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Abstract

With wireless systems becoming increasingly complex and demanding, there is great impor-

tance in understanding ways of improving the reliability of transmitting information over

the wireless medium. Rayleigh fading is a phenomenon that degrades the performance of

many wireless systems. This thesis looks at ways to improve either the reliability or the

rate at which we can successfully transmit information over Rayleigh-fading channels.

We study four wireless schemes, the first in the low signal-to-noise ratio (SNR) regime,

the remaining three at high SNR. The analysis provides insights that can be applied to

more general SNRs. At the low SNR extreme we are interested in maximizing capacity,

while at high SNR we are concerned with the rate of decay of error probability with SNR.

All wireless channels involved are modeled by independent Rayleigh fading and additive

Gaussian noise for simpler analysis.

Firstly we investigate a point-to-point multiple antenna link at low SNR. At low SNR

channel estimates can be unreliable, and therefore we assume the channel is unknown to both

transmitter and receiver. We adopt a block-fading model and find the mutual information

between transmitter and receiver up to second order in the SNR. This depends on the

number of antennas in the system and the coherence interval of the channel. The expression

is valid for input distributions with regular behavior of fourth- and sixth-order moments,

in particular most practical schemes. This assumption is weaker than that of other works,
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which require finite higher-order moments. In addition the approach used may be applied

to other similar channel models. Subject to fourth-order moment and singular-value peak

constraints, we determine the optimal signaling to maximize this mutual information.

We undertake high SNR analysis by finding the diversity-multiplexing gain trade-off

of three further wireless systems with fading. This is a recent method for measuring the

relationship between rate and reliability. Using techniques from existing works we find the

optimal diversity-multiplexing gain trade-off for an (M ×N) multiple antenna system with

R single antenna relays. This uses a two-stage protocol in which the source first transmits to

relays, then the relays multiply their received signal by a unitary matrix, before forwarding

the result to the multiple-antenna receiver. The optimal trade-off is found to be equal to

that of a multiple-input multiple-output (MIMO) link with R transmit and min{M,N}

receive antennas.

Next we look at systems with interference, introduced by more than one disjoint source-

destination pair competing for the wireless medium. We consider a four-node network with

two source-destination pairs (an interference channel) and establish relationships between

the rate and diversity achievable by certain schemes. With a view to increasing diversity,

we then show through two more schemes how cooperation amongst the nodes achieves this,

but at the cost of a reduced rate of the system. Through outage probability calculations,

we find one scheme that increases diversity by a factor of three but reduces rate by a factor

of four. Another scheme increases diversity by a factor of two but reduces rate by a factor

of three. These schemes can easily be generalized from two to m source-destination pairs.

A final scheme is considered where n relay nodes are added to the m source-destination

pairs, which act to cancel interference in an aim to increase diversity. The outage behavior

of this scheme is analyzed and it is shown that a maximum diversity of n−m2 + 2 can be
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obtained. This result can be extended to the case n < m2, but a higher rate penalty is

incurred in this case.
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Chapter 1

Introduction

1.1 Wireless Communications

Wireless technologies have experienced tremendous growth in recent times. While broadcast

services such as radio, television and satellite communication have been present for decades,

most of the recent development has occurred in applications where the information is more

individualized. A large fraction of the developed world now has access to a cellular phone,

which can transmit not only voice but also text, images and video. Computers can connect

wirelessly to the internet and to other devices such as keyboards and printers. Also, sensor

networks can seamlessly measure, process and distribute information about their local sur-

roundings. Such applications are driven by our need to automate and to communicate on

the move. We are becoming more reliant on them than ever before.

The wireless medium is more challenging to communicate over than wired media, even

when there is a sole transmitter. Unlike in wires, electromagnetic signals weaken signifi-

cantly as they propagate through three-dimensional space. Furthermore they can scatter or

diffract in unpredictable fashion off physical objects and be corrupted by background noise.

Add to this the scenario of many mobile users transmitting simultaneously. Now inter-

ference is an issue, as signals intended for one user combine with those intended for another.
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The motion of the users can further limit the speed at which data can be sent reliably. It is

easy to take for granted these effects as our demand for higher data rates and better quality

of service grows. The highly successful technologies we have today come about due to a

variety of reasons including:

• advances in antenna, battery and radio frequency circuit design, and the miniaturiza-

tion of devices;

• adoption of efficient wireless protocols and standards that control traffic flow, deciding

what device transmits at what time and over what frequency;

• improved signal processing, modulation, coding, error correction and security meth-

ods.

A wireless network can be viewed as a collection of devices (nodes) in a region that

communicate with each other via electromagnetic signals. The link between any two of

these is a communication channel. Generally some nodes will be providers (sources) of

information and some will want that information (destinations). Some nodes (known as

relays) may be there to facilitate communication between sources and destinations, by

amplifying signals or removing noise from them. The relays do not introduce any new

information into the system. A node may play all three of these roles at some point. Some

nodes may be active all the time, others very rarely.

In this thesis we restrict ourselves to systems with a number (m) of source-destination

pairs (with or without additional relays). That is, there are m source nodes each with their

own information to send and each with a single intended recipient, so there are m total

destination nodes. There is no information that more that one destination needs, although

sharing of information is allowed if that benefits the system as a whole. We call a system
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with m = 1 source-destination pair a point-to-point system.

There is highly active research in the theory of wireless communication [20, 68, 61], in

an attempt to gain a better understanding of the random nature of the medium and how

to communicate effectively over it. By adopting simple but realistic models, tools from

information and communication theory can be used to set upper limits on data rates that

can be achieved, as well as to predict reliability. In this work we are concerned with both

of these issues in investigating several wireless communication problems. Communication

theory has proved to be very successful in designing today’s practical high-performance

systems. Nevertheless many open problems exist, especially in the network setting, where

it is still unclear how much better current systems can perform.

Before introducing the problems considered in the thesis, we will provide some of the

fundamentals.

1.2 Communication Theory Preliminaries

The basic communications problem is to have information conveyed successfully across

a channel that links a source (or transmitter) and a destination (or receiver). We will

assume the same frequency is used for all transmissions. In this case we can represent the

information as a sequence of complex numbers, which capture the magnitude and phase

of the envelope of the electromagnetic signals [47]. An envelope can be thought of as the

low-frequency waveform that bounds the high-frequency signals. Each complex number

corresponds to a symbol, or group of bits of information. We will equate the time duration

of a symbol transmission to one channel use, thus adopting a model discrete in time.

The set of symbols used for transmission constitute a code. This may be viewed, for

example, as a collection of discrete points in the complex plane, but they need not be
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regularly spaced.

In this thesis we study Rayleigh fading channels with additive Gaussian noise. This

means the channel alters the transmitted signal (s) by multiplying it by a random complex

number (h, drawn from a particular distribution), and then adding another random complex

number v to it, forming the received signal x:

x = hs+ v. (1.1)

The noise term v can arise from other electromagnetic signals unrelated to x. It is assumed

to be a Gaussian random variable by the central limit theorem [21], since it is considered

as the sum of a large number of identically distributed random variables.

The transmission is successful if the receiver can accurately determine s from x. Oth-

erwise an error in transmission has occurred. The receiver has knowledge of the code and

statistics of h and v, but not necessarily their values. If h is known to the receiver, it can

decode by finding that symbol s which minimizes |x− hs|. For further explanation and an

introduction to digital communications, see [47].

We are interested in analyzing particular wireless schemes, and measure performance by

either capacity or probability of error. Since the communication channel we study is random

in nature, error events are described by their probability. Capacity is the maximum rate at

which information can be transmitted reliably, that is, with vanishing probability of error.

Rate here refers to the number of bits of information that one can transmit per symbol,

or channel use. It is related to the base 2 logarithm of the size of the code. Capacity is a

function of the system’s signal-to-noise ratio (SNR), which is defined as the average power

of the received signal divided by the average noise power at the receiver.
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If the average noise power is normalized to one, the SNR can be regarded as the power

at which one is allowed to transmit. The greater the power, the further apart symbols

can be spaced in the signal space, and the more reliable the system can be, leading to a

higher capacity. The notion of capacity was introduced by Shannon in 1948 [58], and for

the basic single transmitter and receiver case, was shown to be related to the maximum

mutual information between sender and receiver. This is a quantity which describes how

much information about the input is inferred from the output (or vice versa) and is related

to the difference of two entropy functions, each being the expected logarithm of probability

density functions of x and s [10, 39]:

I(x; s) = h(x) − h(x|s) = −E log p(x) + E log p(x|s).

This result will be used in chapter 2.

1.3 Rayleigh Fading and MIMO Communications

Fading is a phenomenon in wireless transmission whereby a signal has traveled along many

paths and combines constructively or destructively at the receiver. As a result the net

signal received varies in amplitude and phase over time in an unpredictable manner. The

number of symbols over which this variation is considered minimal is known as the coherence

interval. The received signal also varies over distance, as a second receiver placed a short

distance away may experience a different sum of paths.

Suppose a message signal is modulated at some carrier frequency (i.e., multiplied by a

sinusoidal signal) and transmitted over a channel that exhibits multipath fading. If there

is no direct line of sight between the transmitter and receiver, the phases of the paths can
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be assumed to be uniformly distributed at the receiver and the magnitudes of the paths are

independent. The received signal will be bounded by some envelope whose magnitude and

phase can be represented by a complex number. By applying the central limit theorem,

it can be shown [60] that the real and imaginary parts of this complex number tend to

independent zero-mean Gaussian random variables each having the same variance, as the

number of paths tends to infinity. This leads to the random number h in (1.1) representing

the fade of the communication system. Normalizing h to have unit variance, h is drawn

from the complex Gaussian distribution CN (0, 1) and its probability density function is

given by

p(h) =
e−|h|2

π
, h ∈ C. (1.2)

The magnitude of h has a Rayleigh probability distribution [21], hence the name given to

this type of multipath fading without direct line-of-sight transmission. This model best

applies to indoor or urban environments, where signal attenuation due to distance is less

significant. We assume h is fixed during a coherence interval before changing to a new

independent value.

Also note that the distribution of x = |h|2 is exponential:

p(x) = e−x, x > 0.

This property makes analysis of Rayleigh fading channels attractive, and so this model

has been studied extensively. The review paper [5] describes much of the communication

and information theory related to fading channels.

The type of fading described is known as a form of flat fading since the previous analysis

assumes that the channel gain response is constant over the bandwidth of the signal. The
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signals arriving from multiple paths are not delayed (relative to a symbol period) in time.

Since the bandwidth of the signal is narrow compared with that over which the channel

behaves the same, flat fading systems are also known as narrowband systems.

Rayleigh fading severely degrades the error probability performance of wireless systems.

This is because there is a significant probability that h in (1.1) is small in magnitude

(known as an outage), resulting in the failure of two faded symbols hs1 and hs2 to be

successfully distinguished when corrupted by noise. While error probability for a Gaussian

channel without fading decays exponentially in the SNR, it decays only inversely in the

SNR for a Gaussian channel with Rayleigh fading. This is shown in figure 1.1, where

we plot error probability as a function of SNR with and without fading. This is done

by simulating Equation (1.1) with v drawn from a CN (0, 1) distribution and setting s to

+
√

SNR or −
√

SNR as SNR varies from 1 to 100. In the no fading case, we set h to 1; in

the fading case h is drawn from a CN (0, 1) distribution. With this scheme an error occurs

if |x− hs| > |x+ hs|.

Since the scales of both axes are logarithmic, an inverse relationship is revealed by a line

of slope –1. In figure 1.1 we see how much a system without fading outperforms one with

fading: at 10 dB for example a system with fading has an error probability more than 0.02,

while it is less than 0.0001 without fading. Similar effects are seen for more complicated

coding strategies.

One way in which this fading phenomenon can be combated is by the use of multiple

antennas at the transmitter and receiver. As mentioned at the beginning of this section, the

strength of a received signal varies over distance, and if antennas are appropriately spaced,

independent fades can be realized. Instead of a scalar the channel is now described by an

M × N matrix H having (i, j)th entry hij . We assume independent fades between each
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transmit-receive antenna pair so that from (1.2) the probability density function of H is

given by

p(H) =

M
∏

i=1

N
∏

j=1

e−|hij |2

π
=
e−

PM
i=1

PN
j=1 |hij |2

πMN
=
e−trHH∗

πMN
.

Since the probability that all MN of these fades are bad is small, the reliability of the system

can be improved, without having to boost the power. In the late 1990s Foschini [16] and

Telatar [66] showed how such multiple antenna systems, also known as MIMO (multiple-

input, multiple-output) systems, take advantage of the fading process to deliver higher

data rates. Independent fading is now seen as a benefit since it can provide independent

copies of the same signal. Codes which apply to these matrix channels are known as space-

time codes [64], since numbers are now assigned to different antennas (space) over different

times. Decoding such codes requires more complexity, but is now possible in practice due

to advances in signal-processing chips [20].

In the analysis of many wireless communication problems, a solution is intractable in

the general SNR case. This is the case with the problems we consider in this thesis. In

order to gain some insight we consider asymptotic cases of SNR, where it either tends to 0

(low SNR regime) or to infinity (high SNR regime). For example in the high SNR regime,

for a Rayleigh fading MIMO system with M transmit and N receive antennas, there exist

coding strategies which ensure an error probability which decays as SNR−MN as SNR → ∞

[64]. A result such as this tells us how reliability greatly benefits from additional antennas

and can be used to design systems which operate well at moderate SNR levels.

All asymptotic analysis performed in this thesis is in the limit of SNR, where effectively,

first order behavior is evaluated and lower order effects can be neglected. Other parameters,

such as the number of antennas or users in the system, are assumed to be fixed at finite
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values.

1.4 Thesis Outline and Contributions

In this thesis we look at four wireless setups, the first in the low SNR regime, the remaining

three at high SNR [49, 50, 51, 52, 53, 54]. At the low SNR extreme we are interested in how

capacity scales with SNR and optimal signaling strategies. At high SNR we are concerned

with the rate of decay of error probability with SNR. All wireless channels involved are

independent with Rayleigh fading. The models do not depend on the distances between

nodes, an assumption that applies best to environments with rich signal scattering [61].

Much of the notation used is summarized at the beginning of the thesis.

One of the main conclusions of this work is that knowledge of the channel by the receiver

greatly enhances the performance that one can achieve from a wireless system in a Rayleigh

fading environment, even if the transmitter does not know the channel.

1.4.1 MIMO Link at Low SNR

In chapter 2 we study a point-to-point multiple antenna link at low SNR (see figure 1.2).

Such systems are used in energy efficient devices such as sensor networks, so their study is

warranted. In this regime, it is reasonable to assume the channel is unknown at both the

transmitter and receiver, since noise can adversely affect estimates of the fading matrix H.

With this assumption we adopt the block-fading model of Marzetta and Hochwald [38]

and find the mutual information between transmitter and receiver up to second order in

the SNR. This is a function of the number of antennas in the system and the coherence

interval of the channel. The expression is valid for input distributions with regular behavior

of fourth- and sixth-order moments, in particular most practical schemes. This assumption
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M
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Figure 1.2: Chapter 2—MIMO link (low SNR).

is weaker than that of other works [46] and [23] which require finite higher order moments

in similar mutual information computations. The approach we use is elementary and may

be applied to other channel models.

We then optimize this expression subject to peak and fourth-order moment signal con-

straints to determine what signaling should be applied to the input and how many transmit

antennas should be employed. We also study Gaussian modulation, unitary space-time

modulation and training-based schemes. We find that in most cases one transmit antenna

is optimal.

1.4.2 Diversity of Networks at High SNR

In chapter 3 we summarize the diversity-multiplexing gain trade-off for MIMO systems.

First introduced by Zheng and Tse in [82], this is a way of comparing the rate versus

probability of error of a system for different coding strategies, in the high SNR regime.

Diversity here is a measure of reliability—the negative exponent of error probability when

expressed as a function of SNR. The higher the diversity the better. A good introduction

to this concept is given in chapter 9 of [68].
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Typically in such analysis an outage calculation is performed, which requires knowledge

of the distribution of the eigenvalues of the channel matrix. Here we also show how outage

probability can be calculated in terms of the in terms of the distribution of the channel

matrix itself, which may be easier to find in some instances.

The trade-off can also be applied to systems with more than one source-destination pair

or with relays. This is done for the remaining setups in the thesis.

1.4.2.1 MIMO Link with Relays at High SNR

In chapter 4, applying results and techniques from existing work on the Rayleigh product

channel [77], we find the optimal diversity-multiplexing gain trade-off for an (M × N)

multiple-antenna system with R single antenna relays, as illustrated in figure 1.3. This

setup uses a two-stage protocol [28] in which the source first transmits to relays, then the

relays multiply their received signal by a unitary matrix, before forwarding the result to

the multiple antenna receiver. The coding used is known as distributed space-time coding

as it is spread over the relays in the network. The optimal trade-off and coding to achieve

it has been previously studied in the M = N = 1 case [42, 14, 48]. Diversity is known to

grow linearly in the number of relay nodes.

We find in our analysis that the optimal trade-off is the same as that of a MIMO link

with R transmit and min{M,N} receive antennas. Previously only the maximum diversity

(Rmin{M,N}) and maximum multiplexing gain (min{M,N}) were known. The optimal

trade-off can be achieved by codes based on cyclic division algebras [42, 14, 48].
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M R N

Figure 1.3: Chapter 4—MIMO link with single-antenna relays (high SNR).

1.4.2.2 More than One Source-Destination Pair at High SNR

In chapter 5 we look at systems with interference, introduced by more than one disjoint

source-destination pair competing for the wireless medium. We are interested in the inter-

play between the rate at which one can transmit and the reliability that can be obtained at

high SNR. To simplify the analysis we consider communication nodes with single antennas.

In the first half of chapter 5 we consider a four-node network with two source-destination

pairs. If the two sources (or two receivers) are not allowed to communicate with each other,

this is known as an interference channel. The region of rates over which achievable commu-

nication over such a system is possible, has remained an open problem for over four decades

[9, 24, 8, 15].

We consider several simple methods (based on [9]) for the two transmitters to com-

municate with their corresponding receivers and establish relationships between the rate

(multiplexing gain) and diversity achieved. Then we show how cooperation amongst the

nodes (allowing transmitters and receivers to share information) can be introduced to in-

crease diversity, but at the expense of a reduced rate. This reduced rate arises from the



14

assumption that nodes cannot transmit and receive information at the same time (a half-

duplex condition). This work is in the area of cooperative diversity, where the idea is to

gain system reliability by exploiting independent paths between transmitter and receiver

[56, 41, 33, 3].

In our case, since there are three independent paths between transmitter and receiver

that may potentially be used (see figure 1.4), diversity can be increased by a factor of up

to three. Two cooperative diversity schemes are used and the trade-offs determined by

outage probability calculations. Firstly the region of achievable rates is determined, then

we compute the probability that a given rate pair is outside the achievability region due to

fading of the channels. The results are summarized in table 1 of chapter 5.

Using nodes for cooperation in interference channels has been investigated by Høst-

Madsen in [27], inheriting methods known for the interference and relay channels [32, 76].

However the rate equations there have difficult descriptions for outage analysis, and so here

we consider protocols for the interference channel that allow for outage analysis, providing

insight into what diversity is achievable. The two cooperative schemes also can be general-

ized from two to m source-destination pairs. One scheme can provide a diversity of at most

2m − 1 while reducing rate by 2m. The other scheme has diversity m but cuts rate by a

factor of m+ 1.

1.4.2.3 Source-Destination Pairs with Relays at High SNR

In the second half of chapter 5, we introduce n relay nodes into the m-user interference chan-

nel considered before (see figure 1.5), with a view to improving the diversity-multiplexing

gain trade-off. Assuming the relays have channel knowledge, they may cooperate by multi-

plying their received signals by scalars chosen so that interference at each of the receivers



15

2 4

31

II III

I

Figure 1.4: Chapter 5—four-node network consisting of two source-destination pairs labeled
1–3 and 2–4 (high SNR). Indicated are three independent transmission paths from node 1
to 3.

is canceled. This model was defined in [11] and its power efficiency studied. Depending on

the present state of the channels, the choice of scalars may cancel interference, but it can

lead to outage, whereby the codewords are no longer well separated. The contribution of

this section of the thesis is the outage behavior of this scheme. It is shown that at full rate

(two channel uses) a diversity of n−m2 + 2 can be obtained. If m2 > n, we can show that

by using some of the transmitters and receivers as relays, high-diversity schemes are also

possible, but they require more channel uses and therefore incur a rate penalty.

