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General Introduction

The world’s population will increase to 8.1 billion around year 2025 [Norman and
Skinner (2006)]. Continuous growing of world population as well as an increasing per-
centage of aging population has placed a heavy burden to our public health care systems,
whose resources are always limited. It is nowadays challenging to provide in-hospital
health care and monitoring to every person in the target population. In Europe, with the
falling GDP (Gross Domestic Product) and rising unemployment, this burden could be
further increased [Thomson (2013)]. This could bring about serious social problems from a
worldwide perspective as public health services and investments in those less-developed
counties are significantly below the average of that in developed countries, threatening
people’s life.

To solve the above-mentioned issue, e-health has gained considerable attention in the
literature and practice. Here, we quote the definition of this emerging technology as "e-
health is an emerging field in the intersection of medical informatics, public health and business,
referring to health services and information delivered or enhanced through the Internet and related
technologies. In a broader sense, the term characterizes not only a technical development, but also
a state-of-mind, a way of thinking, an attitude, and a commitment for networked, global thinking,
to improve health care locally, regionally, and worldwide by using information and communication
technology" [Eysenbach (2001)]. As the quotation indicates, e-health is a broad concept,
which covers aspects such as remote health care and health surveillance, health literature,
health information system, medical expert system, etc. Recently, e-health has advanced
significantly with the broad use of Personal Computers (PCs), portable smartphones, Per-
sonal Digital Assistant (PDA) or hand-held tablet computers. High agree acceptance of
e-health by patients as well as improved skill set of medical professionals further con-
tributes to this trend [Norman and Skinner (2006)]. E-health also has the potential to
largely improve the efficiency of the current public health care system, reallocate scarce
medical resources as well as reduce medical costs.

In modern society, as a result of fast developing technologies in microelectronics, sen-
sors and actuators, telecommunications, computer-aided decision-making and artificial
intelligence, human disease assessment and online and remote health monitoring using
wearable systems have been brought to our attention. As a powerful online and remote
monitoring and illness prevention approach in the context of e-health, wearable systems
have their unique and precious advantages compared to hospital-based health care such
as 1) a remote and in-home setting enables the target patients to be monitored anywhere
at anytime, 2) being wearable, they can integrate into our daily life without interfering
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with our routine activities, 3) wearable devices are small and less-expensive, thus more
consumer-accessible, and 4) they help to reduce the burden of current public health care
system and reallocate public health resources more reasonably (patients go to hospital
only when necessary or emergency) [Baig et al. (2017)] [Fernández-Caramés et al. (2018)].
As a result, this technology has broaden the concept of health care from clinical medicine
with in-hospital settings to a much larger scope. Today, wearable systems can be seen
almost everywhere in our daily life: Smart bracelets/smart watches for sport and fitness
tracking [Samsung Galaxy Fit], chest straps for Electrocardiogram (ECG) monitoring
[Polar H10], smart shirts for respiratory diseases diagnosis [Hexoskin Smart Shirt], smart
garments that offer protection and are used by people involved in special type of work
(e.g. firefighters [TextileToday], soldiers, etc), the list goes on. Wearable technology is of
great potential for providing ubiquitous health monitoring and remote health care to
everyone of us.

In this context, our research team has engaged in a research project which applies
e-health in antenatal care - more precisely, we aim at developing a wearable system for
the online monitoring of fetal movements. Fetal movements are a crucial indicator of
fetal health condition, and regular fetal movement monitoring during pregnancy plays
an important role in ensuring normal fetal development, improving maternal and fetal
outcomes. The motivation and initiative of our project lies in addressing the drawbacks
and inconvenience of the current clinically-available fetal health monitoring technologies:
1) maternal perception of fetal movements suffers from subjectivity and being impre-
cise, which in turn causes anxiety to the mother, whereas 2) in most cases, an advanced
and accurate fetal health evaluation could only be done in hospital with expensive in-
struments/devices and experienced professionals. As a result, there is a strong need to
develop an reliable, automated, less-expensive and easily-accessible method for the eval-
uation of fetal health during pregnancy.

