m-table that uses UID and PDBID
as foreign keys. These two tables for the new dimension can be populated without affecting
the other tables in the data warehouse. In contrast, introduction of a new dimension into a
conventional star schema would require re-computing of all the data entries in the fact table.

The snowflake schema shown in Figure 4 for the microarray data space may be viewed as a
special case of BioStar schemas. If we select ClinicalSample or ArrayProbe as the central entity
(depending on use cases), mRNAExpression is the m-table, which has the other three
dimensions associated with it. Recall from the definition of BioStar schemas that an m-table
can be associated with multiple dimensions.

The above examples demonstrate that the BioStar model can be applied to a variety of
biomedical data spaces. The high flexibility of BioStar schemas facilitates the integration of
data from heterogeneous sources. To study complex biomedical problems, it is essential to
combine data from many different sources. In the remainder of this section, we give a case
study for using the multidimensional data model to integrate disease information with
microarray gene expression data. OLAP operations are then used to identify informative genes
of tumours.

Ramaswamy et al. (2001) used Affymetrix GeneChips oligonucleotide microarrays
(representing 16,063 genes) to survey gene expression in 218 tumour samples of 14 common
tumour types and 90 normal tissue samples. The dataset contains about 5 million gene
expression values, and is available at http://wwwgenome.wi.mit.edu/MPR/GCM.html. The
authors used the dataset for classification of tumours and identification of tumour marker genes.

The gene expression dataset can be viewed as a data cube with three dimensions:
ClinicalSample, ArrayProbe and MeasurementUnit (Figure 9). The Experiment dimension is
not considered in this case study because all the gene expression values are processed in the
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same way. The ClinicalSample dimension captures information about the 308 tumor and
normal tissue samples. The dimension hierarchy may be defined as a lattice consisting of four
concept levels: individual ‘patient’ level; specific ‘tumour_type’ or ‘normal_tissue_type’ level;
‘all_tumor’ or ‘all_normal_tissue’ level; and ‘all_sample’ level. The ArrayProbe dimension
relates oligonucleotide probes to gene sequences. A gene is often represented by a set of probes
in a microarray. For the MeasurementUnit dimension, the Affymetrix GeneChip platform
provides two kinds of gene expression measurements for each probe set: a presence/absence
(PA) call and a numeric value (average gene expression level). The PA call is based on
statistical analysis of hybridisation signals over the probe set and can take one of the following
three labels: ‘P’ for ‘present’, ‘M’ for ‘marginal’ and ‘A’ for ‘absent’ of gene expression.

Now, we are set to identify genes whose expression is significantly changed (up-regulated or
down-regulated) in tumours. First, we summarise the gene expression data over the
MeasurementUnit dimension. There are several ways (aggregation functions) to do the
summarisation. For this study, we set a gene expression value to zero if the PA call is ‘A’, and
leave the other values unchanged (if the PA call is ‘P’ or ‘M’).

Second, we roll-up the gene expression data over the ClinicalSample dimension from ‘patient’
level to the next higher level, which is either ‘tumor_type’ for tumour samples or
‘normal_tissue_type’ for normal tissue samples. The aggregation functions used in this
operation compute the mean and variance of expression values for each gene. After this
summarisation, each cell in the data cube contains three values: mean, variance and the number
of values aggregated.

Third, the slice of a particular tumour type and that of the corresponding normal tissue type
are selected. Student’s t test is then applied to each pair of selected cells for each gene. The
statistical test calculates a p-value for each gene. Because of the multiple comparisons in the
statistical test, the p-values are adjusted using the Bonferroni correction method.

Finally, over the ArrayProbe dimension, we select genes that have p-values less than a threshold
(p < 0.05 was used in this study). At the 5% significance level, we discovered many genes
whose expression is changed in tumours when compared with corresponding normal tissues.
For example, comparison of eleven renal carcinoma tumour samples with thirteen normal
kidney samples revealed that an insulin-like growth factor 2 gene (GenBank accession:
M17863) is significantly over-expressed in renal carcinoma (p = 0.033). In another comparison
of eleven pancreas adenocarcinoma tumour samples with ten normal pancreas samples, a
guanine nucleotide-binding protein alpha-subunit gene (M21142, p = 0.002) and an EST cloned
from parathyroid tumours (W55861, p = 0.047) were found to be among the informative genes
for pancreas adenocarcinoma.

The above procedure can be designed to allow users to guide the exploration in the gene
expression data space. For example, a user may roll-up the gene expression data over the
ClinicalSample dimension up to ‘all_tumor’ and ‘all_normal_tissue’ level to discover genes
whose expression is significantly changed in all the tumours. The user may also choose
different aggregation operators and parameters during the exploration. With the rapid
accumulation of clinical and genomic data, we believe that such a multidimensional data
warehouse with interactive OLAP tools will be important components of an integrated platform
for biomedical data analysis.

6 Conclusions
We described a new multidimensional data model called BioStar for clinical and genomic data.
BioStar schemas are able to capture the complex data structures and semantics. The model has
the properties of great extensibility and flexibility to be widely applicable to biomedical data.
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BioStar’s extensibility and flexibility are realised by storing different measures in separate m-
tables. These m-tables are used to handle the many-to-many relationships between the central
entity and dimensions and can be designed to support specific features of a measure (e.g., bi-
temporal support for some clinical data). Since each m-table and its associated dimension table
(s) can be populated independently from other m-tables, incomplete data can be stored in the
data warehouse by using only the relevant m-tables. In addition, it is more efficient to update
an m-table for uncertain relationships or imprecise data entries than the large central fact table
of a star schema. In the future, we will investigate other issues for application of data
warehousing and OLAP technologies to biomedical research, including query optimisation,
definition of classification hierarchies and modelling the data warehouse construction process.
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Figure 1.
A conceptual model of the clinical data space
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Figure 2.
A conceptual model for the microarray data space
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Figure 3.
A conceptual model for the gene data space
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Figure 4.
A snowflake schema for the microarray data space
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Figure 5.
Typical structure of a BioStar schema

Wang et al. Page 18

Int J Bioinform Res Appl. Author manuscript; available in PMC 2008 October 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Classification hierarchies of Patient and Drug
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Figure 7.
Part of the BioStar schema for the clinical data space

Wang et al. Page 20

Int J Bioinform Res Appl. Author manuscript; available in PMC 2008 October 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Part of the BioStar schema for the gene data space

Wang et al. Page 21

Int J Bioinform Res Appl. Author manuscript; available in PMC 2008 October 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
OLAP for microarray data exploration
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Table 1
Characteristics of clinical and genomic data when compared to business data

Clinical and genomic data Business data

Complex data structure with many potential dimensions Easy-to-understand data structure with few dimensions
Often many-to-many relationships between facts and dimensions Many-to-one relationships between facts and dimensions
Uncertain relationships between fact and dimension objects Certain relationships between fact and dimension objects
Some clinical measures require advanced temporal support for time validity Historical data, no advanced temporal support needed
Incomplete and/or imprecise data very common Few incomplete and/or imprecise data
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