A natural progression from here is to understand what happens when all nodes are

equipped with multiple antennas. There are also questions related to how robust these

systems are to uncertainties or errors in the channels. Also, how do these results change

when the nodes are heterogeneous, with different fades existing between channels? These

are potential future directions of research.
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Figure 1.5: Chapter 5—m source-destination pairs with n relay nodes (high SNR).
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Chapter 2

Multiple Antenna Systems at Low

SNR

2.1 Introduction

Multiple antenna wireless systems have been shown to provide high capacity, exploiting the

presence of fading in such channels. However, this is based on the premise that either the

channel coefficients are known to the receiver, or that the signal-to-noise ratio (SNR) of the

channel is high [16, 66, 81].

Wireless systems operating at low SNR (exhibiting weak signaling or in noisy environ-

ments) find increasing use in energy efficient devices such as sensor networks [72]. Recent

work on analyzing the capacity of low SNR multiantenna links, assuming that the channel

is known at the receiver, has appeared in [37]. However, at low SNR, channel estimates

in some circumstances are unreliable and so it is sensible to assume that the channel is

unknown. In the following analysis we therefore assume the channel is unknown to both

transmitter and receiver. As we shall see, this leads to results qualitatively different from

the known channel case.

The low SNR regime can be considered equivalent to the wideband regime, where the

bandwidth of the system tends to infinity. In the literature, the wideband regime is mostly
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studied by adopting narrowband models and letting SNR tend to zero.

We use the block-fading model of a wireless multiple antenna system proposed by

Marzetta and Hochwald in [38], expressing the mutual information between input and out-

put as a function of the model parameter ρ (proportional to the SNR) up to second order.

This model is described in detail in the next section. Maximizing this mutual information

gives us insight about desired signaling at low SNR as well as the optimal number of an-

tennas to be used at the transmitter and receiver. It has been shown by Abou-Faycal et al.

in [1] that the optimum signaling at low SNR achieves the same minimum energy-per-bit

as the known channel cases for single transmit antenna systems. We show that the on-off

optimal signaling found in [1] also generalizes to the multiantenna setting (a result that also

follows from Theorems 1 and 5 in [73]). However, this scheme requires increasingly peaky

signals (indeed ones with unbounded fourth-order moment) and so may not be acceptable

from a practical point of view in some situations. We therefore focus our attention on

signaling schemes with bounded fourth-order moment.

Recent work by Verdú [73] has shown that knowledge of the first and second deriva-

tives of capacity at low SNR also tells us about bandwidth and energy efficiency for signal

transmission. If spectral efficiency (capacity per unit bandwidth) is expressed as a function

of energy-per-bit, the minimum energy-per-bit for reliable communication is related to the

first derivative of capacity, while the slope at this point (known as the wideband slope) is

related to the second derivative [73]. More work on constrained signaling in the low-power

(wideband) regime for Rayleigh fading channels is given in [67], [40] and [62], while [22] and

[19] study the Rician case. In [46], amongst other things, the low-SNR mutual information

for the same block-fading multiple antenna channel of [38] is also calculated. Similar results

to ours have also been obtained by Hajek and Subramaniam [23], as a by-product of their
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study of the capacity of general communication channels under small-peak constraints. Our

results differ from [46] and [23] in two ways. First, we require a weaker assumption on the

input signals; essentially conditions on the fourth- and sixth-order moments, rather than

an exponentially decaying input distribution as in [46], or a peak constraint on the singular

values of the transmitted signal as in [23], both of which render all moments finite. Sec-

ond, we study the optimal signaling structure derived in [38] and further optimize mutual

information subject to various signaling constraints such as training.

There are two main parts to this chapter. In the first part we expand the mutual

information of the wireless link to second order in the SNR ρ using an approach that may

be applied to other channel models. Secondly we optimize this expression under both peak

and fourth-order moment signal constraints to determine what signaling should be applied

to the input and how many transmit and receive antennas should be employed. We also

study Gaussian modulation, unitary space-time modulation and training-based schemes.

2.2 Model

We consider a discrete-time block-fading channel model due to Marzetta and Hochwald

[38], in which there are M transmit and N receive antennas (see figure 2.1). The channel

is described by a propagation matrix H that is assumed constant for a coherence interval

of length T symbols (see [55] for further analysis of the dependence of coherence interval

on capacity due to channel uncertainty). For the next T symbols the propagation matrix

changes to a new independent value, and so on. Signals are represented by complex valued

matrices with T rows, where the ith row is what is transmitted or received via each of the

multiple antennas at the ith time slot.

For each coherence interval the T × N received matrix X is related to the T × M
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Figure 2.1: MIMO system with M transmit and N receive antennas. One of the entries of
the channel matrix H is shown.

transmitted matrix S by

X =

√

ρ

M
SH + V, (2.1)

where H is M ×N and V is a T ×N noise matrix, both comprised of zero-mean and unit

variance circularly symmetric complex Gaussian entries. (See [31], [36], [59], [75] and [69]

for capacity analyses with channel correlation.) The matrices H, V and S are assumed to

be independent and the values of H and V are unknown to both transmitter and receiver.

S satisfies the power constraint EtrSS∗ = E
∑T

i=1

∑M
j=1 |sij |2 ∆

= η2 ≤ Pmax, where E and

tr denote the expectation and trace operators respectively, and sij is the (i, j)th entry

of S. Throughout this work the ∗ operator denotes the conjugate transpose of a matrix.

When η2 = TM the normalization factor
√

ρ
M in (2.1) makes ρ equal to the signal-to-noise

ratio at each receive antenna. Otherwise the SNR at each receive antenna is given by

E[trXX∗]/E[trV V ∗] = ρη2/(TM). It is also known that there is no performance gain in

having the number of transmit antennas greater than T [38]. Hence we will assume that

T ≥M .
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Computing the capacity of this multiple antenna system for generic ρ is an open problem.

In [38], however, it is shown that capacity is achieved when the input signal S has the form

S = ΦD, (2.2)

whereD is a diagonalM×M matrix with non-negative entries, and Φ is a T×M isotropically

distributed unitary random matrix. This means

• Φ∗Φ = IM (the M ×M identity matrix) although ΦΦ∗ 6= IT for T > M , and

• the distribution of Φ is unaltered when left-multiplied by a deterministic T×T unitary

matrix or when right-multiplied by a deterministic M ×M unitary matrix [38].

Moreover, Φ and D are independently distributed.

2.3 Mutual Information to Second Order

In this section we prove the following result.

Theorem 1. Consider the model (2.1) and let p(S) denote the pdf of S.

1. First-order result: If (i) ∂p(S)/∂ρ exists at ρ = 0 and (ii) limρ→0 ρEtr(SS∗)2 = 0,

the mutual information between the transmitted and received signals S and X for the

multiple antenna system (2.1) is zero to first order in ρ, i.e., I(X;S) = o(ρ).

2. Second-order result: If in addition (i) ∂2p(S)/∂ρ2 exists at ρ = 0, (ii) the fourth-

order moment of S is finite, i.e., Etr(SS∗)2
∆
= η4 <∞ and (iii) limρ→0 ρEtr(SS∗)3 =

0, then the mutual information between S and X up to second order in ρ is given by

I(X;S) =
Ntr[E(SS∗)2 − (ESS∗)2]

2M2
ρ2 + o(ρ2). (2.3)
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The second-order part of the theorem is essentially a result in [46] and [23]. However,

we here require a much less stringent condition on the input distribution. Moreover, we

shall optimize (2.3) for various signaling schemes.

The reason for the condition on p(S) in Theorem 1, is that the choice of distribution may

depend on the SNR ρ. Condition (ii) of the first-order result limits the growth of the fourth-

order moment, whereas conditions (ii) and (iii) of the second-order result respectively bound

and limit the growth of the fourth- and sixth-order moments. The regularity conditions (i)

on p(S) at ρ = 0 are required for reasons that will be seen shortly (see sections 3.2 and 5).

For the optimum signaling structure (2.2), equation (2.3) can be replaced by

I(X;S) =
N(η4 − η2

2/T )

2M2
ρ2 + o(ρ2). (2.4)

Note that under any reasonable input distribution (and certainly all practical modula-

tion schemes) the mutual information has no linear term in ρ and so the capacity is much

less than the known channel case where the low SNR expansion of the well-known log det

formula has a non-zero first-order term. Since η4 and η2 are independent of N , (2.4) suggests

that the capacity increases linearly in the number of receive antennas. The dependence of

the mutual information on M is more complicated since both the denominator (M 2), as

well as the numerator (via η2 and η4) depend on M . However, careful analysis will show

that for most practical signal constraints, the optimal value is M = 1 transmit antenna.

Finally, note that the mutual information is affine linear in η4 suggesting that it increases

as the input becomes more peaky, in good agreement with the results of [1] and their

multiantenna generalizations.
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2.3.1 Conditional Entropy Approximation

We compute I(X;S) = h(X) − h(X|S) via the conditional probability density function

p(X|S). Given S, X is zero-mean complex Gaussian with covariance E(XX ∗|S) = N(IT +

ρ
M SS∗) and so as in [38],

p(X|S) =
e−trX∗(IT + ρ

M
SS∗)−1X

πNT
[

det(IT + ρ
M SS∗)

]N
. (2.5)

Here IT denotes a T × T identity matrix. From p(X|S) it is possible to compute the

conditional entropy h(X|S) directly:

h(X|S) = −E log p(X|S)

= NT log π + E log det(IT +
ρ

M
SS∗)N + EtrX∗(IT +

ρ

M
SS∗)−1X

= NT log π +NE log det(IT +
ρ

M
SS∗) + Etr(IT +

ρ

M
SS∗)−1XX∗

(using trAB = trBA)

= NT log π +NE log det(IT +
ρ

M
SS∗) + EStrNIT

= NT log πe+NE log
∏

i

(1 +
ρ

M
d2

i )

(where d2
i are the eigenvalues of SS∗)

= NT log πe+NE
∑

i

log(1 +
ρ

M
d2

i ) (2.6)

≈ NT log πe+NE
∑

i

(
ρ

M
d2

i −
ρ2

2M2
d4

i ) (2.7)

= NT log πe+N
ρ

M
η2 −

Nρ2

2M2
η4, (2.8)

since η2 = EtrSS∗ = E
∑

i d
2
i and η4 = Etr(SS∗)2 = E

∑

i d
4
i .
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The approximation step (2.7) is made assuming that the second-order approximation

E log(1 + ρ
M d2

i ) ≈ E[ ρ
M d2

i − ρ2

2M2d
4
i ] is valid for each i. Consider the inequality

ρ

M
d2

i −
ρ2

2M2
d4

i ≤ log(1 +
ρ

M
d2

i ) ≤ ρ

M
d2

i −
ρ2

2M2
d4

i +
ρ3

3M3
d6

i

⇒ 0 ≤ log(1 + ρ
M d2

i ) − ( ρ
M d2

i − ρ2

2M2 d
4
i )

ρ2
≤ ρ

3M3
d6

i . (2.9)

For the second-order approximation to be a valid one, the limit of the expression between

the two inequalities in (2.9) should go to zero in expectation as ρ → 0 for each i. The

condition ρEtr(SS∗)3 = ρE
∑

(d2
i )

3 → 0 in the second-order statement of Theorem 1 ensures

that this occurs. The first-order condition ρEtr(SS∗)2 similarly ensures that ρd2
i → 0,

making log(1 + ρ
M d2

i ) ≈ ρ
M d2

i a valid first-order approximation.

2.3.2 Entropy Approximation

The pdf p(X) depends on the input distribution p(S). Our regularity conditions (i) on

p(S) in Theorem 1 guarantee that the distribution can be expanded to second order around

ρ = 0 as p(S) = p(S, 0) + ρp′(S, 0) + ρ2

2 p
′′(S, 0) + o(ρ2). Also, p(X|S) in (2.5) is a function

whose derivatives with respect to ρ at ρ = 0 may be calculated. These two facts imply that

p(X) =

∫

p(S)p(X|S) dS

can also be expanded to second order as

p(X) = p(X, 0) + ρp′(X, 0) +
ρ2

2
p′′(X, 0) + o(ρ2),
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where p′(X, 0) and p′′(X, 0) are used to denote the first and second partial derivatives of

p(X) with respect to ρ respectively, evaluated at ρ = 0. Also to second order

log p(X) ≈ log p(X, 0) + ρ
p′(X, 0)
p(X, 0)

+
ρ2

2

[

p′′(X, 0)
p(X, 0)

−
(

p′(X, 0)
p(X, 0)

)2
]

.

This leads us to the following quadratic approximation,

h(X) = −
∫

p(X) log p(X) dX

≈ −
∫

p(X, 0) log p(X, 0) dX − ρ

∫

(

p′(X, 0) log p(X, 0) + p′(X, 0)
)

dX

− ρ2

2

∫

(

p′′(X, 0) + (p′(X, 0))2/p(X, 0) + p′′(X, 0) log p(X, 0)
)

dX. (2.10)

We now claim that the integrals in (2.10) involving the second derivative p ′′(X, 0) are

equal to zero.

Firstly, note that

∫ (

p(X, 0) + ρp′(X, 0) +
ρ2

2
p′′(X, 0) + o(ρ2)

)

dX = 1.

Comparing coefficients of ρn on both sides we conclude

∫

p(n)(X, 0) dX = 0, n = 1, 2.
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Also, since S, H and V are independent, (2.1) implies that

EtrXX∗ = Etr
ρ

M
SHH∗S∗ +

√

ρ

M
EtrSHV ∗ +

√

ρ

M
EtrV H∗S∗ + EtrV V ∗

=
ρ

M
trEHH∗S∗S + 0 + 0 + trNIT

=
ρ

M
trNIMES∗S +NT

= N(ρη2/M + T ). (2.11)

Thus,

∫

trXX∗
(

p(X, 0) + ρp′(X, 0) +
ρ2

2
p′′(X, 0) + o(ρ2)

)

dX = N(ρη2/M + T ).

Comparing coefficients of ρn of on both sides

∫

trX∗Xp(X, 0) dX = NT,

∫

trX∗Xp′(X, 0) dX = Nη2/M,

∫

trX∗Xp′′(X, 0) dX = 0.

Now p(X, 0) = e−trX∗X

πNT and so log p(X, 0) = −trX∗X−NT log π. Hence the zeroth-order

term in (2.10) is

∫

p(X, 0) log p(X, 0) dX

= −
∫

p(X, 0)trX∗X dX −NT log π

∫

p(X, 0) dX

= −NT −NT log π

= −NT log πe.
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Similarly,
∫

p′(X, 0) log p(X, 0) dX = −Nη2/M,

and
∫

p′′(X, 0) log p(X, 0) dX = 0.

The above calculations combined with (2.10) lead to

h(X) ≈ NT log πe+ ρNη2/M − ρ2

2

∫

(p′(X, 0))2/p(X, 0) dX. (2.12)

This shows that to express h(X) to second order, it suffices to calculate only the first

derivative of p(X) at ρ = 0. We use the following result, proved in the appendix.

Lemma 1. For the model (2.1), the first derivative of the pdf of X evaluated at ρ = 0 is

given by

p′(X, 0) =
e−trX∗X

MπNT
(trX∗PX −Nη2),

where P = ESS∗.

This gives us

∫

(p′(X, 0))2

p(X, 0)
dX =

∫

e−trX∗X

M2πNT
(trX∗PX −Nη2)

2 dX

=
1

M2

[

EG(trG∗PG)2 − 2Nη2EGtrG∗PG+N2η2
2

]

, (2.13)

where G is a T × M random matrix having the pdf p(G) = e−trG∗G

πNT , and EG denotes

expectation over the random variable G.

To proceed we use the following lemma proved in the appendix.

Lemma 2. If G is a T × N matrix with independent zero-mean unit-variance complex



28

Gaussian entries, then

• EGtrG∗PG = Nη2,

• EG(trG∗PG)2 = N2η2
2 +NtrP 2,

for any T × T deterministic matrix P satisfying trP = η2.

For P = ESS∗, from (2.13) and Lemma 2 we have

∫

(p′(X, 0))2

p(X, 0)
dX =

1

M2

[

N2η2
2 +Ntr

[

(ESS∗)2
]

− 2Nη2Nη2 +N2η2
2

]

=
N

M2
tr
[

(ESS∗)2
]

.

Hence h(X) ≈ NT log πe + Nη2/Mρ − N
2M2 tr

[

(ESS∗)2
]

ρ2 from (2.12) and this together

with (2.8) gives

I(X;S) = h(X) − h(X|S)

≈ (NT log πe+Nη2/Mρ− N

2M2
tr
[

(ESS∗)2
]

ρ2)

− (NT log πe+Nη2/Mρ− Nη4

2M2
ρ2)

=
Ntr

[

E(SS∗)2 − (ESS∗)2
]

2M2
ρ2, (2.14)

as stated in Theorem 1.

We remark that to show the first-order result I(X;S) = o(ρ) we only require first-

order expansions of p(X) and h(X), and so the conditions stated in the first-order result of

Theorem 1 suffice.



29

In the special capacity-optimizing case of S = ΦD, we have

E(SS∗)ij = E(ΦD2Φ∗)ij

= E
∑

k

φikd
2
kφjk

(d2
k are both the diagonal entries of D2 and the eigenvalues of SS∗)

=
∑

k

E[d2
k]E

[

φikφjk

]

(since Φ and D are independent).

The expectation E
[

φikφjk

]

is evaluated by noticing that the expectation is unchanged

by adding T −M orthonormal columns to Φ to make it a T × T unitary, denoted, say, by

Ψ = (ψij). Then using the relation ΨΨ∗ = IM we have

T
∑

k=1

ψikψjk = δij .

Taking expectations of both sides and using the fact that each entry of Ψ has the same

distribution, gives us

E
[

ψikψjk

]

=
δij
T

for k = 1 to T .

This implies E
[

φikφjk

]

=
δij

T for k = 1 to M .

Hence

E(SS∗)ij =
δij
T

∑

k

E[d2
k]

=
δij
T
η2.



30

In other words ESS∗ = η2

T IT , and so tr(ESS∗)2 = η2
2/T . This in (2.14) gives

I(X;S) =
N(η4 − η2

2/T )

2M2
ρ2 + o(ρ2).

2.4 Examples

We now compute the low SNR mutual information for some cases of interest.

2.4.1 Gaussian Modulation

Suppose the transmitted signal S has independent zero-mean unit-variance complex Gaus-

sian entries. Then (ESS∗)ij =
∑

k Esiksjk = Mδij , so that ESS∗ = MIT . In the

appendix we show that for a Gaussian matrix, η4 = E(tr(SS∗)2) = MT (M + T ) and so

1

T
I(X;S) =

Nρ2

2M2T
(MT (M + T ) − (TM)2/T ) + o(ρ2)

=
NT

2M
ρ2 + o(ρ2).

This has two interesting ramifications. First the capacity per channel use increases

linearly in T (I(X;S) is actually quadratic in T ) and, second, the optimal number of

transmit antennas is M = 1.

2.4.2 Unitary Space-Time Modulation

In this scheme, we let S = Φ
√
T (where Φ has an isotropic unitary distribution), which

gives η2 = TM and η4 = T 2M . Using this in (2.4) yields

1

T
I(X;S) =

N(T −M)

2M
ρ2 + o(ρ2),
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which is strictly less than the Gaussian case. Again, the optimal number of transmit

antennas is M = 1.

2.4.3 Training-Based Schemes

In these schemes, we have

S =









Sτ

Sd









,

where Sτ is a Tτ ×M fixed training matrix and Sd is a Td ×M zero-mean random matrix.

Furthermore,

trS∗
τSτ = η2,τ , EtrSdS

∗
d = η2,d, η2,τ + η2,d = η2, Tτ + Td = T.

Under these conditions it can be readily shown that

tr(ESS∗)2 = tr(SτS
∗
τ )2 + tr(ESdS

∗
d)2,

and

trE(SS∗)2 = tr(SτS
∗
τ )2 + trE(SdS

∗
d)2.