The wearable system proposed in this work fully addresses the above issues. It features
a garment integrating several accelerometer sensors for data acquisition of fetal movement
signals, a local decision support unit and a cloud-computing platform together with a re-
mote expert system. This system is able to automatically and continuously monitor fetal
movements while the mother does not need to go to the hospital - she can stay at home
while the health condition of her fetus is reliably monitored on an online and real-time
basis. Moreover, key information about her baby is uploaded to the cloud-computing
platform while advanced diagnosis and consultations from the assigned expert are sent
remotely back to the mother. Compared to existing works in the literature which are
mostly focused on only the data acquisition and processing of fetal movement signals
using accelerometers [Boashash et al. (2014)] [Altini et al. (2017)] [Minjie et al. (2012)],
this work features the following remarkable original contributions: 1) an all-round design
of the garment/textile as well as a reasonable integration of garment/electronic devices
thereby significantly improving the comfort and usability of the proposed wearable sys-
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tem, 2) the intelligence of the wearable system as a whole has been further improved
with a distributed deployment of AI (Artificial Intelligence)-based signal processing and
decision-making algorithms, as well as the communication and interaction with a cloud
expert system, and 3) an effective fetal movement counting algorithm based on the anal-
ysis of the acquired fetal movement acceleration signals (quantitative evaluation), as well
as a decision making system for the qualitative evaluation of fetal health condition on a
long-term basis.

This work is of a multidisciplinary nature, which makes full use of the cutting-edge
techniques in the field of textile, sensor technology, IoT (Internet of Things), edge com-
puting and embedded AI. As a result, the development of this wearable garment for
fetal health monitoring comprises multiple aspects: from fabric selection and garment
style design to hardware circuit design; from manual extraction of features from sensor-
recorded fetal movement signals to employing Machine Learning (ML) algorithms for
automated signal classification and analysis; from the accurate detection of every single
fetal movement signals to the overall evaluation of fetal well-being by statistical counting
and analyzing fetal movements during a long period.

This research work is financially supported by the French national research agency
(Agence Nationale de la Recherche, ANR) from the year 2015 to 2019 in the frame of
French national research project IOTFetMov (project number: ANR-14-CE24-0035-01). It is
in collaboration with CIC-IT of Lille, the French clinical investigation center for innovative
technology.

In the following chapters of this thesis the reader will find all the information needed
for having a better understanding of the project. The rest of this thesis is organized as
follows: Chapter 1 gives a brief presentation of the research context with regard to two
different parts: the promise of wearable technologies and the challenges in the current
techniques for fetal movement monitoring, respectively, and further discusses our objec-
tive of developing a wearable system to solve the existing issues. Chapter 2 describes an
overview of the algorithms and methodologies applied in our work in order to develop
this system. The other chapters further discuss the key parts and original contributions
of the proposed system: Chapter 3 presents the work concerning the garment and fabric
design, Chapter 4, 5 and 6 have attempted to solve one of the toughest issues in existing
sensor-based fetal movement monitoring approaches which hinder their successful appli-
cation in clinical practice - how to effectively capture fetal behaviors with accelerometers
while successfully distinguishing real fetal movements from other artifacts. Take one step
further, Chapter 7 introduces our work on how to accurately, reliably and continuously
evaluate fetal health condition based on the fetal movement signals, not just focused on
the manual acquisition of these signals - as most other studies still struggle at their current
research stages.
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1Research Context

1.1 Introduction

Wearable technology has a promising future in online, remote and ubiquitous moni-
toring of human health condition, activity & fitness tracking and environment monitoring.
There has already been a noticeable successful wearable products and solutions - that the
reader will discover later in this chapter, both in the literature and industry. Being a mem-
ber of garment-based wearable system, the system proposed in our work aims to apply
the latest advances in wearable technology to solve an important issue in antenatal care -
how to reliably, easily accessibly and continuously monitor fetal movements.