Therefore, using (2.3), we obtain

I(X;S) =
Ntr[E(SdS

∗
d)2 − (ESdS

∗
d)2]

2M2
ρ2 + o(ρ2). (2.15)

The latter equation shows that the mutual information is independent of Sτ . In fact,

the right-hand side of (2.15) is just the mutual information of a system with coherence

interval Td = T − Tτ . Thus, in the low SNR regime, training actually contributes a rate
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reduction proportional to the fraction of time that one is sending the training symbols. One

may contrast this with the result of [25] which shows that training-based schemes achieve

capacity at high SNR.

2.5 Optimal Signaling

In this section we shall optimize (2.4) to determine what kind of signaling should be applied

to maximize the mutual information between the transmitted and received signals. It is

known that, under the standard power (second-order) constraint, capacity approaches up

to first order the capacity of a channel where the channel matrix is perfectly known to the

receiver. This is achieved by a peaky input distribution [1].

We can show this is also the case for the multiantenna channel as follows. For any ε > 1

and assuming ρ < 1, define our transmitted signal to satisfy

SS∗ =























A w.p. ρε,

0T×T w.p. 1 − ρε,

where

A = Tρ−ε









IM 0M×(T−M)

0(T−M)×M 0(T−M)×(T−M)









.

Then S satisfies the power constraint EtrSS∗ = tr(Tρ−εIM) × ρε = TM . Note that the

above distribution does not satisfy the regularity conditions (i) of Theorem 1.
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Then from (2.6),

h(X|S) = NT log πe+NE log det(IT +
ρ

M
SS∗)

= NT log πe+Nρε log(1 +
ρ

M
Tρ−ε)M

≈ NT log πe+NρεM log

(

T

M
ρ1−ε

)

(as ρ1−ε is large)

= NT log πe+NMρε[(1 − ε) log ρ+ log(T/M)]

= NT log πe+ o(ρ) since ε > 1.

Also we have

p(X) = ρε e−trX∗(IT + ρ
M

A)−1X

πNT det(IT + ρ
MA)N

+ (1 − ρε)
e−trX∗X

πNT
. (2.16)

For ρ small and ε > 1, ρε is small while ρ1−ε is large. Hence in the first term of (2.16)

the determinant in the denominator is (1 + ρ
M Tρ−ε)MN ≈ ρMN(1−ε) which is large while

the numerator is bounded above by 1. Therefore the second term is much larger than the

first, and so

h(X) = −E log p(X)

≈ −E log(1 − ρε)
e−trX∗X

πNT

= − log(1 − ρε) + EtrX∗X +NT log π

≈ ρε +NT log π + EtrX∗X

= NT log π +NT (ρ+ 1) + ρε (using (2.11))

= NT (log πe+ ρ) + o(ρ).
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Then I(X;S)/T = Nρ+o(ρ), so the first-order term corresponds to that of the capacity

when the channel is known, equal to E log det(I + ρ
MHH∗) = Nρ + o(ρ). However, such

signals cannot be used in practice, and so we shall consider signals that are peak constrained

or have a fourth-order moment constraint.

2.5.1 Fourth-Order Moment Constraint

Suppose we enforce the fourth-order moment constraint η4 ≤ Kη2
2 for some positive constant

K. This may be a practical constraint to impose, but as mentioned in [73], a bounded

fourth-order moment will not lead to mutual information optimality at low SNR.

By the root mean square–arithmetic mean inequality we have

M
∑

i=1

d4
i ≥ 1

M

(

M
∑

i=1

d2
i

)2

,

from which we conclude η4 ≥ η2
2/M . Also, as stated in Section 2.2, T ≥ M , and so

η4 ≥ η2
2/T . Hence we require that K > 1/M ≥ 1/T .

Then η4−η2
2/T ≤ (K−1/T )η2

2 and asK−1/T > 0, from (2.4) it follows that maximizing

the mutual information is equivalent to maximizing η2. We therefore have the following

result.

Theorem 2. Consider the model (2.1) and suppose that the input signal must satisfy the

constraints η2 ≤ TM and η4 ≤ Kη2
2. Then, to second order, the mutual information is

maximized by any input distribution that simultaneously achieves η2 = TM and η4 = Kη2
2

and is given by

1

T
I(X;S) =

N(K − 1/T )T

2
ρ2 + o(ρ2). (2.17)
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One distribution that achieves this is given by (2.2) where

(d2
1, d

2
2, . . . , d

2
M ) =























(TKM,TKM, . . . , TKM) w.p. 1/(KM),

(0, 0, . . . , 0) w.p. 1 − 1/(KM).

Note here that the optimal mutual information (per channel use) is independent of the

number of transmit antennas and is proportional to both N and T .

2.5.2 Peak Constraint

Due to the isotropic unitary matrix in (2.2), it is not possible to directly enforce a peak

constraint on the transmitted signals. However, it is possible to force a maximum constraint

on the diagonal entries of D (the singular values of S). To this end, assume that d2
i ≤ K

for some positive constant K and for all i. For any fixed M , we wish to maximize η4−η2
2/T

subject to the constraint η2 ≤ Pmax. We also have η2 = E
∑M

i=1 d
2
i ≤MK. Now

η4 − η2
2/T = E

[

M
∑

i=1

d4
i

]

− η2
2/T

≤ KE

[

M
∑

i=1

d2
i

]

− η2
2/T

= η2(K − η2/T ),

with equality if and only if all the di’s are equal to 0 or K. This quantity is maximized

at either η2 = TK/2, η2 = Pmax or η2 = MK, depending on which of the three quantities
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TK/2, Pmax or MK is smallest. This leads to

η4 − η2
2/T ≤











































TK2/4, if L = TK/2,

Pmax(K − Pmax/T ), if L = Pmax,

MK2(T −M)/T, if L = MK,

(2.18)

where L = min{TK/2, Pmax ,MK}. Equality holds in (2.18) when η2 is set to

min{TK/2, Pmax,MK}. Corresponding distributions that achieve equality are

(d2
1, d

2
2, . . . , d

2
M ) =























(K,K, . . . ,K) w.p. min{1, T/2M},

(0, 0, . . . , 0) w.p. 1 − min{1, T/2M},
(2.19)

and

(d2
1, d

2
2, . . . , d

2
M ) =























(K,K, . . . ,K) w.p. min{1, Pmax/MK},

(0, 0, . . . , 0) w.p. 1 − min{1, Pmax/MK},
(2.20)

depending on whether Pmax ≥ TK/2 or Pmax < TK/2 respectively. The mutual information

bounds are

I(X;S) ≤











































NTK2ρ2/8M2, if L = TK/2,

NPmax(K − Pmax/T )ρ2/2M2, if L = Pmax,

NK2(T −M)ρ2/2TM, if L = MK.

Note that all the above bounds are decreasing functions of M . Therefore it is clear that

the optimal choice of transmit antennas is M = 1. Since it is most likely that K < Pmax
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(that is, L = MK = K unless T = 1 in which case L = TK/2 = K/2), we have the

following theorem.

Theorem 3. In the model (2.1) with optimal signaling as in (2.2) suppose the diagonal

entries di of D satisfy d2
i < K for all i, where K is some constant less than Pmax. Then

for asymptotically low SNR the optimal number of transmit antennas is M = 1, and the

optimal mutual information is

1

T
I(X;S) =























NK2(T−1)
2T ρ2 + o(ρ2) if T > 1,

NK2

8 ρ2 + o(ρ2) if T = 1.

One distribution that achieves this is given in (2.2) where the diagonal entries of D2 are

given by (2.19) or (2.20) depending on whether Pmax ≥ TK/2 or Pmax < TK/2 respectively.

2.6 Summary

For the block-fading multiple antenna channel model in which the channel is unknown to the

transmitter and receiver, we found that for reasonable input distributions (in particular all

practical modulation schemes), the low-SNR asymptotic mutual information has a quadratic

leading term. This is much less than the known channel case where it exhibits a linear

growth in SNR.

Under various signaling constraints, e.g., Gaussian modulation, unitary space-time mod-

ulation, and peak constraints, this mutual information is maximized by using a single trans-

mit antenna. Furthermore, the mutual information per channel use is linear in both the

number of receive antennas and the channel coherence interval. Interestingly, when there is

a maximum constraint on the singular values of the transmit signal, it is possible to obtain



38

a higher capacity by lowering the signal power from its maximum allowed level. We also

show that at low SNR, sending training symbols leads to a rate reduction in proportion to

the fraction of training duration time, so that it is best not to perform training.

2.7 Appendix—Proof of Lemmas

Lemma 1. For the model (2.1), the first derivative of the pdf of X evaluated at ρ = 0 is

given by

p′(X, 0) =
e−trX∗X

MπNT
(trX∗PX −Nη2),

where P = ESS∗.

Proof. We first approximate p(X|S) to first order in ρ. Expanding the numerator to first

order:

e−trX∗(IT + ρ
M

SS∗)−1X ≈ e−trX∗(IT − ρ
M

SS∗)X

= e−trX∗Xetr(
ρ
M

X∗SS∗X)

≈ e−trX∗X
[

1 +
ρ

M
trX∗SS∗X

]

.

To expand the denominator we use

det(I + ρA) = elog det(I+ρA)

= etr log(I+ρA)

≈ etr(ρA)

≈ 1 + tr(ρA),
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so that

det
(

IT +
ρ

M
SS∗

)−N
≈

[

1 +
ρ

M
trSS∗

]−N

≈ 1 − ρN

M
trSS∗.

Putting everything together

p(X|S) ≈ e−trX∗X

πNT

[

1 + ρ
M trX∗SS∗X

]

[

1 − ρN
M trSS∗

]

,

and by taking the coefficient of ρ of both sides it follows that

p′(X|S, ρ = 0) =
e−trX∗X

MπNT
(trX∗SS∗X −NtrSS∗). (2.21)

To find p′(X, 0) we take the expectation of (2.21) over S, leading to the required result.

Lemma 2. If G is a T × N matrix with independent zero-mean unit-variance complex

Gaussian entries, then

• EGtrG∗PG = Nη2,

• EG(trG∗PG)2 = N2η2
2 +NtrP 2,

for any T × T matrix P satisfying trP = η2.
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Proof. 1. Denoting the (i, j)th entries of G and P by gij and pij respectively we have

EGtrG∗PG = EG

∑

i,j,k

gjipjkgki

=
∑

i,j,k

pjkEG[gjigki]

=
∑

i,j,k

pjkδjk

(since gki and gji are independent unless j = k,

in which case the expectation is unity)

= N
∑

j,k

pjkδjk

= N
∑

j

pjj

= NtrP

as required.

2. We have

EG(trG∗PG)2 = EG





∑

i,j,k

gjipjkgki





2

= EG

∑

i,j,k,l,m,n

gjipjkgkigmlpmngnl

=
∑

j,k,m,n

pjkpmn

∑

i,l

EG

[

gjigkigmlgnl

]

.

E[gjigkigmlgnl] will be non-zero only when terms pair up as |g|4 or |gi|2|gj |2. This will

occur in the following instances:

• j = k = m = n, i = l,

• j = k = m = n, i 6= l,

• j = k 6= m = n,
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• j = n 6= k = m, i = l.

Using the Kronecker delta to indicate non-zero terms when all its subscripts are equal,

we have

EX(trG∗PG)2 =
∑

j,k,m,n

pjkpmn

∑

i,l

EX

[

gjigkigmlgnl

]

=
∑

j,k,m,n

pjkpmn

∑

i,l

(2δjkmnδil + δjkmn(1 − δil) + δjkδmn(1 − δkm)

+ δjnδkm(1 − δkn)δil)

=
∑

j,k,m,n

pjkpmn

[

2δjkmnN + δjkmn(N2 −N) + δjkδmn(1 − δkm)N2

+ δjnδkm(1 − δkn)N ]

= 2N
∑

j

p2
jj + (N2 −N)

∑

j

p2
jj +N2

∑

j,m

pjjpmm −N2
∑

j

p2
jj

+N
∑

j,k

pjkpkj −N
∑

j

p2
jj

= N2
∑

j,m

pjjpmm +N
∑

j,k

pjkpkj

= N2(trP )2 +NtrP 2,

completing the proof.

The following lemma was used when considering a Gaussian modulation scheme in

Section 2.4.1.

Lemma 3. Let S be a T ×M matrix with independent zero-mean unit-variance complex

Gaussian entries. Then Etr(SS∗)2 = MT (M + T ).

Proof. Denote the (i, j)th entry of S by sij. Then as the pdf of the Gaussian matrix S is
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p(S) = e−trS∗S

πMT , we have

Etr(S∗S)2 =

∫

e−trS∗S

πMT
tr(SS∗)2 dS

=

∫

e−trS∗S

πMT

∑

i,j,k,l

sijskjsklsil dS

=
∑

i,j,k,l

∫

e−trS∗S

πMT
sijskjsklsil dS.

In this summation the indices i and k each range from 1 to T while the indices j and l each

range from 1 to N . If both i 6= k and j 6= l the integral
∫

e−trS∗S

πMT sijskjsklsil dX = 0 as the

integrand is an odd function of the variable sij.

Using the elementary integrals
∫

e−|s|2

π ds =
∫

e−|s|2

π |s|2 ds = 1,
∫

e−|s|2

π |s|4 ds = 2 where

the integrals are over s ∈ C, we have

∫

e−trSS∗

πMT
tr(S∗S)2 dS =

∑

i,j,l
j 6=l

∫

e−trS∗S

πMT
|sij |2|sil|2 dS +

∑

i,j,k
i6=k

∫

e−trS∗S

πMT
|sij|2|skj|2 dS

+
∑

i,j

∫

e−trS∗S

πMT
|sij |4 dS

=
∑

i,j,l
j 6=l

1 +
∑

i,j,k
i6=k

1 +
∑

i,j

2

= TM(M − 1) + TM(T − 1) + 2TM

= MT (M + T ),

as required.
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Chapter 3

High-SNR Analysis through the

Diversity-Multiplexing Gain

Trade-off

3.1 Introduction

In the last chapter we saw that when the channel is unknown to both transmitter and

receiver, a MIMO channel performs poorly with a mutual information only quadratic in

the SNR. The real benefit of MIMO communications is at moderate to high SNR, where

capacity scales more favorably [16, 66].

We again assume the channel is unknown to the transmitter, and consider how the

transmitter should best deal with the fading channel. If the transmitter knew the fading

characteristics, it could alter the rate at which it is sending symbols accordingly, and thus

transmit more reliably. Unlike last time, we will assume the receiver does have channel

knowledge—at higher SNR levels channel estimates become more reliable, and so this be-

comes a reasonable assumption. While previously we were interested in mutual information

and capacity, here we measure performance by error probability as a function of SNR.

Since the transmitter does not know the channel state, it will adopt a coding strategy

that should work well on average over all channel instantiations. However there will always
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be some non-zero probability that the fade is sufficiently bad that the channel cannot

support a given data rate—such a channel state is called outage. The outage probability is

one of the ways in which a coding scheme can be evaluated.

To provide some intuition, consider a point-to-point scalar fading channel:

x =
√
Psh+ v, x, s, h, v ∈ C, P > 0,E|s|2 = 1, v ∼ CN (0, 1). (3.1)

Here
√
Ps is the complex number transmitted over the channel where it is subject to a

fade h as well as additive noise v before arriving as x at the receiver. The receiver knows h

and so can determine s from x by maximum-likelihood decoding: find the symbol ŝ which

minimizes |x−
√
P ŝh|.

Figure 3.1 shows how an error can occur in such a channel. In the left side of the

figure the center of each circle represents a codeword (element of C) having average power

P . Suppose the symbol represented by the filled circle is sent. We see that if h has small

magnitude (of order 1/
√
P ), the presence of noise means that the received symbol could

lie anywhere in the dashed circle shown in the right side of the figure. Since the received

signal space has shrunk due to h, this dashed circle includes other symbols, so in this case

one symbol is likely to be mistaken for another, leading to an error. The outage probability

is related to that of |h| being sufficiently small.

Unfortunately, in the MIMO case, the probability of outage is difficult to obtain ana-

lytically for a given SNR, since the channel can be poorly conditioned in many ways. One

approximate analysis that has gained a lot of attention in recent years, has been to look at

how error probability scales in the high SNR regime. In the seminal work of Zheng and Tse

[82] the diversity-multiplexing gain trade-off has been used to evaluate the performance of
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√

Ps

√

Psh

Figure 3.1: Fading plus noise may result in any of the symbols shown in the dashed circle
being mistaken for the filled dot.

MIMO systems and codes. This studies the relationship between the two main advantages

of MIMO communication: increased data rate and reliability. This analysis can be extended

from point-to-point systems, to systems with relay nodes. The nodes improve reliability

by providing additional paths between transmitter and receiver. That way, if some paths

undergo poor fading, alternative paths can still provide reliable communication.

We will begin by introducing the notions of diversity and multiplexing gain at high SNR

and then summarize some existing results for MIMO channels. In the next chapter we will

state results for systems with relays.

3.2 Diversity and Multiplexing Gain

Two typical error probability curves for two communication systems are shown in figure 3.2.

The left curve gives superior error performance, since for a given SNR it has a lower prob-

ability of error. The definition of diversity is the negative slope of the error probability

curve for asymptotically high SNR. The greater the rate of decay of error probability with
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Figure 3.2: Error probability curves for two different communication systems. Both systems
have the same diversity.

SNR, the higher the diversity and the more reliable that system is at high SNR. The two

curves shown have the same diversity, so we see that at moderate SNR, diversity does not

reveal the full story in performance. The SNR offset between the curves (known as coding

gain) should also be considered. For MIMO and network problems however, this is far more

difficult to calculate.

If there were no fading, and error events were only due to Gaussian noise, error proba-

bility decays exponentially in the SNR, this is due to the exponentially decaying tails of the

Gaussian distribution (the probability of noise being large is very small). Fading severely

degrades high SNR performance since the probability of error due to the channel being bad

is far greater than that of noise being large. Figure 1.1 illustrates this.

Consider a MIMO system with M transmit and N receive antennas. As in the last

chapter we have the model

X =
√
PSH + V. (3.2)
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At high SNR the capacity of a fast fading MIMO system, when the transmitter has no

channel knowledge, is given by [66]

C(P ) = E log det (I + PHH∗) → min{M,N}log P as P → ∞.

That is, capacity increases logarithmically in SNR, as in the well-known scalar case studied

by Shannon. For a fixed rate (number of codewords) the probability of outage tends to

zero as SNR tends to infinity, since the finitely many codewords simply grow arbitrarily

far apart. If instead we allow the number of codewords to grow with SNR, thus keeping

codewords spaced closer together, the outage probability becomes quantifiable and different

codes and systems can be compared. One code outperforms another if it makes better use of

the degrees of freedom (number of signal dimensions) available to it. The multiplexing gain

measures how the rate increases with log P . It can be thought of as the effective number

of dimensions utilized by the code. We consider a family of codes indexed by the SNR P

and say the scheme has multiplexing gain r if the data rate (number of symbols per channel

use) scales as r log P :

r = lim
P→∞

rate

log P
. (3.3)

This can be thought of as a normalized data rate. The maximum r can be interpreted as

the number of dimensions made available for the code.

The Zheng-Tse definition of diversity is for this scheme of codes, rather than a fixed

code: at rate r the scheme has diversity d(r) if

d(r) = lim
P→∞

log Pr(error)

log P
. (3.4)
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Throughout this work we shall use exponential equality notation and say Pr(error)
.
=P−d(r)

to mean (3.4).

The traditional definition of diversity and error exponent analysis looks at fixed codes,

that is, the point d(0), when the multiplexing gain does not grow with P . Here we will

view d as a function of r and since reliability decreases as rate increases, there is a natural

trade-off between the two. Among all coding schemes, there exists an optimal trade-off,

one that gives the best diversity performance for a given multiplexing gain. Zheng and Tse

provide this for the MIMO case: what makes this possible is that in the high SNR regime

error events are dominated by outage (attributed to the statistics of the channel). Hence

one is interested in the probability that a channel is poorly conditioned.

Next we will look at this trade-off for a few known examples. A useful description of

this work is given in the textbook by Tse and Viswanath [68].

3.2.1 Scalar Channel

Consider the scalar fading channel (3.1) where h ∼ CN (0, 1). Then for a target data rate

r logP the outage probability is given by

Pr(outage) = Pr(log(1 + |h|2P ) < r logP )

= Pr

(

|h|2 < P r − 1

P

)

≈ 1

P 1−r
, (3.5)
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since for an exponential distribution

Pr(|h|2 < ε) = 1 − exp(−ε) ≈ ε. (3.6)

It is equation (3.5) which establishes why for Rayleigh channels diversity can be thought of

as the number of independent paths between transmitter and receiver. A single Rayleigh

fading path has diversity at most one. If there are k independent Rayleigh fading paths

between transmitter and receiver (as can occur in a MIMO system), the probability of all

paths being in outage is a product of the individual outage probabilities, so the diversity

adds to k.

It can be shown that Pr(error)
.
= Pr(outage), and so from (3.5) d(r) = 1−r for 0 < r < 1

is the optimal trade-off. It can be shown [68] that uncoded QAM achieves the optimal

diversity and multiplexing gain (i.e., has this optimal trade-off curve).

3.2.2 MIMO Channel

This idea generalizes when we consider vector channels, except this time we have an M ×N

random channel matrix H corresponding to M transmit and N receive antennas. Consider

the MIMO system model (3.2) where H has independent CN (0, 1) entries (Rayleigh fading).

The generalization of |h| being small is that some of the eigenvalues of H are small—this

means the channel squeezes the constellation of codewords in certain directions, making

them difficult to distinguish once perturbed by noise.
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We have

Pr(outage) = Pr (log det(I + PHH∗) < r log P )

= Pr





min{M,N}
∏

i=1

(1 + Pλi) < P r





where λ1 > . . . > λmin{M,N} are the ordered eigenvalues of HH∗

= Pr





min{M,N}
∏

i=1

(1 + PP−αi) < P r



 where λi = P−αi

= Pr





min{M,N}
∏

i=1

P (1−αi)
+
< P r



 where (x)+ = max{x, 0}

= Pr





min{M,N}
∑

i=1

(1 − αi)
+ < r





=

∫

α:
P

i(1−αi)+<r
p(α) dα (3.7)

.
=

∫

α:
P

i(1−αi)
+<r

α1≥...≥αmin{M,N}

P−
P

i(2i−1+|M−N |)αi dα, (3.8)

where the last step uses knowledge of the joint eigenvalue distribution of HH ∗, when H has

independent CN (0, 1) entries.

By Laplace’s method [84], a result we will be making frequent use of, this integral may

be approximated for large P by P−d(r), where

d(r) = inf
α:

P

i(1−αi)
+<r

α1≥...≥αmin{M,N}

min{M,N}
∑

i=1

(2i− 1 + |M −N |)αi.

After solving this optimization problem, the optimal diversity-multiplexing gain trade-

off in this case is given by the piecewise linear curve joining the points (k, (M − k)(N − k))

k = 0, 1, . . . ,min{M,N} [82]. This is plotted in figure 3.3 for M = N = 2. For fixed rate

codes (r = 0) the classical MN diversity value is obtained. This can be achieved when each

symbol is allowed to pass through all MN paths between transmitter and receiver. The
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maximum multiplexing gain corresponds to full use of the dimensions of the signal space:

it is equal to the rank of H.

For more general distributions of H, when the distribution of HH ∗ is not invariant under

similarity transformations, the probability density function of the channel matrix itself is

easier to find than the distribution of its eigenvalues. In this case, instead of using (3.7),

which depends on the eigenvalue distribution, we can proceed as follows.

3.2.2.1 Probability of Outage Formula in Terms of Distribution of Channel

Matrix

Let W = HH∗. Writing the eigenvalue decomposition W = U ∗ΣU , where U is unitary and

Σ is diagonal with entries σ1, σ2, . . . , σmin{M,N}, we have the change of variable [13]

dW = (detVΣ)2 dΣ dU, (3.9)

where detVΣ is the Vandermonde determinant
∏

i<j(σi − σj).

Let Z = − logW/ log P := −U ∗(log Σ)U/ log P where

log Σ = diag(log σ1, log σ2, . . . , log σmin{M,N}).

Let Λ = − log Σ/ log P so that Z = U ∗ΛU and Σ = P−Λ. Similar to (3.9) we have the

change of variable

dZ = (det VΛ)2 dΛ dU, (3.10)

where detVΛ is the Vandermonde determinant corresponding to Λ.
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Also, from Σ = P−Λ, we can show

dΣ = (log P )min{M,N} det Σ dΛ. (3.11)

Finally, we have

W = U∗ΣU = U∗P−ΛU = P−Z , (3.12)

since Z = U ∗ΛU . Combining (3.9)–(3.11) gives us the change of variable from W to Z

given W = P−Z :

dW =
(det VΣ)2(log P )min{M,N} detΣ

(det Vlog Σ/ log P )2
dZ. (3.13)

This allows us to redo the calculation of (3.8) in terms of an integral over the entries of

W rather than its eigenvalues:

Pr (outage) = Pr(log det(I + PW ) < r logP )

= Pr (det(I + PW ) < P r)

= Pr
(

det(I + PP−Z) < P r
)

= Pr
(

det(I + PP−Z) < P r
)

= Pr
(

det(I + P I−Z) < P r
)

= Pr
(

detP (I−Z)+ < P r
)

= Pr
(

tr(I − Z)+ < r
)

,

where, if W = U ∗ΣU , and λ1, . . . , λmin{M,N} are the eigenvalues of Z, then

(I − Z)+ := U∗diag((1 − λ1)
+, (1 − λ2)

+, . . . , (1 − λmin{M,N})
+)U.
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Using (3.13), this gives us

Pr (outage) =

∫

W :log det(I+PW )<r log P
p(W ) dW

=

∫

Z:tr(I−Z)+<r
p(W = P−Z)

(log P )min{M,N}

(det Vlog Σ/ log P )2
(detVΣ)2 det Σ dZ

.
=

∫

Z:tr(I−Z)+<r
p(W = P−Z)(det VΣ)2 det Σ dZ

(since the logarithmic terms do not contribute to the exponent of P )

=

∫

Z:tr(I−Z)+<r
p(W = P−Z)(det VΣ)2P−trZ dZ (3.14)

(since detΣ = detW = detP−Z = P−trZ using (3.12)).

Equation (3.14) allows us to find the outage behavior of W = HH ∗ via its distribution,

without having to find the distribution of its eigenvalues Σ. For example, in the case when

H has independent CN (0, 1) entries, p(W ) = Ke−trW (detW )M−N [13] and after some

manipulation, one can arrive at (3.8) from (3.14).

3.2.2.2 Achieving the Optimal Trade-off

The optimal trade-off curve is plotted in the case M = 2, N = 2 in figure 3.3, together with

those of some particular coding schemes. Note that none of the schemes shown achieve the

optimal diversity for all multiplexing gains. The original work [82] left open the question

of codes that were trade-off optimal. Since then there have been many works addressing

this problem. For example there are rotation-based constructions by Yao-Wornell and

Dayal-Varanasi [79, 12], the Golden code by Belfiore et al. [4] (later generalized to perfect

space-time codes [44]), lattice space-time (LAST) codes by El Gamal et al. [17], division-

algebra based codes by Elia et al. [14], space-time trellis codes by Vaze and Sundar Rajan

[71], and permutation codes by Tavildar and Viswanath [65].
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Figure 3.3: Diversity-multiplexing gain trade-off curves

The optimal trade-off has also been found for automatic retransmission request (ARQ)

MIMO channels [18, 45]. Here one is allowed one bit of feedback from receiver to transmitter

to indicate a success or failed transmission. Diversity can be increased for larger multiplexing

gains, subject to the number of allowable rounds of retransmission.

In the next chapter we will see that the diversity-multiplexing trade-off also can be

applied to systems with relays.
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Chapter 4

A MIMO System with Relays

4.1 Introduction

The work of this chapter and the next belong to the recently studied area of cooperative

diversity. The essential idea is that relay nodes can provide diversity by acting as a dis-

tributed MIMO system (see figure 4.1), setting up multiple independent paths between each

transmitter and receiver. In this way errors will only occur in the rare event that all of the

links are in a deep fade.

In this chapter we will find the diversity-multiplexing gain trade-off for a system with a

single transmitter withM antennas, a single receiver withN antennas, and R single-antenna

relay nodes to assist communication (see figure 4.4). Prior to introducing this system, we

shall review some results on cooperative diversity and the diversity-multiplexing trade-off

in the case of single-antenna systems with relays. We assume half-duplex communication,

meaning that nodes cannot simultaneously transmit and receive information.

4.1.1 Relay Channels

Sendonaris et al. in [56, 57] introduced the idea of cooperative diversity in a wireless setting,

showing how the capacity of users in the uplink of a cellular network (mobiles to base station)
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Figure 4.1: Nodes can cooperate to provide diversity, acting as a distributed MIMO system.

h

f g

Figure 4.2: Wireless network with a single relay.

can be increased by cooperation.

Laneman et al. [33, 34, 35] compare several protocols by computing diversity through

outage probability calculations. Suppose we have a single transmitter, receiver and relay,

each having single antennas. Let f be the source-relay gain, g the relay-receiver gain and

h the source-destination gain as shown in figure 4.2. The relay can either amplify and

forward what it receives (thus amplifying additional noise received at the relay), or decode

and forward.
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In the amplify and forward case, the system is described by

y1 = hA1x1 + v1,

y2 = fgβBx1 + hA2x2 + gBw + v2.

Here y1, x1, v1 ∈ C
T ′

, y2, x2, v2 ∈ C
(T−T ′) while A1, B, A2 are matrices of dimension T ′×T ′,

(T − T ′) × T ′ and (T − T ′) × (T − T ′) respectively. Both A1 and A2 are diagonal while B

is the linear transformation performed by the relay on its received signals.

That is, for the first T ′ channel uses, the relay and receiver each obtain a faded version

of the sent signal plus noise. For the remaining (T − T ′) channel uses, the relay transmits

an amplified version of what it has received to the receiver.

Laneman et al. look at the special case of T ′ = T/2, A1 = B = IT/2 and A2 = 0. The

diversity-multiplexing gain trade-off is given by d(r) = 2(1 − 2r). A maximum diversity

of two is obtained, but since only T/2 symbols are transmitted per T channel uses, the

multiplexing gain is at most 1/2.

Nabar et al. [41] consider A2 6= 0, that is, the source will continue to transmit directly to

the receiver while the relay does the same. They show that this protocol outperforms that

considered in [33]. The trade-off-optimal strategy is d(r) = (1−r)+max{1−2r, 0} obtained

through the choice T ′ = T/2, A1 = A2 = B = IT/2. Azarian et al. [3] generalize this to

more than one relay (referring it to as a non-orthogonal amplify and forward protocol).

They also introduce a dynamic decode and forward procedure, whereby a relay waits a

variable time before transmitting, depending on the current channel state. If the source-

relay channel is in a good state, it will decode and retransmit sooner than if the channel

were in a poor state. This protocol is trade-off optimal for 0 < r < 0.5, achieving the
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Figure 4.3: Trade-off curves for a single relay.

diversity of that of a 2 × 1 MIMO system (as though the relay and transmitter are in full

cooperation). This result is generalized to where the transmitter and receiver have multiple

antennas in [77].

The diversity-multiplexing gain trade-off curves for a single relay are plotted in figure 4.3.

These schemes shown may be generalized to multiple relays. For low multiplexing gains at

least, the dynamic decode and forward procedure has optimal trade-off. It remains an open

problem to find the optimal trade-off behavior for larger multiplexing gains.

The issue of whether a relay node should amplify its received signal or decode has been

studied extensively. Generally it is better to decode and forward when the source-to-relay

channel is good and the signal-to-noise ratio at the relay is large [34]. This is done to

suppress relay noise. However this means the rate one can achieve is restricted to the

performance of the source-relay channel, without regarding the relay-destination channel.
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In this work we assume the relays amplify and forward their signal, as we show that at high

SNR, the amplified relay noise does not result in a significant degradation in diversity.

4.1.2 Rayleigh Product Channel

Yang and Belfiore [77] consider the diversity-multiplexing trade-off of a MIMO system where

the channel matrix H is the product of two independent complex Gaussian matrices. That

is, consider (3.2) with H = H1H2 where H1 and H2 and independent complex Gaussian

entries. Such a model takes into account instances of lower rank channel matrices. Suppose

H1 is (m× l), H2 is (l× n) and let M ≤ N ≤ L be the ordered permutation of l,m, n. The

optimal trade-off curve is shown to be

d(r) = (M − r)(N − r) − 1

2

⌊

[(M − L+N − r)+]2

2

⌋

, where M ≤ N ≤ L.

This is upper bounded by min{dH1(r), dH2(r)} and coincides with it for large r.

The model we will work in this chapter reduces to the Rayleigh product channel in the

special case that the relays do no processing of their received signal.

4.2 Model

We will compute the diversity-multiplexing trade-off curve for a relay network first described

by Jing and Hassibi in [28] and shown in figure 4.4. This can be considered a generalization

of [29] in which there were single-antenna nodes. In these works the pairwise error proba-

bility of the system was evaluated and conditions placed on the coding to achieve optimal

performance. An explicit code construction is given in [42]. The single-antenna case has
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M R N

Figure 4.4: Relay network with multiple antennas at transmitter and receiver.

also been studied by Elia et al. [14] and Susinder Rajan and Sundar Rajan [48]. The coding

used is known as distributed space-time coding as it is spread over the relays in the network.

Codes that perform well even without channel knowledge at the transmitter have also been

constructed independently by Jing and Jafarkhani [30], Oggier and Hassibi [43] and Kiran

and Sundar Rajan [63].

We have a single transmitter with M antennas, a receiver with N antennas and R single-

antenna relay nodes which assist communication. Let fij be the fading coefficient from the

ith transmit antenna to the jth relay, and gjk be the fading coefficient from the jth relay

to the kth transmit antenna. As usual all fading coefficients are drawn from a CN (0, 1)

distribution. Next define

fi :=

























f1i

f2i

...

fMi

























, gi :=

[

gi1 gi2 . . . giN

]

,

as column and row vectors corresponding to connections to the ith relay.
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Let s be the T ×M matrix sent by the transmitter over T transmission steps and its

M antennas. That is, s = [ s1 s2 . . . sM
], where si is the T -dimensional vector sent

by the ith transmit antenna.

In the first T time steps, the transmitter sends s to the relay nodes. The receiver is

assumed to be inactive at this stage. The ith relay node receives a faded version of s plus

noise:

ri =
√
Psfi + vi,

where vi is a T -dimensional noise vector. Here we assume E||s||2 = TM , so P is a normal-

ization constant proportional to the SNR at the receiver.

Next each relay left-multiplies its T -dimensional signal by a unitary matrix Ai (thus

forming linear combinations of the rows, coding over time) and transmits the resulting

vector to the receiver. The receiver obtains a T ×N matrix: the sum of the R faded copies

of s processed by the relay nodes received by N antennas over T further time steps:

X =
R
∑

i=1

Airigi + w

=
√
P

R
∑

i=1

Aisfigi +

R
∑

i=1

Aivigi + w

=
√
PSH +W, (4.1)

where

S =

[

A1s A2s . . . ARs

]

, H =

























f1g1

f2g2

...

fRgR

























, W =
R
∑

i=1

Aivigi + w. (4.2)



62

Here S is a T ×MR transmission matrix, H is an MR×N matrix describing the channel

connections as R outer products figi stacked together, and W is a T ×N noise matrix. The

noise sources vi from each relay and w at the receiver are also assumed to be independent

complex Gaussian random variables with zero mean and unit variance for each time step.

Equation (4.1) has the same form as a space-time code for a MIMO system, first described in

the previous chapter. As before we assume only the receiver knows H, while the transmitter

and relays do not have any channel knowledge. The difference between this system and a

MIMO system is that there is no cooperation amongst the relays, and none of them have

direct access to s. The code to describe s and the unitary matrices Ai form what is known

as a distributed space-time code [28].

We will assume T is sufficiently large for codewords to be allowed to be spaced appro-

priately distant from each other (later on a scheme with T = MR achieving the trade-off

will be proposed). This will allow an error event to be outage dominated.

The model differs from that of [29] in that we do not concern ourselves with power allo-

cation at the relays. Any constants of proportionality become absorbed in the forthcoming

high-SNR analysis.

4.3 Diversity-Multiplexing Gain Trade-off of a MIMO Sys-

tem with Relays

To carry out the trade-off analysis we proceed as follows.

1. Find the probability of outage taking into account there is additional relay noise. We

claim that at high SNR the outage behavior is the same as though there were no relay

noise.
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2. Apply the results of [77] to find the exponent of the probability density function of

the joint eigenvalue distribution of the channel matrix. For this particular channel,

the distribution of the channel itself is of similarly difficulty to compute, so we apply

(3.8) instead of (3.14).

3. Optimize this exponent subject to constraints that prevent exponential decay of the

pdf—this gives the dominant behavior of the integral by Laplace’s method. We assume

M ≥ N initially.

4. We argue that the case M < N , the optimal trade-off can be obtained by disregarding

N −M receive antennas.

The maximum diversity of this scheme (r = 0) is already known [28] to be Rmin{M,N}.

The maximum multiplexing gain will be determined by the maximum dimension of the signal

space that can be exploited: min{M,N,R}. In the analysis we now will see what happens

for intermediate values of r.

We remark that since this is a two stage protocol and that the direct link between trans-

mitter and receiver is not used, all multiplexing gains obtained should strictly be divided

by 2, since two channel uses are used to transmit information. Adopting the direct path for

relay networks with slightly different models are considered in [3], [78] and [48] amongst oth-

ers. Adopting lines similar to Yang and Belfiore [78], we conjecture the following, adopting

a non-orthogonal amplify and forward protocol (see Sec. 4.1.1).

Conjecture 1. If d(r) is the trade-off curve we obtain for our system in the following

analysis, and d1(r) that of the direct path between transmitter and receiver (a MIMO link),
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then the overall diversity is lower-bounded by

dNAF (r) ≥ d1(r) + d(2r).

The first term here corresponds to the source-destination link used all the time; the

second to the source-relays-destination system used at half the rate.

4.3.1 Outage Calculation

Since the equivalent noise W in (4.2) consists of Gaussian noise amplified by gi we need to

verify that it does not adversely impact the diversity-multiplexing gain trade-off. First we

determine the noise covariance. Considering the kth row of W for k = 1, . . . , T we have

from (4.2) Wk =
∑N

i=1(Aivi)kgi +wk, where (Aivi)k and wk denote the kth row of Aivi and

w respectively. Then given gi,

Ev,wW
∗
kWl = Ev,w

(

N
∑

i=1

(Aivi)kgi +wk

)∗



N
∑

j=1

(Ajvj)lgj + wl





= Eww
∗
kwl +

R
∑

i=1

R
∑

j=1

g∗i Ev[((Aivi)k)
∗(Ajvj)l]gj

since wk and vj are independent vectors

= δklIN +

R
∑

i=1

R
∑

j=1

g∗i Ev[(A
(k)
i vi)

∗(A(l)
j vj)]gj

where A
(k)
i denotes the kth row of Ai

= δklIN +

R
∑

i=1

R
∑

j=1

g∗i Ev[v
∗
iA

(k)∗
i A

(l)
j vj]gj

= δklIN +
R
∑

i=1

g∗i Ev[v
∗
iA

(k)∗
i A

(l)
i vi]gi

since vi and vj are independent for i 6= j.
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Let Bkl = A
(k)∗
i A

(l)
i with (k,m)th entry Bkl,jm. Then

Ev[v
∗
iBklvi] = Ev

∑

j,m

vijBkl,jmvim =
∑

j,m

Bkl,jmEv[vijvim] =
∑

j,m

Bkl,jmδjm = trBkl.

Hence

Ev,wW
∗
kWl = δklIN +

R
∑

i=1

g∗i tr(A
(k)∗
i A

(l)
i )gi

= δklIN +
R
∑

i=1

g∗i tr(A
(l)
i A

(k)∗
i )gi

= δklIN +

R
∑

i=1

g∗iA
(l)
i A

(k)∗
i gi

= δklIN +
R
∑

i=1

g∗i δklgi since Ai’s are unitary

= δkl(IN +G∗G) where G =

























g1

g2

...

gR

























.

Note that this is the same for all time steps k = 1, . . . , T . Hence the instantaneous mutual

information between transmitter and receiver is given by [66]

I(X;S) = log det(IN + P (IN +G∗G)−1H∗RSH), (4.3)

where RS is the MR×MR input covariance matrix of X for each time step.

We remark that S given by (4.2) has a particular structure, namely its columns span

the M -dimensional space generated by the columns of s. It is known that with the channel

unknown to the transmitter the mutual information (4.3) is maximized when RS = IMR.
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Hence we make that substitution here. Although S has rank M , RS takes an average over

all realizations of S and so is allowed to have full rank MR.

Since G is a Gaussian matrix, the probability that an eigenvalue of I +G∗G is large is

exponentially small. That is, λmax(G
∗G) ≤ trG∗G which is a χ2 random variable with 2N 2

degrees of freedom (equivalently a sum of N 2 exponential random variables). Hence it has

an exponentially decaying tail and its probability of being large is exponentially small:

(1 + λmax(GG
∗))−1 .

=P 0.

We therefore have justified the following sequence of steps:

Poutage(r logP )

= min
RS :trRS≤MR

Pr (I(X;S) < r log P )

= min
RS :trRS≤MR

Pr
(

log det(IN +R−1
W H∗RSH) < r log P

)

≤ Pr
(

log det(IN +R−1
W H∗H) < r log P

)

.
= Pr (log det(IN +H∗H) < r logP ) .
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To proceed with the calculation of this probability we first observe that

H∗H = [(f1g1)
∗ . . . (fRgR)∗]

















f1g1

...

fRgR

















=
R
∑

i=1

g∗i f
∗
i figi

=

R
∑

i=1

g∗i ||fi||2gi

= G∗DG where D = diag(||f1||2, . . . , ||fR||2).

This shows that the rank of H is the smaller of the ranks of G and D: min{R,N} which is

independent of M . For the remainder of the analysis we will assume M ≥ N . At the end

of the section we will comment on the M < N case.

We proceed along lines similar to recent work by Yang and Belfiore [77] which was applied

to the Rayleigh product channel. The non-zero eigenvalues of H ∗H = G∗DG are the same

as those of QQ∗ where QR×N = D1/2G. We know that given D, QQ∗ has a Wishart

distribution QQ∗ ∼ WR(N,D). That is, the columns of Q are zero-mean independent

complex Gaussian vectors having covariance matrix D.

The distribution of the ordered eigenvalues λ1 > . . . > λmin{N,R} of QQ∗ given D is

given by the following lemma, applying a result in [70].

Lemma 4. Let µ2
1 > . . . > µ2

R be the ordered values of ||f1||2, . . . , ||fR||2, the diagonal

elements of D, assumed to be distinct. The distribution of the ordered eigenvalues λ1 >

. . . > λmin{N,R} of QQ∗ = D1/2GG∗D1/2 for fixed D and for G a random R × N matrix
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with independent CN (0, 1) entries, is given by

p(λ|D) =











































KR,N det[e−λj/µ2
i ]
∏R

i=1 µ
2(R−N−1)
i λN−R

i

∏R
i<j

λi−λj

µ2
i −µ2

j

, N ≥ R,

GR,N det[Ξ]
∏R

i<j
1

µ2
i −µ2

j

∏N
i<j(λi − λj), N < R,

(4.4)

where KR,N and GR,N are normalization constants, [e−λj/µ2
i ] is a (min{R,N}×min{R,N})

matrix with (i, j) entry e−λj/µ2
i , and

Ξ =

















1 µ2
1 . . . µ

2(R−N−1)
1 µ

2(R−N−1)
1 e(−λ1/µ2

1) . . . µ
2(R−N−1)
1 e(−λN /µ2

1)

...
...

...

1 µ2
R . . . µ

2(R−N−1)
R µ

2(R−N−1)
R e(−λ1/µ2

R) . . . µ
2(R−N−1)
R e(−λN /µ2

R)

















. (4.5)

With each entry being the sum of M independent exponential random variables, the

joint distribution of the diagonal entries of D is

p(µ) := p(µ2
1, . . . , µ

2
R) =

R
∏

i=1

e−µ2
i µ

2(M−1)
i

(M − 1)!
. (4.6)

Define

αi =
− log λi

log P
, βi =

− log µ2
i

logP
⇒ λi = P−αi , µ2

i = P−βi , (4.7)

and

p(α, β) = p(λ, µ).

N
∏

i=1

∣

∣

∣

∣

dλi

dαi

∣

∣

∣

∣

R
∏

i=1

∣

∣

∣

∣

dµ2
i

dβi

∣

∣

∣

∣

= p(λ, µ)

N
∏

i=1

(log P )P−αi

R
∏

i=1

(log P )P−βi . (4.8)
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Then after making this simple change of variables, and defining the vectors

α = (α1, . . . , αmin{N,R}), β = (β1, . . . , βR), we may write the joint eigenvalue distribution

of α and β from (4.4) to (4.8) as follows:

p(α, β)

= p(λ, µ)(log P )N+R
N
∏

i=1

P−αi

R
∏

i=1

P−βi from (4.8)

= p(µ)p(λ | µ)(log P )N+R
N
∏

i=1

P−αi

R
∏

i=1

P−βi

= p(λ | µ)(log P )N+R
N
∏

i=1

P−αi

R
∏

i=1

P−βi
exp

(

−P−βi
)

P−(M−1)βi

(M − 1)!
using (4.6)–(4.7)

=



















































































CR,M,N (log P )N+R
∏R

i=1 P
−(N−R+1)αiP−(R+M−N−1)βi

·∏i<j
P−αi−P−αj

P−βi−P−βj
· exp

(

−∑R
i=1 P

−βi

)

det
[

exp
(

−P−(αj−βi)
)]R

i,j=1
, N ≥ R,

DR,M,N (log P )N+R
∏N

i=1 P
−αi

∏R
i=1 P

−Mβi
∏R

i<j
1

P−βi−P−βj

·∏N
i<j(P

−αi − P−αj ) · exp
(

−∑R
i=1 P

−βi

)

.detA, N < R,

(4.9)

where A is the transformation of the matrix Ξ in (4.5) under this change of variables (4.7),

while CR,M,N and DR,M,N are normalization constants.

Note that from the exponential factor, p(α, β) will decay exponentially unless βi ≥ 0 for

i = 1, . . . , R.

The next task is to find the exponent of P in (4.9). To deal with the determinant factors

we make use of the results proved by induction on the matrices’ dimensions, in Lemmas 2

and 3 of [77]:

Lemma 5. We have the following expressions for the exponential orders of the determinants
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in (4.9).

1.

det
[

exp
(

−P−(αj−βi)
)]R

i,j=1

.
= exp

(

−
R
∑

i=1

P−(αi−βi)

)

P−
P

i<j (αi−βj)
+

(4.10)

This determinant decays exponentially in P unless αi ≥ βi.

2.

detA
.
=

N+1
∏

i=1

P−(R−N−1)βi

R
∏

i=N+2

P−(R−i)βi

N
∏

i=1

R
∏

j=N+1

P−(αi−βj)+

·
N
∏

i<j

P−(αi−βj)
+

exp

(

−
N
∑

i=1

P−(αi−βi)

)

(4.11)

For i = 1, . . . , N this decays exponentially in P unless αi ≥ βi for βi ≥ 0.

Since λi > λj and µi > µj for i < j, we have αi ≤ αj and βi ≤ βj for i < j. Hence

P−αi − P−αj

P−βi − P−βj

.
=
P−αi

P−βi
= P−(αi−βi). (4.12)

Combining (4.9), (4.10), (4.11) and (4.12), and using the fact that constants and powers

of (log P ) do not contribute to the exponential order allows us to find the exponential order

ε(α, β) of p(α, β). We will repeatedly use the identity

R
∑

i<j

ai :=
R
∑

j=1

∑

i<j

ai = (R − 1)a1 + (R− 2)a2 + . . . + aR =
R
∑

i=1

(R− i)ai.
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For N ≥ R,

ε(α, β) =
R
∑

i=1

(N −R+ 1)αi +
R
∑

i=1

(R+M −N − 1)βi +
R
∑

i<j

(αi − βi) +
∑

i<j

(αi − βj)
+

=

R
∑

i=1

(N −R+ 1)αi +

R
∑

i=1

(R+M −N − 1)βi +

R
∑

i=1

(R− i)(αi − βi) +
∑

i<j

(αi − βj)
+

=
R
∑

i=1

(N + 1 − i)αi +
R
∑

i=1

(M −N + i− 1)βi +
∑

i<j

(αi − βj)
+, (4.13)

while for N < R,

ε(α, β) =

N
∑

i=1

αi +

R
∑

i=1

Mβi +

N
∑

i<j

(αi − βi) +

R
∑

j=N+1,i<j

−βi +

N+1
∑

i=1

(R−N − 1)βi

+
R
∑

i=N+2

(R− i)βi +
N
∑

i=1

R
∑

j=N+1

(αi − βj)
+ +

N
∑

i<j

(αi − βj)
+

=
N
∑

i=1

αi +M
R
∑

i=1

βi +
N
∑

i=1

(N − i)αi +
R
∑

i=1

(R − i)(−βi) +
N+1
∑

i=1

(R−N − 1)βi

+

R
∑

i=N+2

(R− i)βi +

N
∑

i=1

R
∑

j=N+1

(αi − βj)
+ +

N
∑

i<j

(αi − βj)
+

=

N
∑

i=1

(N − i+ 1)αi +

N+1
∑

i=1

(R−N − 1 +M −R+ i)βi

+
R
∑

i=N+2

(R− i+M −R+ i)βi +
N
∑

i=1

R
∑

j=N+1

(αi − βj)
+ +

N
∑

i<j

(αi − βj)
+

=

N
∑

i=1

(N − i+ 1)αi +

N
∑

i=1

(M −N + i− 1)βi +M

R
∑

i=N+1

βi

+

N
∑

i=1

R
∑

j=N+1

(αi − βj)
+ +

N
∑

i<j

(αi − βj)
+.

(4.14)
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The diversity of our wireless scheme is then inf ε(α, β) where

N
∑

i=1

(1 − αi)
+ < r, (4.15)

α1 ≤ α2 ≤ . . . ≤ αmin{N,R}, (4.16)

β1 ≤ β2 ≤ . . . ≤ βR, (4.17)

and

αi ≥ βi ≥ 0 for i = 1, . . . , N. (4.18)

Next we find this infimum by optimizing (4.13) and (4.14) over α and β.

4.3.2 Optimization over α and β

To minimize (4.13) and (4.14) subject to the constraints (4.15)-(4.18), we first fix α1 ≤

. . . ≤ αmin{N,R} satisfying (4.15) and find the optimal β. We will assume M ≥ N .

4.3.2.1 Case 1: N ≥ R

As done in [77] we begin with an initial configuration

0 ≤ β1 = α1 ≤ β2 = α2 ≤ . . . ≤ βR = αR

so that
∑

i<j(αi − βj)
+ = 0.

The sum (4.13) is of the form
∑R

i=1(aiαi + biβi). With the initial configuration just

described we would have ai = N +1− i and bi = M −N + i− 1 ≥ 0. For some fixed j, if βj

is decreased below αi for some i < j, the term (αi−βj)
+ is no longer zero. Here ai increases

by 1, bj decreases by 1 and the overall sum (4.13) decreases provided bj remains positive.
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How many αi’s should βj cross? Denote this number by cj . Since bj decreases by 1 each

time from an initial value of M −N + j−1, we have cj = min{j−1,M −N + j−1} = j−1

since M ≥ N . In other words, for M ≥ N it is optimal for βj to be decreased all the way

to zero. Substituting this into (4.13) leads to

ε(α, 0) =

R
∑

i=1

(N + 1 − i)αi +

R
∑

i<j

αi

=
R
∑

i=1

(N + 1 − i)αi +
R
∑

i=1

(R− i)αi

=

R
∑

i=1

(N +R+ 1 − 2i)αi (4.19)

4.3.2.2 Case 2: N < R

Again we assume an initial configuration

0 ≤ β1 = α1 ≤ β2 = α2 ≤ . . . ≤ βN = αN ≤ βN+1 ≤ . . . ≤ βR,

so that the last two terms of (4.14) are 0.

This time (4.14) is of the form ε(α, β) =
∑N

i=1 aiαi +
∑N

j=1 bjβj +
∑R

N+1 bjβj . With the

initial configuration, ai = N − i+ 1, bj = M −N + j − 1. Proceeding similarly to Case 1,

but treating the cases j ≤ N and j > N separately, we see that if βj is decreased below αi

for some i < j, ai increases by 1 while bj decreases by 1. The overall sum (4.14) decreases

provided bj remains positive. If cj is the number of αi’s that bj should cross, we have as

before cj = min{j − 1,M −N + j − 1} = j − 1. Hence βj may cross all αi’s all the way to

zero to minimize the sum. Substituting this into (4.14) leads to
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ε(α, 0) =
N
∑

i=1

(N − i+ 1)αi +
N
∑

i=1

R
∑

j=N+1

αi +
N
∑

i<j

αi

=
N
∑

i=1

(N + 1 − i)αi +
N
∑

i=1

(R−N)αi +
N
∑

i=1

(N − i)αi

=

N
∑

i=1

(N +R+ 1 − 2i)αi. (4.20)

Combining (4.19) and (4.20),

ε(α) =

min{N,R}
∑

i=1

(N +R+ 1 − 2i)αi. (4.21)

Now we optimize this over α subject to (4.15) and (4.16), so we assume 0 < αi < 1 for

i = 1, . . . ,min{N,R}. Initially suppose r = 0 which forces αi = 1 for all i. This corresponds

to a maximum diversity of

min{N,R}
∑

i=1

(N +R+ 1 − 2i) = (N +R+ 1)min{N,R} − (1 + min{N,R})min{N,R}

= min{N,R}(N +R− min{N,R})

= min{N,R}max{N,R}

= NR.

As r increases, we are free to lower the values of αi. Since the coefficients (N +R− 1− 2i)

of αi are positive and strictly decreasing in i, to minimize (4.21) it is optimal to push αi to

zero one at a time beginning with α1.

That is,

• For r = 0 set all αi := 1 achieving diversity NR.
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• For 0 < r < 1 push α1 to zero, αi = 1 for i > 1. The diversity decreases by N +R− 1

to NR− (N +R− 1) = (N − 1)(R − 1) for r = 1.

• For 1 < r < 2 push α2 to zero, while α1 = 0, αi = 1 for i > 2. The diversity decreases

by N +R− 3 to (N − 1)(R − 1) − (N +R− 3) = (N − 2)(R − 2) for r = 2.

• ...

• For min{N,R} − 1 < r < min{N,R} push αmin{N,R} to zero, while αi = 0 for

i < min{N,R}. The diversity decreases by |N −R| + 1 to zero for r = min{N,R}.

We hence obtain a piecewise linear curve joining points (k, (N − k)(R − k)) for k =

1, 2, . . . ,min{N,R}. This is precisely the same as the optimal trade-off curve for a MIMO

system with R transmit and N receive antennas. Next we will verify that this trade-off

curve is achievable with a particular code construction.

4.3.3 Achieving the Trade-off

By adopting an analysis similar to that presented by Elia et al. in [14] one can construct an

explicit coding scheme which satisfies a non-vanishing determinant criterion, and in doing

so achieves the optimal trade-off. This property states that if S1 and S2 are two distinct

codewords then

det(S1 − S2)(S1 − S2)
∗ .
=P 0.

That is, the determinant does not decay to zero as P → ∞. Codes based on cyclic division

algebras [42, 14, 48] can be made to have this property.
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4.3.4 The Case M < N

The optimization of Section 4.3.2 would not have worked for the case M < N . In this

instance we reason as follows.

Allowing for full cooperation amongst the relay nodes, the diversity of the system can

be upper bounded by the diversity obtained by the each of the first stage (dMIMO(M,R)(r))

and second stage (dMIMO(R,N)(r)) of transmission. That is,

d(r) ≤ min{dMIMO(M,R)(r), dMIMO(R,N)(r)}

= min{dMIMO(R,M)(r), dMIMO(R,N)(r)}

= dMIMO(R,min{M,N})(r). (4.22)

We have already seen this bound to be achievable in the M ≥ N case. When M < N ,

simply ignore the signal received at the final N −M receive antennas. This allows us to

apply the result we have proved and gives a lower bound on diversity:

d(r) ≥ dMIMO(M,R)(r)

= dMIMO(R,min{M,N})(r). (4.23)

Comparing (4.22) and (4.23), we conclude

d(r) = dMIMO(R,min{M,N})(r).
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4.4 Discussion

We make the following remarks.

• Large diversity benefits can be reaped by increasing the number of relay antennas,

provided they maintain independent channels. Implementing cheap relay nodes may

be easier to do than adding antennas at the transmitter or receiver.

• The trade-off behavior is a function of min{M,N} so there is no point in having more

transmit than receive antennas or vice versa.

• Compared with the results of Yang and Belfiore [77] for the product Rayleigh channel,

we see the benefit of having different unitary matrices at the relays. The Rayleigh

product channel’s result apply to our model in the case Ai all equal to the identity

matrix, and there the diversity is at most MN if R > max{M,N}.

• The optimization problem we solved to find the dominant exponent was different from

the Zheng-Tse work, but led to a similar answer. This arose from the eigenvalues of

D being of order P 0 (β = 0), so that outage was again related to the eigenvalues of a

Wishart matrix. It would be interesting to investigate precisely how this arises, and

why this is not seen for the Rayleigh product channel.

4.5 Summary

We have established the diversity-multiplexing gain trade-off for a MIMO(M,N) system with

R relay nodes. This was found to coincide with that of a MIMO system with R transmit

and min{M,N} receive antennas. The calculation involves working with an equivalent

MIMO channel model, then performing an outage probability calculation on the equivalent
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channel. Whether this calculation can be streamlined and applied to other networks remains

a challenging problem.

It would also be interesting to consider a more general network setup where there is

more than one transmitter/receiver pair or if the relay nodes themselves had more than one

antenna each. We will look at the former case in more detail in the next chapter, where

every node has a single antenna. Interference is now introduced into the system and we will

see how high diversity can still be achieved.
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Chapter 5

Diversity in Wireless Networks

5.1 Introduction

Up until now we have looked at wireless systems with one transmitter and one receiver.

For the remainder of the thesis we study networks with more than one transmitter-receiver

pair. This introduces interference into the system as users compete for access to the shared

wireless medium. The receivers then have to decode signals perturbed not only by fading and

noise but also by additive interference from other users. The essential question we ask here

is, how can we ensure reliable communications without jeopardizing on the total rate of the

system? For example, we do not wish to have the transmitter-receiver pairs communicate

one at a time. While this avoids the interference problem and is reliable, it gives a low

rate per user. Are there cleverer schemes? Here we will investigate ways that other nodes

cooperate with communication between source and destination, ensuring a higher rate while

maintaining reliable communication. Again we study this in the high SNR regime, where

we can measure reliability by diversity, the exponent of the error probability due primarily

to fading. From now we also suppose all communication nodes have a single antenna.

We will study two scenarios for the wireless network, both subject to Rayleigh fading

and additive Gaussian noise. We are interested in some of the possible relationships between
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diversity and rate (measured again by the multiplexing gain).

In the first case we have m source-destination pairs (a total of 2m nodes). Initially

we focus on m = 2 and the non-cooperative case (an interference channel). For such a

channel we investigate the diversity-multiplexing gain trade-off for four well-known trans-

mission/reception schemes. It will be seen that both diversity and rate are maximized when

each receiver decodes both transmitted messages jointly. These results can be generalized to

any value of m. With a view to increasing diversity, two more schemes are then considered

for the interference channel, now allowing cooperation between nodes. The nodes provide

increased diversity but at the expense of rate. One scheme is shown to increase diversity

up to a factor of three while reducing rate by four, while the other has diversity two but

cuts rate by a factor of three.

In the second scenario we will consider n relay nodes in addition to the m source-

destination pairs (a total of 2m + n nodes). This time the relay nodes will be used to

eliminate interference at the receivers and provide a diversity linear in the number of relay

nodes. The diversity analysis of this network is more involved. Compared to an alternative

protocol where receivers decode all transmitted messages, this scheme is seen to achieve

higher diversity at higher rates.

The capacity of interference channels, with or without relays, is an open problem in

information theory. Here we are considering particular transmission strategies and aim to

achieve high diversity over a range of transmission rates.

5.1.1 Cooperative Diversity with More than One Transmitter or Receiver

As the demand for higher reliable data rates in wireless communications continues, so

too does the importance of understanding the interplay between rate and diversity in the



81

general network setting. In the previous two chapters we reviewed some of the recent work

concerning the optimal diversity-multiplexing gain trade-off for point-to-point systems with

and without relays. It was seen that at least for small multiplexing gains high diversity gains

can be realized, as though the relays collectively behaved as a multiple antenna system. The

optimal trade-off for large multiplexing gains remains an open problem.

In the case of more than one transmitter or receiver, there exist recent results for multiple

access and broadcast channels. Zheng and Tse [83] generalize their results for the point-

to-point MIMO system [82] to the case where K users each have m transmit antennas and

communicate to a single receiver with n receive antennas. The set of multiplexing gains

{r1, . . . , rK} that allow each user to achieve a diversity gain d is quantified.

Azarian et al. [3] study the half-duplex cooperative broadcast and multiple access chan-

nels as generalizations of their work on relay channels. Here they assume each user has a

single antenna. They show that the trade-off achieved by a dynamic decode and forward

protocol for a broadcast channel with N destinations, is the same as that for a correspond-

ing relay channel with N relays. Hence the added requirement of receiving nodes having to

decode their intended message does not lead to any cost in the trade-off curve. For multiple

access channels they show that a non-orthogonal amplify and forward protocol is trade-off

optimal: for N transmitters a diversity gain of N(1− r) can be achieved for a multiplexing

gain of r.

Using nodes for cooperation in interference channels is investigated by Høst-Madsen in

[27], inheriting methods known for the interference and relay channels (see for example [32]

and [76]). Here achievable rates for several schemes are analyzed, which may be categorized

under:

• compress and forward: a relay node transmits a compressed version of what it has
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received using Wyner-Ziv coding. Amplify-forward is the special case of no compres-

sion.

• decode and forward: the relay decodes the message sent by the relevant transmitter

and reencodes it for transmission.

The receivers can employ individual or joint decoding. In the former, one decodes only the

intended signal treating any other users as part of the noise. In the latter, one attempts to

decode all signals whether or not they are intended for that receiver.

Ideally one would like to analyze the outage behavior of these schemes at high SNR, but

the rate equations have difficult descriptions for such analysis. Here we consider simpler

protocols for the interference channel that allow for outage analysis.

It should be emphasized that a wireless network with cooperation amongst nodes can

never perform as well as a corresponding MIMO system. For one thing, the achievable

multiplexing gain of each user is always limited by the number of antennas at the source

or destination, which in our case is 1. Yuksel and Erkip note this in [80] and show that by

considering cut set bounds, a source destination pair with two additional nodes as relays

can perform at best as a 1×3 MIMO system with maximum diversity 3. One of the schemes

we shall consider achieves precisely this diversity.

Throughout this work we assume all nodes behave synchronously, transmitting and

receiving in discrete time slots. The trade-off problem has also been studied in the asyn-

chronous case [74]. For a list of many spatial diversity techniques in wireless networks, refer

to [7] and the references therein.

As in the previous chapters, we follow the work of Zheng and Tse [82] in the definition

of rate and diversity: we consider a family of codes of fixed block length and increasing
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signal-to-noise ratio (SNR) and say that user i supports a multiplexing gain of ri if its data

rate Ri(SNR) satisfies limSNR→∞
Ri(SNR)
log SNR = ri. The family has a diversity d if the average

error probability Pe behaves as limSNR→∞
ln Pe(SNR)

ln SNR = −d, that is Pe ∼ SNR−d. Hence

the higher value of d for a given multiplexing gain, the more reliable the system at that

corresponding rate. This quantity is meaningful only at high SNR.

5.1.2 The Gaussian Interference Channel

Figure 5.1 illustrates the two-user interference channel. There are two transmitters (single

antenna) each with one intended receiver (1 → 3, 2 → 4). However the received signals

(complex valued) are each a linear combination of both transmitted signals (plus Gaussian

noise) and the receivers have the task of determining their intended signal. Again we assume

that each of the propagation parameters hij is a complex Gaussian random variable with

zero mean and unit variance (Rayleigh fading).

Using subscripts which correspond to the node(s) labeled in Figure 5.1, the system

equations are described by

y3 = h13x1 + h23x2 + n3, (5.1)

y4 = h14x1 + h24x2 + n4.

We assume the noise terms have zero mean and unit variance and that x1, x2 have the power

constraint E|xi|2 ≤ P , i = 1, 2. Throughout this work we assume all fading parameters hij

are known to all nodes.

The interference channel has been studied for over four decades and except for the case

of sufficiently strong interference, finding the capacity region for general SNR has remained
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Figure 5.1: Interference channel.

an elusive open problem. One can talk about four regimes for which the following best-

known transmission and decoding strategies are used, as mentioned in the work by Costa

[9]. Recent work by Etkin et al. [15] has established the capacity region to within one bit

per channel use.

1. Zero or low interference: both users transmit simultaneously, receivers decode their

intended signal treating the other user as noise.

2. Moderate interference: Etkin et al. [15] show that a Han-Kobayashi scheme can

achieve within one bit of capacity (thus the asymptotic capacity at high SNR). The

idea is to divide the information of the two users into a private part (only decoded by

its intended receiver) and common part. The resulting rate equations are not so easy

to analyze, so instead we employ the simpler scheme of time or frequency division.

In this case the receivers know when or over which frequency band each transmitter

is transmitting, and so each knows when to decode its intended signal. The channels

are othogonally separated.

3. Strong interference: both users transmit simultaneously, each receiver treats the sys-

tem as a two-user multiple access channel and decodes each user jointly [24].
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4. Very strong interference: here the receivers treat their intended signal as noise and

first decode the other user’s signal before subtracting off this interference; the capacity

region is the same as if there were no interference present at all [8].

We are interested in seeing what rate and diversity each of these strategies gives us while

assuming fading in the channel. In addition we will consider two more schemes in which

the existing nodes are used additionally as cooperative relays.

We will seek to exploit multiple paths in the system, thus increasing diversity. No claims

are made about the optimal rate-diversity trade-off for the interference channel, but as will

be seen this work enables us to understand better the preference of joint decoding over

successive decoding in increasing diversity.

Motivated by [33], we calculate diversity from an outage calculation for a given multi-

plexing gain. For fixed propagation parameters each scheme defines a region of achievable

rates. When the randomness of the channels is incorporated this region changes in size—an

outage corresponds to the event that, given a fixed rate pair (R1, R2), the achievability

region does not include this pair.

5.2 Interference Channel with and without Cooperation

In this section we derive the results given in table 5.1. This shows the sum-rate and cor-

responding diversity one can achieve by the four transmission/reception strategies already

mentioned when considering the nodes as an interference channel. The low and very strong

interference cases both involve treating one of the users as noise. In Section 5.2.2 we con-

sider two schemes involving cooperation amongst nodes, corresponding to the last two lines

of the table. Here ri (i = 1, 2 where 0 < ri < 1) are the multiplexing gains of user i and the
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sum-rate defined as the sum of multiplexing gains employed by each user per channel use.

Table 5.1: Summary of rate-diversity results (K = 1 − max{r1, r2})

Scheme Sum-Rate Diversity

Alternate transmission (r1 + r2)/2 1 − max{r1, r2}
MAC r1 + r2 min{1 − r1, 1 − r2, 2(1 − r1 − r2)}

Treat one of users as
noise r1 + r2 0

Alternate, using nodes as

relays (r1 + r2)/4 3K − 4 ln(ln P )
ln P

Interference channel, then

receiver cooperation (r1 + r2)/3 2K − 2 ln(ln P )
ln P

5.2.1 Using Nodes as an Interference Channel

First let us recap the diversity-multiplexing gain relationship in the point-to-point channel,

as explained in (3.5). For a point-to-point complex Rayleigh fading channel y = hx+v with

power constraint E|x|2 ≤ P and zero-mean unit-variance noise v we find the diversity as a

function of R = r log P (0 < r < 1) via the approximation Pr(log(1 + P |h|2) < r logP ) ≈

1
P 1−r , valid for high P . This tells us that for multiplexing gain r the diversity is 1 − r.

5.2.1.1 Alternating Transmission

If the two users alternate their transmission, where user i transmits with multiplexing gain

ri for i = 1, 2, then we have two point-to-point channels. The sum-rate is (r1 + r2)/2 (as

there are two separate channel uses) and each has diversity 1− ri as seen above. This leads

to an overall diversity of the system of 1 − max{r1, r2}.
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5.2.1.2 MAC: Simultaneous Transmission, Decoding Both Users

Suppose both users transmit simultaneously and each of the two receivers decodes the

messages of both senders. The sum-rate is then given by (r1 + r2). The achievable rate

region is given by the intersection of the capacity regions of two multiple access channels,

one corresponding to each receiver. We make use of the following well known result, which

can be considered as a special case of [83].

Theorem 4. Consider the fading multiple access channel (MAC) y = h1x1+h2x2+v where

h1 are h2 are independent zero-mean unit-variance complex Gaussian (Rayleigh fading)

parameters and v is zero-mean unit-variance complex Gaussian noise. Additionally suppose

the two transmitters have the power constraint E|x1|2 ≤ P and E|x2|2 ≤ P . Then for

transmission rates r1 and r2 the diversity is min{1 − r1, 1 − r2, 2(1 − r1 − r2)}.

Proof. The capacity region of the MAC defined this way can readily be found:

R1 ≤ log(1 + P |h1|2),

R2 ≤ log(1 + P |h2|2),

R1 +R2 ≤ log(1 + P (|h1|2 + |h2|2)).

Then we wish to find the probability that a point (R1, R2) lies outside this region due to

the randomness of h1 and h2. This probability is at most the sum of the probabilities of one

of the three inequalities above being violated (union bound). The sum of two independent

exponential random variables of unit mean can be shown to have distribution Pr(|h1|2 +

|h2|2 < x) = 1−e−x(x+1) ≤ x2, so the third inequality is violated with probability at most

((2R1+R2 −1)/P )2. As in the point-to-point case each of the first two inequalities is violated
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with probability approximately (2Ri − 1)/P = P−(1−ri). Hence the outage probability is

Pout ≤ P−(1−r1) + P−(1−r2) + P−2(1−r1−r2)

≤ 3P−min{1−r1,1−r2,2(1−r1−r2)}.

From this the diversity is min{1 − r1, 1 − r2, 2(1 − r1 − r2)}.

The interference channel achievability region is considered as the intersection of two

MACs, each with diversity min{1− r1, 1− r2, 2(1− r1 − r2)}. Hence the overall interference

channel using this scheme has diversity min{1−r1, 1−r2, 2(1−r1−r2)}, with the constraint

r1 + r2 < 1.

Comparing this scheme to the previous alternating scheme, one can show that for equal

sum-rate, the diversity for this second scheme is at least as high as that of the first scheme.

That is, for r1 + r2 < 1,

min{1 − r1, 1 − r2, 2(1 − r1 − r2)} ≥ 1 − max{1 − 2r1, 1 − 2r2}.

5.2.1.3 Treating One of the Users as Noise

Finally we consider schemes in which one of the users is decoded before the other. This

is optimal when there is zero or very strong interference and there is no alternating in

transmission this time. The sum-rates in both cases are r1 + r2.

Referring to (5.1), as x1 and x2 are independent, and assuming we use Gaussian code-
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books, we have

I(x1; y3) = log

(

1 +
P |h13|2

1 + P |h23|2
)

.

The presence of P in both the numerator and denominator of this expression means that for

high P this mutual information does not become large. The probability of outage becomes

Pout = Pr

(

P |h13|2
1 + P |h23|2

< 2R − 1

)

,

which does not decay at all with P . Hence the diversity is zero.

This completes our derivation of diversity expressions for four commonly chosen trans-

mission/reception strategies for the interference channel. We see that decoding both users

is superior in both rate and diversity over all other schemes. From a diversity view point

we have also seen that successive cancellation is ineffective.

5.2.2 Using Nodes as Relays

Here we look at cooperative diversity schemes in which nodes are now able to forward

information intended for others. Some of the ideas here are motivated by [27].

5.2.2.1 Alternating Transmission Using Nodes as Relays

In figure 5.2 we see that there are potentially three independent paths via which node 1

can send its information to node 3, (labeled I, II and III). Similarly node 2 can send its

information to node 4 via three paths. Firstly consider the transmission of the information

of node 1. In order to maximize diversity we assume nodes 2 and 4 are amplifying and

forwarding their received signal. Node 3 as a result also receives amplified noise generated
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at nodes 2 and 4.

Diversity in amplify-forward networks is studied in [35] and [29] amongst others but

they do not look at the specific case of two relays plus a direct link between transmitter

and receiver.

2 4

31

II III

I

Figure 5.2: Possible independent paths between nodes 1 and 3.

Suppose that in the first time slot node 1 transmits to nodes 2, 3 and 4 while in the

second time slot nodes 2 and 4 amplify and forward their received signal to node 3 while

node 1 retransmits its message to node 4. Note that due to the half-duplex condition we

have imposed node 2 is not yet transmitting its information to node 4. In the third and

fourth time slots node 2 then transmits to node 4 via nodes 1 and 2 similarly as depicted

in figure 5.3. The sum-rate of this scheme is (r1 + r2)/4 ≤ 1/2 as a total of four channel

uses is employed.

For node 3 the system equation is given by









y
(1)
3

y
(2)
3









=









h13

(h13 + α1h23h12 + α2h43h14)









x1 +









n
(1)
3

(h23n2 + h43n4 + n
(2)
3 )









, (5.2)

where we have separated the signal and noise component, and superscripts are used to
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Figure 5.3: First cooperative diversity scheme.

denote time steps. The relays do not have any peak power constraint but note that since

the fading parameters have unit variance, the average power of the relays is also of the order

of P .

The parameters α1 and α2 are phases (complex numbers of unit magnitude) chosen

so that the three signals received by node 2 add coherently (with the same phase). This

coherent addition is highly necessary. For example if h1 and h2 are independent CN (0, 1)

random variables then without coherent addition,

Pr(|h1 + h2|2 < ε) = Pr(|h|2 < ε) where h ∼ CN (0, 2)

= 1 − e−ε/2

≈ ε/2,



92

while with coherent addition,

Pr(|h1|2 + |h2|2 < ε) = 1 − e−ε(ε+ 1) (5.3)

≈ 1 − (1 − ε)(ε+ 1)

= ε2,

leading to diversity 1 and 2 respectively.

One may write a similar equation to (5.2) for node 4. We now show that the diversity

of the network employing this scheme is close to 3. The main idea behind the analysis that

follows is that we wish to choose bounds that do not impact diversity by being aware of the

most significant fading terms that lead to outage.

From the system equation, the achievable rate for node 3 is found to be

R1 ≤ log

(

1 + P

(

|h13|2 +
|h13 + α1h23h12 + α2h43h14|2

1 + |h23|2 + |h43|2
))

= log(1 + PL1),

where

L1 := |h13|2 +
(|h13| + |h23h12| + |h43h14|)2

1 + |h23|2 + |h43|2
,

which is possible for suitable choices of α1 and α2. Similarly R2 ≤ log(1 + PL2) where

L2 := |h24|2 +
(|h24| + |h14h21| + |h34h23|)2

1 + |h14|2 + |h34|2
.
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Then

Pout = Pr
(

L1 < P−(1−r1) or Pr(L2 < P−(1−r2)
)

≤ Pr(L1 < P−(1−r1)) + Pr(L2 < P−(1−r2)), (5.4)

by the union bound.

We upper bound the first of these terms (the second term is treated similarly) as follows:

Pr(L1 < P−(1−r1))

= Pr

(

|h13|2 +
(|h13| + |h23h12| + |h43h14|)2

1 + |h23|2 + |h43|2
< ε1

)

(setting ε1 := P−(1−r1) which is small)

≤ Pr

(

|h13|2 +
|h23h12|2 + |h43h14|2
1 + |h23|2 + |h43|2

< ε1

)

(decreasing the left side, thus loosening the bound)

≤ Pr

(

|h13|2 < ε1,
|h23h12|2 + |h43h14|2
1 + |h23|2 + |h43|2

< ε1

)

(if the sum of positive terms is upper bounded,

each term individually has the same bound)

= Pr(|h13|2 < ε1) Pr

( |h23h12|2 + |h43h14|2
1 + |h23|2 + |h43|2

< ε1

)

. (5.5)

As |h13|2 has exponential distribution with unit mean, the first term in this product is

1 − e−ε1 ≤ ε1. Concentrating on the second term, for convenience we set M1 := |h23h12|2,

M2 := |h43h14|2, S := |h23|2 + |h43|2. As seen in (5.3), S as the sum of two exponential

random variables can be shown to have distribution

Pr(S > x) = e−x(x+ 1). (5.6)
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Then we have

Pr

( |h23h12|2 + |h43h14|2
1 + |h23|2 + |h43|2

< ε1

)

= Pr (M1 +M2 < ε1(1 + S))

= Pr
(

M1 +M2 < ε1(1 + S), S < ln(1/ε′)
)

+Pr
(

M1 +M2 < ε1(1 + S)|S > ln(1/ε′)
)

.Pr
(

S > ln(1/ε′)
)

(ε′ is some positive function of ε1 to be chosen later)

≤ Pr
(

M1 +M2 < ε1(1 + ln(1/ε′)), S < ln(1/ε′)
)

+ 1 × Pr
(

S > ln(1/ε′)
)

(maximizing the upper bound in the first condition

and using a bound of 1 in the second term)

≤ Pr
(

M1 +M2 < ε1(1 + ln(1/ε′))
)

+ ε′(1 + ln(1/ε′))

(dropping the second condition in the first term and using (5.6) in the second term)

≤ Pr
(

M1 < ε1(1 + ln(1/ε′)),M2 < ε1(1 + ln(1/ε′)
)

+ ε′(1 + ln(1/ε′))

=
[

Pr
(

M1 < ε1(1 + ln(1/ε′))
)]2

+ ε′(1 + ln(1/ε′)) (5.7)

(M1 and M2 are independent).

To proceed we use the following lemma concerning the distribution of the product of expo-

nential random variables near the origin.

Lemma 6. Let λ1 and λ2 be independent exponential random variables each with unit mean.

Then

Pr (λ1λ2 < ε) = ε ln(1/ε) + o(ε ln(1/ε)). (5.8)

In fact numerically one may verify that Pr(λ1λ2 < ε) ≤ ε ln(1/ε) for ε < 0.07.



95

Proof.

Pr (λ1λ2 < ε) =

∫ ∞

0
Pr (λ1 < ε/x) e−x dx

=

∫ ∞

0
e−x(1 − e−ε/x) dx

= 1 −
∫ ∞

0
e−(x+ε/x) dx

= 1 − 2
√
εK1(2

√
ε), (5.9)

where K1(x) :=
∫∞
0 e−x cosh t cosh t dt is a modified Bessel function of the second kind.

Referring to 9.6.11 and 9.6.7 of Abramowitz and Stegun [2],

K1(z) = z−1 + (z/2) ln(z/2) + o(z ln z). (5.10)

Substituting (5.10) into (5.9) gives us (5.8). One can also compute the next significant term

in the expansion and verify that its coefficient (1 − 2γ, where γ is the Euler constant) is

negative. Hence for sufficiently small ε, Pr(λ1λ2 < ε) ≤ ε ln(1/ε).

Applying this lemma to (5.7) gives

Pr (M1 +M2 < ε1(1 + S))

≤
[

Pr
(

M1 < ε1(1 + ln(1/ε′))
)]2

+ ε′(1 + ln(1/ε′))

≤
[

ε1
(

1 + ln(1/ε′)
)

ln

[

1

ε1(1 + ln(1/ε′))

]]2

+ ε′(1 + ln(1/ε′)).

This holds for all choices of ε′ > 0. To ensure a reasonably tight upper bound choose
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ε′ := ε1
2 so that

Pr (M1 +M2 < ε1(1 + S))

≤
[

ε1
(

1 + ln(1/ε1
2)
)

ln

[

1

ε1(1 + ln(1/ε12))

]]2

+ ε1
2(1 + ln(1/ε1

2))

≤
[

ε1(1 + 2 ln(1/ε1)) ln

[

1

ε1

]]2

+ ε1
2(1 + 2 ln(1/ε1))

≤ Cε1
2 (ln(1/ε1))

4 ,

for some positive constant C. From (5.5) we conclude that Pr(r1 log P > log(1 + PL1)) ≤

Cε1
3 (ln(1/ε1))

4. By the same argument we can show Pr(r2 log P > log(1 + PL2)) ≤

Cε2
3 (ln(1/ε2))

4 where ε2 := P−(1−r2). Hence from (5.4) we have

Pout ≤ Cε1
3 (ln(1/ε1))

4 + Cε2
3 (ln(1/ε2))

4

≤ 2Cf(max{ε1, ε2}),

where f(x) = x3(ln(1/x))4.

Since max{ε1, ε2} = P−(1−max{r1,r2}) the diversity is lower bounded by

− lim
P→∞

log Pout/ log P ≥ 3K − lim
P→∞

4
log(K logP )

logP
= 3K,

where K = 1 − max{r1, r2}.

We remark that the exponent 4 log(K log P )
log P represents the slight penalty in diversity over

a multiantenna system with three independent Rayleigh fading paths. Two main factors—

the composition of Rayleigh fading paths, and presence of fading-dependent noise—have

contributed to this degradation which may become significant at moderate or lower power

levels.
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Figure 5.4: Second cooperative diversity scheme.

As mentioned in the previous chapter, the noise from intermediate nodes may be ampli-

fied by a fade, leading to large denominators in the rate equations. However since the tail of

a Gaussian distribution decays exponentially, the probability that outage occurs due to the

fade being sufficiently large is correspondingly small. This motivates the ln(1/ε ′) bounds in

(5.7). In other words, at high SNR, relay noise does not alter diversity.

5.2.2.2 Interference Channel with Receiver Cooperation

Now we consider a scheme in which three instead of four channel uses are employed (so the

sum-rate is (r1 +r2)/3) but due to the half-duplex constraint, only two of the three possible

independent transmission paths are utilized. Hence we cannot hope to achieve a diversity

greater than two. Figure 5.4 shows the steps involved in transmission. Furthermore the

nodes apply phases αi, βi as shown in the figure.
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The system equations are then given by
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.

Referring to Telatar’s results on mutual information in a vector Gaussian channel [66]

the achievable rate region for node 3 is found to be

R1 ≤ log

(

1 + P

(

|h13|2 +
|α1h13 + β1h43h14|2

1 + |h43|2
))

,

R2 ≤ log

(

1 + P

(

|h23|2 +
|h24h43|2
1 + |h43|2

))

,

R1 +R2 ≤ log det(I + PΣ−1H∗H). (5.11)

where

Σ =









1 0

0 1 + |h43|2









,

H =









h13 h23

α1h13 + β1h43h14 β1h24h43









.

Another three equations can be written for node 4, so we have a total of six rate

constraints. The phases αi, βi (i = 1, 2) are chosen to prevent cancellation amongst the

complex fading parameters. For example α1, β1 are chosen so that the terms in detH must

add coherently.



99

An outage occurs when at least one of these constraints is violated for some fixed choice

of rate pair (R1, R2). The outage probability can therefore be upper bounded by the union

bound sum of the individual probabilities of each constraint violation. Four of the six outage

calculations are treated similarly to those in the previous section except here we have a single

relay instead of two. It can be shown that for any of these Pout ≤ Cε2(ln(1/ε))2 (where

ε = P−(1−max{r1,r2})).

For constraint (5.11) for example, assuming phases have been appropriately chosen, we

may upper bound the outage probability as

Pout = Pr
(

log det(I + PΣ−1H∗H)) < R1 +R2

)

≤ Pr
(

det(PΣ−1H∗H)) < P r1+r2
)

(decreasing the left side increases its probability)

= Pr

( |detH|2
detΣ

< P−(2−(r1+r2))

)

.

Assuming phases have been chosen appropriately, |detH|2 may be lower bounded as |detH|2 =

c(|h13h43h24| + |h23h13| + |h23h43h14|)2 ≥ c(|h13h43h24|2 + |h23h13|2 + |h23h43h14|2). Hence

we wish to approximate the probability

Pr

( |h13h43h24|2 + |h23h13|2 + |h23h43h14|2
1 + |h43|2

< ε

)

.

This is a sum of three dependent variables so we cannot apply the same method as the

previous section. Instead we argue that this probability behaves like o(ε2) by noting that

if any two of the exponential variables |h13|2, |h43|2, |h24|2, |h23|2, |h14|2 are small, this

does not guarantee that the inequality is satisfied. Hence the probability is expected to be
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strictly less than O(ε2).

We conclude that the other four inequalities are more stringent at high P , so the outage

probability of this scheme behaves like Pout ∼ P−2K(K lnP )2 where K = 1 − max{r1, r2}.

Hence the diversity is 2K − 2 ln(K lnP )/ lnP and this enables us to complete table 5.1.

5.2.3 Generalization

The results of the previous sections can be readily generalized to more than two source-

destination pairs, as shown in figures 5.5 and 5.6. The diversity can be shown to be the

number of independent paths utilized by each pair. For m such pairs each scheme works as

follows:

• Scheme 1: In Step 1 a source transmits to every other node. Then in Step 2 those

nodes transmit with appropriate phases to the intended receivers. Steps 1 and 2 are

repeated for every other source-destination pair, leading to a total of 2m time slots.

The maximum diversity obtainable is 2m−1 as there are 2m−2 paths via other nodes

from source to destination, not including the direct path.

• Scheme 2: In Step 1 all sources transmit to all nodes (an m-user interference channel).

In the following m steps each receiver takes its turn in receiving signals that were

previously received by the other m−1 receivers. Hence a total of m+1 time slots are

used. The receivers decode their intended signals by treating the system as a vector

Gaussian channel. Here the maximum diversity obtainable is m, with one contributed

by each receiver.

Again this assumes that signals can be made to add coherently at the receivers. To sum

up:
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1 2

Figure 5.5: Generalization of Scheme 1.

1 2

Figure 5.6: Generalization of Scheme 2.

Theorem 5. For a Rayleigh fading network with m source-destination pairs, consider the

generalizations of schemes 1 and 2 as described above and illustrated in figures 5.5 and 5.6.

Then generalized Scheme 1 can provide a diversity of at most 2m− 1 while reducing rate by

2m. Scheme 2 has diversity m but cuts rate by a factor of m+ 1.

5.3 High Diversity Scheme Based on Interference Cancella-

tion

Now we move on to a different setup. Consider a wireless network with m transmitter-

receiver pairs and an additional n relay nodes to assist communication. All nodes have single

antennas. We are interested in the diversity-multiplexing gain trade-off of such a system.
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Since the presence of interference is known to reduce diversity significantly, we propose a

transmission scheme based on interference cancellation by the relay nodes. This scheme

achieves a diversity linear in the number of relay nodes (over all rates up to the maximum

possible). Compared to a MAC-based protocol where receivers decode all transmitted

messages, the new scheme is seen to achieve higher diversity at higher rates.

In this work we look at a network with m transmitters each having a receiver they wish

to communicate with. Assisting us in this communication are n relay nodes which provide

redundant paths from sender to receiver. For reliable communication each receiver needs

to decode its intended signal with low probability of error.

We will be defining a wireless scheme in which the diversity increases linearly in the

number of relay nodes. The model has also been investigated in [11] with power efficiency

in mind. We then find its diversity through an outage probability calculation. This will

be expressed as a function of the sum of the multiplexing gains of the users. We postpone

proofs to the final section.

We also compare the diversity-multiplexing trade-off curve to the scheme we considered

in the previous section, in which there was no interference cancellation and receivers decoded

all transmitted signals.

5.3.1 Model and Transmission Scheme

We have m transmitter-receiver pairs and n relay nodes, shown in figure 5.7.

Let fik, gij , hjk be fading coefficients between nodes, where i = 1 to m indexes the

transmitters, j = 1 to n indexes the relays and k = 1 to m indexes the receivers respectively.

All coefficients are once again assumed to be independent and identically drawn from a

CN (0, 1) complex Gaussian distribution. We assume each relay node has knowledge of all
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f21

g25 h52

Figure 5.7: Wireless network with m transmitter-receiver pairs and n relay nodes. In Stage
1 the transmitters send to the relays and receivers, in Stage 2 the relays forward a scaled
version of what they have received to the receivers. Three of the fading coefficients are
shown.

fading coefficients. This is a rather strong assumption. To justify it, suppose that none of

the channels are changing rapidly and some form of feedback is used. We also note that

our results can be viewed as outer bounds for schemes that do not assume this channel

knowledge. The receivers, however, need not have knowledge of all the channels.

Initially the m transmitter nodes send their signals simultaneously. Each of the relays

and receivers obtains a faded linear combination of transmitted signals. The jth relay node

then multiplies its received signal by a scalar dj (a function of the fading coefficients) and

forwards its resulting signal to the receivers while the m transmitting nodes are silent. Thus

we have a two-stage process.

In Stage 1, if yk denotes the signal received at the kth receiver and sj the signal received

at the jth relay node we may write
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y
(1)
k =

√
P

m
∑

i=1

fikxi + w
(1)
k k = 1, 2, . . . ,m, (5.12)

sj =
√
P

m
∑

i=1

gijxi + vj j = 1, 2, . . . , n, (5.13)

where wk and vj are additive complex Gaussian noise at the kth receiver and jth relay

node respectively. The noise sources are independent. The constant P represents the power

of each transmitted signal so as to normalize xi: we assume E|xi|2 = 1 and that each

transmitter has the same average power P . Also assume wk is zero-mean complex Gaussian

noise with E|wk|2 = 1.

In Stage 2, the kth receiver obtains a faded linear combination of signals from the relays:

y
(2)
k =

n
∑

j=1

sjdjhjk + w
(2)
k

=
√
P

n
∑

j=1

m
∑

i=1

xigijdjhjk+
n
∑

j=1

vjdjhjk + w
(2)
k ,

for k = 1, 2, . . . ,m. In matrix form,

[(y(1))T (y(2))T ] =
√
PxT [F GDH] + vT [0 DH] + [(w(1))T (w(2))T ], (5.14)

where fik is the (i, k) entry of F , gij is the (i, j) entry of G, D is diagonal with dk as its

kth entry, and H has hjk as its (j, k) entry.

Stage 1 of transmission can be shown to add one to the diversity established by Stage

2—effectively it adds one independent path fkk from sender to receiver. From now we focus

on the diversity arising from Stage 2 of transmission.
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Note that the m receivers receive both their desired signals as well as (potentially) m−1

interference terms. In [52] it has been shown that decoding signals assuming the interference

terms are noise results in a diversity of zero, for any transmission rate. Therefore [52] focused

on MAC-type decoding (see, e.g., [83]) to obtain diversity results. Here the relays assist in

eliminating the interference. Thus we choose D to satisfy:

Gm×nDn×nHn×m = cIm×m (5.15)

for a scalar c, and where Im×m represents the m×m identity matrix. As mentioned earlier,

the relay nodes are assumed to have knowledge of the channels and so are able to compute

D. Of course, since we have m2 equations in (5.15) and n unknowns (not including c), this

is only possible if n ≥ m2. We will presently assume this and in Section 5.3.3 comment on

the case n < m2.

Then we have

yT =
√
PcxT + vTDH + w. (5.16)

That is, each receiver obtains only its intended signal (plus additive noise). To ensure unit

amplification by each relay on average we additionally impose the condition
∑n

j=1 dj
2 = n.

From this constraint, we find c as follows: solve the equation GD̂H = I for D̂, then let

D = D̂/||D̂|| which has the required norm n. Then cI = GDH = GD̂H/||D̂|| from which

c = 1/||D̂||. When n > m2 there are infinitely many solutions to GD̂H = I, and we will

later argue that the optimal choice is the minimum norm solution. We assume each receiver

has knowledge of the scalar c.

We remark that the power efficiency of this interference-cancellation scheme was studied

in Section V-G of [11]. A similar interference cancellation scheme is considered in [6] where
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capacity scaling laws are derived in the asymptotic case of a large number of relays. This

requires less channel knowledge at the relays, but at least m3 relay nodes are required.

Unlike [6], in this work we are primarily interested in diversity.

5.3.2 Main Result—Outage Behavior

We now analyze the error probability behavior of the interference cancellation scheme de-

fined in the previous section. From (5.16) and recalling that each receiver knows c we can

find the mutual information for the ith transmitter-receiver pair and say that that pair is

in outage if for a given rate Ri the instantaneous mutual information is below Ri:

Ri > log

(

1 +
Pc2

1 + σ2
v ||(DH)i||2

)

, (5.17)

for i = 1, 2, . . . ,m. Here σ2
v represents the noise variance at each relay (from now we may

assume it to equal 1 as this does not affect trade-off analysis) and (DH)i is the ith column

of DH.

Assume we use a coding scheme which is approximately universal, meaning that at high

SNR an arbitrarily low probability of error can be achieved when the channel is not in

outage [68]. If no such coding scheme exists, then the analysis which follows will provide a

lower bound on the error probability (upper bound on diversity).

Hence from now we assume the dominant error event for the interference cancellation

network is outage—that is one of the users’ data rates cannot be supported due to fading.

We claim that the probability of outage described by (5.17) has the same behavior

at high SNR as Pr(log(1 + Pc2) < Ri), or in exponential equality notation we have the

following, proved in the appendix:
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Lemma 7. For the model described by (5.16) and the text thereafter, for P → ∞ we have

Pr

(

log

(

1 +
Pc2

1 + ||(DH)i||2
< Ri

))

.
≤ Pr

(

log
(

1 + Pc2
)

< Ri

)

.

Hence it suffices to consider

Pr
(

log
(

1 + Pc2
)

< Ri

)

.

If n > m2 we can minimize this probability over the infinitely many choices of D

satisfying (5.15) by choosing D to have minimal norm. We can rewrite the system GDH =

cI in the form Ad = b, where

A =











































































g11h11 g12h21 · · · g1nhn1

g11h12 g12h22 · · · g1nhn2

...
...

...
...

g11h1m g12h2m · · · g1nhnm

g21h11 g22h21 · · · g2nhn1

g21h12 g22h22 · · · g2nhn2

...
...

...
...

g21h1m g22h2m · · · g2nhnm

...
...

...
...

gm1h1m gm2h2m · · · gmnhnm











































































, (5.18)
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d =

























d1

d2

...

dn

























, b = vec(Im×m). (5.19)

(The vec operator stacks the columns of a matrix, forming a column vector.) The d

which minimizes ||d||2 = ||D||2 in this underdetermined system of equations is found by

applying the pseudoinverse:

d = A∗(AA∗)−1b.

Hence

min ||D||2 = d∗d = b∗(AA∗)−1b.

Determining the outage probability behavior at high SNR then amounts to finding

Pr
(

1
b∗(AA∗)−1b

< ε
)

. It turns out that this is of order εn−m2+1 which leads to the following

main result whose proof is given in Section 5.3.4.

Theorem 6. Consider the two-stage interference cancellation scheme described by (5.14),

with m transmitter-receiver pairs and n relay nodes (where n > m2). Choose D to satisfy

(5.15) and have norm ||D||2 = n. Then if the ith transmitter has multiplexing gain ri, the

maximum diversity of the system is at least d = (n−m2 + 2)(1 − maxi ri).

5.3.3 Discussion

Theorem 6 implies that provided relay nodes allow for independent fades to and from the

transmitter/receiver pairs, diversity can be made to grow linearly in the number of relay

nodes for rates up to the maximum possible sum rate S = m/2.



109

Of course, we need not insist that all m nodes are transmitting at once. In fact, we

cannot do so when n < m2. In this case, one can choose K < m source destination pairs

and perform the interference cancellation scheme using the remaining 2m+ n− 2K nodes

as relays (which requires 2m + n − 2K ≥ K2 or K ≤
√

2m+ n+ 1 − 1). If we perform

this for all
(M

k

)

possible combinations of K transmit/receive pairs, then each pair will be

communicating a fraction K/m of the time. Thus, assuming equal multiplexing gains ri = r,

the sum-rate now is S = rK/2. We therefore have the following result.

Theorem 7. Consider the two staged interference cancellation scheme just described. Then,

if the multiplexing gains of all users are equal, ri = r, then for a given sum-rate S, the

diversity is at least

d(S) = max
K≤

√
2m+n+1−1

(2m+ n− 2K −K2 + 2)(1 − 2S/K). (5.20)

5.3.3.1 A MAC-Based Scheme

For the sake of comparison, consider a variant of the second cooperative diversity scheme

protocol analyzed in Section 5.2.2.2, where D no longer is chosen to cancel interference

but rather a MAC-based decoder [83] is used to deal with interference. In this scheme,

initially K of the m transmitters transmit their signals simultaneously as before while the

corresponding K receivers listen. In the next K stages the remaining 2(m−K) + n nodes

transmit what they received to one of the receivers by choosing their phases in such away

that the signals are received coherently for that receiver. This is repeated K times for

each receiver. This (K + 1)-stage process then is repeated for all
(

m
K

)

combinations of k

transmit/receive pairs. If we assume all the multiplexing gains are equal the sum rate of

this scheme is S = K
K+1mri. In the previous section we saw that such a scheme achieves
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diversity equal to the number of independent paths established between transmitter and

receiver: 2(m−K) + n+ 1.

Maximizing this over choices of K we obtain the following trade-off curve:

d(S) = max
K∈{1,...,m}

(2m− 2K + n+ 1)

(

1 − 1 +K

K
S

)

. (5.21)

Functions (5.20) and (5.21) are plotted together with the interference cancellation scheme

in figure 5.8 for the cases m = 2, n = 6 and m = 3, n = 10. We see that both curves match

at low rates, at intermediate rates the MAC-based scheme achieves higher diversity, but

the interference cancellation scheme is able to achieve diversity at higher rates. In fact, the

main motivation for considering the scheme of this work is that the MAC scheme allows

only sum-rates up to m
m+1 , whereas interference cancellation allows for transmission up to

a rate of S =
√

2m+n+1−1
2 .

5.3.4 Proof of Main Result

In this section we prove Theorem 6. We wish to show that if A and b have the form given

in (5.18) then Pr
(

1
b∗(AA∗)−1b

< ε
)

∼ εn−m2+1. The final result follows from noting that the

direct transmission of Stage 1 adds one to the diversity.

Order the singular values of A as 0 < σ1 ≤ σ2 ≤ . . . ≤ σm2 . Then the eigenvalues of

(AA∗)−1 are 1
σ2
1
> 1

σ2
2
> . . . > 1

σ2
m2

. This implies

1

b∗(AA∗)−1b
≥ σ2

1

||b||2 =
σ2

1

m

⇒ Pr

(

1

b∗(AA∗)−1b
< ε

)

≤ 1

m
Pr
(

σ2
1 < mε

)

.

By performing this bound we lose the structure of b but encouraged by figure 5.9 the
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Figure 5.8: Interference cancellation and MAC-based diversity-rate trade-off curves.
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Figure 5.9: Simulated probability density of 1
b∗(AA∗)−1b

(top histograms) and the minimum

singular value of A defined in (5.18) (lower histograms). We claim that both have diversity
n−m2 + 1, which can be seen by the derivative at the origin behaving like εn−m2

(m = 2,
n = 6 for the left plots, m = 3, n = 10 for the right plots).

diversity is unchanged when making this approximation. In other words the bound is

sufficiently tight for our purposes.

Now we wish to prove that Pr
(

σ2
1(A) < ε

)

∼ εn−m2+1. The problem has been reduced

to identifying the distribution of the smallest singular value of A near the origin. If the

matrix A were to have independent CN (0, 1) entries, this result can be shown to be true by

adopting the approach of [82] using the known joint distribution of the eigenvalues. In our

case the entries of A in (5.18) are dependent, and so computing the eigenvalue distribution

is far more involved, and we adopt an alternative approach.

The set of m2 ×n matrices may be viewed as points in the vector space C
m2n. Matrices

of the form A in (5.18) form a lower-dimensional submanifold; denote this space by T . That

is,

T :={A ∈ C
m2×n : Aj

ik = gijhjk,where gij , hjk ∈ C, i = 1, . . . ,m, j = 1, . . . , n, k = 1, . . . ,m}.

(5.22)
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Assigned to T is a probability distribution induced by the complex Gaussian variables gij

and hjk. The matrices with smallest squared singular value less than ε will lie within a

neighborhood of radius
√
ε of the submanifold of matrices having rank lower than m2 (call

this submanifold U and the neighborhood Uε). In other words,

U := {A ∈ C
m2×n : σmin(A) = 0}, (5.23)

Uε := {B ∈ C
m2×n : ∃A ∈ U such that ||B −A||2 < ε}. (5.24)

To see this, writing the singular value decomposition of A as Q1ΣQ2 where Q1 and Q2

are unitary and Σ = diag(σ1, . . . , σm2). Then letting Σ′ = diag(0, σ2, . . . , σm2) the matrix

A′ := Q1Σ
′Q2 is not of full rank and

||A−A′||2 = ||Q1(Σ − Σ′)Q2||2

= ||Q1diag(σ1, 0, . . . , 0)Q2||2

= ||q1σ1q2||2

where q1 is the first column of Q1 and q2 is the first row of Q2

= σ2
1tr(q1q2)(q1q2)

∗

= σ2
1trq1q2q

∗
2q

∗
1

= σ2
1trq1q

∗
1 since q2 is a unit row vector

= σ2
1trq

∗
1q1

= σ2
1tr1 since q1 is a unit vector

= σ2
1 .

Hence if σ2
1 < ε then A will be within distance

√
ε of a matrix of lower rank (A′).
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Figure 5.10: Intersection of submanifolds T and U . To identify the region T ∩Ue we find for
each a ∈ T ∩U the vectors tangent to T and U at a. This is found from the parametrizations
of T and U .

We are interested in the probability that a matrix from T is in Uε. This will be given

by integration of the probability density function of A over the region T ∩ Uε. As we shall

see the density function is sufficiently well behaved, so the answer will be directly related to

the volume of the region T ∩Uε. This requires knowledge of how the submanifolds T and U

intersect, which in turn involves computation of their tangent spaces at a (see figure 5.10).

This is based on the respective parametrizations of T and U at a, which we consider next.

5.3.4.1 Parametrization of Submanifolds

All m2 × n matrices of rank at most m2 − 1 (recall n > m2) may be specified by m2 − 1 of

the vectors, with the remaining vectors being linear combinations of these. Hence we may

write

A = [X|XG], (5.25)

where X is an m2 × (m2 − 1) matrix and G is an (m2 − 1)× (n−m2 +1) matrix of complex

numbers specifying the linear combinations.

Observe that the columns of A are independent. For any j ∈ {1, 2, . . . , n} the 2m − 1
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values,

g1jhj1, g1jhj2, . . . , g1jhjm, g2jhj1, g3jhj1, . . . , gmjhj1, (5.26)

specify any other entry of A. This is true by the identity

gijhjk =
g1jhjk × gijhj1

g1jhj1
.

Hence by permuting rows as necessary, a parametrization for A may be given by

A =









Y

f(Y )









, (5.27)

where Y is a (2m − 1) × n matrix, and f(Y ) is an (m − 1)2 × n matrix whose entries are

of the form yijykj/y1j , where i ranges from 2 to m, k ranges from m + 1 to 2m − 1 and j

ranges from 1 to n.

5.3.4.2 Integration over Submanifolds

For a given point a ∈ T ∩U we identify the number of linearly independent directions from

a normal to U and tangential to T . This allows us to carry out the integration over two

stages. Firstly we integrate over T ∩Uε these dimensions. In the second stage we integrate

over all a ∈ T ∩U . That is, we perform the change of variable A→ (a,w) where a ∈ T ∩U

and w ∈ T ∩ Uε and the desired probability may be written in the form

Pr
(

σ2
1 < ε

)

=

∫

A∈T∩Uε

p(A) dA

=

∫

a∈T∩U

∫

w∈T

||w−a||2<ε
p(a,w)

√

det[J(a,w)J(a,w)∗ ] dwda, (5.28)
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where p(a,w) is the probability density function of Y evaluated at (a,w) ∈ T (given in

Lemma 8). The inner integral is done in directions normal to U at a.

The determinant factor here represents the volume of an infinitesimal element in the

m2n-dimensional space: J(a,w) is the matrix whose columns span the tangent space of T ∩

Uε at a. The inner integral is done in directions normal to U at a and may be approximated

by an integral over a sphere of radius
√
ε centered at a.

The following lemma (proof in the appendix of this chapter) gives the pdf of matrices

in T explicitly.

Lemma 8. The density of the (2m − 1) × n matrix Y , having jth column with (2m − 1)

values described in (5.26) (where the g’s and h’s are independent CN (0, 1) variables), is

given by

p(Y ) =
n
∏

j=1

2

π2m−1|y1j |2(m−1)
×K0





2

|y1j |

√

√

√

√

(

m
∑

i=1

|yij |2
)(

|y1j|2 +
2m−1
∑

i=m+1

|yij|2)
)



 ,

where K0(x) :=
∫∞
0 exp(−t2 − x2/4t2) dt is a modified Bessel function of the second kind.

The Bessel function K0(x) is monotonically decreasing in x and known [2] to behave

like ln(1/x) as x → 0 and like exp(−x) as x → ∞. Furthermore the determinant in (5.28)

is a ratio of two polynomials in its entries, so the asymptotic behavior of the integrand is

dominated by that of the density function p. Knowledge of the asymptotic behavior of p

enables us to upper bound the inner integral of (5.28) as

(ε ln(1/ε))k(a)g(a), (5.29)

where g : T∩U → R is some function independent of ε and g(a) ∼ ln(1/||a||) as ||a|| → 0 and
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g(a) ∼ exp(−||a||) as ||a|| → ∞. The inner integral is over a small neighborhood of a, and

since the integrand is continuous, its value by the mean value theorem is close to the volume

of that neighborhood times the value of the density function at a. This neighborhood is

approximated by a sphere of dimension k(a) centered at a and of radius
√
ε. The additional

ln(1/ε) factor takes into account the behavior of p near the origin.

The next result ensures that the small neighborhood in this integral is of the appropriate

dimension for our main result to hold.

Lemma 9. In (5.29), the upper bound for the inner integral of (5.28), k(a) = n−m2 + 1

almost surely.

Proof. Given the parametrizations we take derivatives of each entry of a ∈ T with respect to

each variable to form a matrix whose columns are tangent vectors. Let B and E respectively

be the m2n× (2m− 1)n and m2n× (n+ 1)(m2 − 1) matrices corresponding to T and U .

From (5.25) the corresponding matrix for the submanifold U of matrices of smallest

singular value zero is

E =









Im2(m2−1) 0m2(m2−1)×(m2−1)(n−m2+1)

GT ⊗ Im2 In−m2+1 ⊗Xm2×(m2−1)









, (5.30)

where ⊗ represents the Kronecker product of matrices [26]. E has dimension

m2n× (n+ 1)(m2 − 1). From (5.27) the corresponding matrix for submanifold T is

B = diag(B1, B2, . . . , Bn), (5.31)
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where

Bj =









I2m−1

Cj









,

and Cj is an (m− 1)2 × (2m − 1) block containing derivatives of f(Y ), thus having terms

of the form yij/y1j or −yijykj/y
2
1j .

E can be shown to be full rank, which tells us there are n−m2 +1 linearly independent

directions from a normal to U (in the nullspace of U). For all of these directions to be in

the tangent space of a ∈ T require the augmented matrix [B|E] to be full rank (i.e., its

columns span the m2n-dimensional space). Equivalently this condition requires

det[B|E][B|E]∗ 6= 0,

i.e., det(BB∗ +EE∗) 6= 0. (5.32)

If this were not the case, the submanifolds S and T as illustrated in figure 5.10 would

not intersect transversally and we can no longer claim that there are n−m2+1 independent

directions in which T ∩ Uε is small.

This determinant (5.32) can be shown to be not identically equal to zero by finding

an instance of a for which the determinant is non-zero. As the determinant is a smooth

function of its entries, this tells us the determinant is non-zero almost surely for a ∈ U ∩T .
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From (5.30) and (5.31) we observe that

BB∗ +EE∗

= diag{B1B
∗
1 , B2B

∗
2 , . . . , BnB

∗
n} +









I Ḡ⊗ I

GT ⊗ I (GT Ḡ⊗ I) + (I ⊗XX∗)









=









I + diag{B1B
∗
1 , . . . , Bm2−1B

∗
m2−1} Ḡ⊗ I

GT ⊗ I (GT Ḡ⊗ I) + (I ⊗XX∗) + diag{Bm2B∗
m2 , . . . , BnB

∗
n}









.

Using the result

det









A B

C D









= detAdet(D − CA−1B),

we see that det(BB∗+EE∗) is non-zero if and only if both det(I+diag(B1B
∗
1 , . . . , Bm2−1B

∗
m2−1)),

and the determinant of its Schur complement [26] in BB∗ + EE∗ (i.e., det(D − CA−1B))

are each non-zero. The former is true since it is the determinant of the sum of a positive

definite and positive semidefinite matrix. To see that the Schur complement does not have

identically zero determinant, we evaluate it for one easily computable case of a ∈ U ∩ T .

One such instance is letting

G =

























1 1 . . . 1

0 0 . . . 0

...
...

...
...

0 0 . . . 0

























.

This corresponds to the last n−m2 + 1 columns of A each being copies of the first column.
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In this case GTG is a matrix having all 1s. Since

























I 0 0 . . . 0

I 0 0 . . . 0

...
...

...
...

...

I 0 0 . . . 0

























A

































I I . . . I

0 0 . . . 0

0 0 . . . 0

...
...

...
...

0 0 . . . 0

































=

























A11 A11 . . . A11

A11 A11 . . . A11

...
...

...
...

A11 A11 . . . A11

























,

where A11 is the top left subblock of A, the Schur complement is

diag{XX∗+Bm2B∗
m2 , . . . , XX

∗+Bn2B∗
n2}+

























I − (I +B1B
∗
1)−1 . . . I − (I +B1B

∗
1)−1

I − (I +B1B
∗
1)−1 . . . I − (I +B1B

∗
1)−1

...
...

...

I − (I +B1B
∗
1)−1 . . . I − (I +B1B

∗
1)−1

























.

This, being the sum of a positive definite and positive semidefinite matrix, has non-zero

determinant. Hence det(BB∗ + EE∗) 6= 0 in this instance and we conclude that almost

surely there exist n−m2 + 1 linearly independent directions from a normal to U contained

within the tangent space of a ∈ T .

From Lemma 9 the outer integral becomes simple—the integrand is now bounded above

by a constant multiple of p(a)(ε ln(1/ε))k(a). Since g(a) has the appropriate asymptotic

properties and k is almost surely n − m2 + 1, the outer integral will be some constant

multiplied by (ε ln(1/ε))(n−m2+1) ∼ εn−m2+1, and we are done. That is, the maximum

diversity of the system is n−m2 + 2.
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5.3.4.3 Special case: m = 1

The previous analysis is unnecessary in the smallest case of m = 1. In this instance, A in

(5.18) has n copies of f1kgk1, so σ2
1 =

∑n
k=1 |f1kgk1|2. Hence

Pr
(

σ2
1 < ε

)

= Pr

(

n
∑

k=1

|f1kgk1|2 < ε

)

≤ Pr
(

|f1kgk1|2 < ε, k = 1, . . . , n
)

= (Pr
(

|f1kgk1|2 < ε
)

)n

≤ (ε ln(1/ε))n from (5.8).

Hence, after incorporating the direct source-destination link, the diversity is n + 1 = n −

m2 + 2.

5.4 Summary

Two types of wireless networks were investigated. Firstly we studied a two-user interference

channel with and without cooperation and derived the results of table 1, calculating the

rate-diversity relationship for well-known transmission schemes. In the case when nodes do

not cooperate the diversity is at most one, but rate can be maximal. We have shown a

cooperative strategy where this diversity may be increased up to three, but at the cost of a

significant reduction in the rate. Such diversity increases require coherent addition at the

receivers, which in turn requires channel knowledge at the relays.

Secondly we studied a network with relays and showed how channel knowledge at the

relays can enable interference cancellation to occur at the receivers. For a sufficiently large

number of relay nodes, this can cause a linear increase in diversity. It would be worth
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studying further whether the method of analysis given can be applied to other wireless

schemes.

5.5 Appendix—Proof of Lemmas

Lemma 7. For the model described by (5.16) and the text thereafter, for P → ∞ we have

Pr

(

log

(

1 +
Pc2

1 + ||(DH)i||2
< Ri

))

.
≤ Pr

(

log
(

1 + Pc2
)

< Ri

)

.

Proof. Let ε = (2Ri − 1)/P which is small for P large. For any x > 0 we have

Pr

(

c2

1 + ||DHi||2
< ε

)

= Pr

(

c2

1 + ||DHi||2
< ε, ||DHi||2 < x)

)

+Pr

(

c2

1 + ||DHi||2
< ε

∣

∣

∣

∣

||DHi||2 > x

)

.Pr
(

||DHi||2 > x
)

≤ Pr
(

c2 < ε(1 + x), ||DHi||2 < x
)

+Pr

(

c2

1 + ||DHi||2
< ε

∣

∣

∣

∣

||DHi||2 < x

)

.Pr
(

||DHi||2 > x
)

≤ Pr(c2 < ε(1 + x)) + Pr(||DHi||2 > x). (5.33)

Working on the second term here, we have

||DHi||2 =
∑

j=1

|djhij|2

≤
n
∑

j=1

|dj |2
n
∑

j=1

|hij |2

= n
n
∑

j=1

|hij |2

≤ nmax
j

|hij |2.
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Hence we find

Pr
(

||DHi||2 > x
)

≤ Pr

(

nmax
j

|hij |2 > x

)

= 1 − (1 − e−x/n)n

(using the cdf expression for the maximum of n

independent exponential random variables)

≤ 1 − (1 − ne−x/n)

= ne−x/n.

That is, since ||DHi||2 has an exponential tail, we may set x to K ln(1/ε), for some

constant K independent of ε, so that, from the two terms of (5.33) can both be made to be

of the same order:

Pr

(

c2

1 + ||DHi||2
< ε

)

≤ Pr(c2 < ε(1 + x)) + Pr(||DHi||2 > x)

.
= Pr(c2 < ε(1 + x))

.
= Pr

(

log(1 + Pc2) < Ri

)

,

and we are done.

Lemma 8. The density of the (2m − 1) × n matrix Y , having jth column with (2m − 1)

values described in (5.26) (where the g’s and h’s are independent CN (0, 1) variables), is
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given by

p(Y ) =
n
∏

j=1

2

π2m−1|y1j |2(m−1)
×K0





2

|y1j|

√

√

√

√

(

m
∑

i=1

|yij|2
)(

|y1j |2 +
2m−1
∑

i=m+1

|yij|2)
)



 ,

where K0(x) :=
∫∞
0 exp(−t2 − x2/4t2) dt is a modified Bessel function of the second kind.

Proof. The columns of Y are independent so p(Y ) =
∏n

k=1 p(Yk) where Yk is the kth

column of Y . Hence we wish to show that given f1, . . . , fm, g1, . . . , gm ∼ CN (0, 1), the joint

distribution of uij := figj is given by

p(u11, . . . , u1m, u21, . . . , um1) =
2

π2m−1|u11|2(m−1)
K0





2

|u11|

√

√

√

√

m
∑

i=1

|ui1|2
m
∑

j=1

|u1j |2


 .

Define the set of random variables

Z1 = |f1|, Z2 = |f2g1|, . . . , Zm = |fmg1|, Zm+1 = |f1g1|, Zm+2 = |f1g2|, . . . , Z2m = |f1gm|.

(5.34)

Then observe that
2m
∏

i=1

Zi = |f1|m|g1|m−1
m
∏

i=1

|fi||gi|. (5.35)

The Jacobian of this transformation is formed by taking derivatives of the Z’s with
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respect to the |f |’s and |g|’s.

∂(Zi)

∂(|fj |, |gj |)
=



























































1 |g1| |g2| . . . |gm|

|g1|
. . .

|g1|

0 |f2| . . . |fm| |f1|

|f1|
. . .

|f1|



























































.

The determinant of this matrix is (|f1||g1|)m−1|f1|. Then, by the change of variable formula,

p(Z1, . . . , Z2m) = p(|f1|, . . . , |fm|, |g1|, . . . , |gm|)
∣

∣

∣

∣

det
∂(Zi)

∂(|fj |, |gj |)

∣

∣

∣

∣

−1

=

m
∏

i=1

2|fi|e−|fi|2
m
∏

i=1

2|gi|e−|gi|2 [(|f1||g1|)m−1|f1|]−1

since the |f |s and |g|s are i.i.d. random variables with Rayleigh

distribution

= 22m

∏2m
i=1 Zi

|f1|m|g1|m−1
e
−

„

Z2
1+

Pm
i=2

Z2
i

|g1|
2

«

e
−P2m

i=m+1

Z2
i

Z2
1

1

|f1|m−1|g1|m−1|f1|

from (5.35)

= 22m

∏2m
i=1 Zi

Z1Z
2(m−1)
m+1

e
−

„

Z2
1+

Pm
i=2

Z2
i Z2

1
Z2

m+1

«

e
−

P2m
i=m+1

Z2
i

Z2
1 .
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Hence from (5.34),

p(|f1|, |u21|, . . . , |um1|, |u11|, . . . , |u1m|)

= 22m

∏m
i=1 |u1i|

∏m
i=1 |ui1|

|f1||u11|2(m−1)
exp

(

−|f1|2
(

1 +
m
∑

i=2

|ui1|2
u11|2

))

exp

(

2m
∑

i=m+1

|u1i|2
|f1|2

)

.

Now let us consider the phases θi of f1, f2g1, . . . , fmg1, f1g1, . . . , f1gm. Let φi be the phase

of fi, ψi be the phase of gi, i = 1, . . . ,m. Then φi and ψi are independent and have uniform

distributions from 0 to 2π. From the equations

θ1 = φi, θ2 = φ2 + ψ1, . . . , θm = φm + ψ1, θm+1 = φ1 + ψ1, . . . , θ2m = φ1 + ψm,

we have

p(θ1, . . . , θ2m) = p(φ1, . . . , φm, ψ1, . . . , ψm)

∣

∣

∣

∣

det
∂θi

∂(φj , ψj)

∣

∣

∣

∣

−1

=

(

1

2π

)2m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 . . . 1

1

. . .

1

0 1 . . . 1 1

. . .

1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1

=

(

1

2π

)2m

.

We conclude that the phases of Z1, . . . , Z2m are uniform and so the joint density of
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f1, u21, . . . , um1, u11, . . . , u1m is

p(f1, u21, . . . , um1, u11, . . . , u1m)

=
p(|f1|, |u21|, . . . , |um1|, |u11|, . . . , |u1m|)

2π|f1|
∏m

i=1 2π|ui1|
∏m

i=2 2π|u1i|
(5.36)

=
1

π2m|f1|2|u11|2(m−1)
exp

(

−|f1|2
(

1 +

m
∑

i=2

|ui1|2
|u11|2

))

exp

(

2m
∑

i=m+1

|u1i|2
|f1|2

)

. (5.37)

Equation (5.36) is simply the generalization of the result that if z = rejθ and θ has a

uniform distribution, then p(z) = p(r)/(2πr).

Integrating (5.37) over f1 which has uniform phase:

p(u21, . . . , um1, u11, . . . , u1m)

=

∫ ∞

0
2π|f1|p(f1, u21, . . . , um1, u11, . . . , u1m) d|f1|

=
2

π2m−1|u11|2(m−1)

∫ ∞

0

exp
(

−|f1|2
(

1 +
∑m

i=2
u2

i1
|f1|2

))

exp
(

−∑m
i=1

u2
1i

|f1|2
)

|f1|
d|f1|.(5.38)

Using the result
∫∞
0

exp(−|f1|2α−β/|f1|2)
|f1| d|f1| = K0(2

√
αβ) with α = 1 +

Pm
i=2 |ui1|2
|f1|2 , β =

∑m
i=1 |u1i|2, from (5.38) we obtain

p(u11, . . . , u1m, u21, . . . , um1) =
2

π2m−1|u11|2(m−1)
K0





2

|u11|

√

√

√

√

m
∑

i=1

|ui1|2
m
∑

j=1

|u1j |2


 ,

as required.
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[70] A. Tulino and S. Verdú. Random Matrix Theory and Wireless Communications. Now

Publishers, Hanover, MA, 2004.

[71] R. Vaze and B. Sundar Rajan. On space-time trellis codes achieving optimal diversity-

multiplexing tradeoff. IEEE Trans. Inform. Theory, 52:5060–5067, Nov. 2006.



136
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