Divided into three parts, this chapter will give the reader a global and comprehensive
context related to our research work. First, we will give a brief overview of current
clinically-available technologies for fetal movement monitoring during pregnancy. Their
existing issues and challenges are pointed out, followed by an review of up-to-date, sensor
technology-based solutions (most of them are accelerometer-based) proposed by related
research works/publications in the literature. However, as the reader will discover later
in this chapter, these solutions collectively suffer from disadvantages such as impractical
to use, low comfort level, low reliability and low robustness, not suitable for long-term
use, etc. This context inspires us to make full use of advanced wearable technology with
integrated sensors and embedded AI to overcome the just-mentioned issues. In order
to give the reader a general idea about how wearable technology works in providing
handful, flexible, comfortable and continuous monitoring of human health and activity,
we introduce in the second part of this chapter a concise review of the state-of-the-art
wearable systems dedicated to a variety of health monitoring-related, disease prevention-
related and fitness/activity tracking-related applications. In the third part of this chapter,
we introduce AI algorithms that have been studied or applied in medicine. Finally, this
chapter ends with a clear statement of our research mission and objective: design and
development of a garment-based wearable system which is exclusively used for online
monitoring of fetal movements. Our research work aims to address the existing issues
that current fetal monitoring techniques are facing by inheriting the inherent advantages
of sensor technology and wearable systems such as low-cost, out-of-hospital settings,
remote and ubiquitous monitoring as well as the ability of long-term and continuous
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monitoring without causing discomfort to the user. A more detailed presentation is given
in the rest of this chapter.

1.2 Fetal Well-being Assessment: State-of-the-Art Techniques

and Challenges

Despite advances in diagnosis and prenatal management, stillbirths are still a major
problem around the world today [J.E. et al. (2016)]. It is reported that nearly 3 million
fetuses are died during third trimester of pregnancy each year around the world, most
of which occur in low-income and middle-income countries [Goldenberg et al. (2011)].
Evidence shows that some high-income countries have already lowered their stillbirth
rate to fewer than 5 per 1000 births by improving the quality of antenatal care. However,
countries with poor health care infrastructures still suffer significantly problems related
to high stillbirth rate.

Researchers continue to develop and test new techniques to reduce fetal deaths. Fol-
lowing advances in medical instruments and equipments, modern clinical medicine has
made it possible to perform technology-assisted monitoring of fetal well-being through-
out the pregnancy. For example, today we can perform prenatal screening tests using
ultrasound scan technique to evaluate if any structural abnormalities exist, or conduct
maternal blood test to measure the level of key physiological indicators [Larsson et al.
(2008)], thus making early and timely treatment to save the fetus’ life.

Clinically-available technologies for performing fetal well-being assessment during
pregnancy are presented below [Johns Hopkins Medicine].

1.2.1 Doppler ultrasound and ultrasound imaging

Ultrasound-based technology can be used during early, middle and late pregnancy for
different purposes. Conventional ultrasound techniques such as 2D and 3D ultrasound
provide static images of the fetus’ body parts, whereas Doppler ultrasound, based on
the Doppler effect, can be used to visualize internal moving objects such as fetal blood
flow. Being largely utilized in clinical practice for decades, though, concerns have been
expressed about the exceeded exposure of ultrasound, which could have a negative effect
on maternal and fetal outcome [Houston et al. (2009)]. For more detailed information
about ultrasound technology for fetal assessment, the reader is referred to [Stampalija
et al. (2010)].

1.2.2 Fetal heart-rate monitoring

Usually performed during late pregnancy and labor, fetal heart-rate monitoring as-
sesses the rate and rhythm of the fetal heartbeat. Abnormalities on the fetal heartbeat
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could be a sign of compression of umbilical cord or fetal hypoxia [Struzik et al. (2001)].
Fetal heart-rate monitoring can be done by using Cardiotocography (CTG) or fetal Elec-
trocardiography (fECG) [Alfirevic et al. (2017)][Peters et al. (2004)].

The two above-mentioned technologies are commonly used in clinical practice with
high reliability and accuracy. However, they usually require an in-hospital settings and
trained personnel to manipulate the device, considerably limiting their availability.

1.2.3 Fetal Movement Monitoring: An Easily-Accessible Way to Assess Fetal Well-
being

Fetal movements, the spontaneous motions of a fetus in utero that generated by
his/her own muscles, are early expressions of fetal neural activities [Lai et al. (2016)]
[Nowlan, N. C. (2015)]. Fetal movements can be felt by the mother from as early as 16

gestational weeks until late pregnancy. It is also reported that fetal movements perceived
by the mother can be of different types and patterns as pregnancy progresses, such as fetal
limb movements (kick, punch), body movements (twitch, twist, wriggle, roll), head move-
ments, respiratory or a combination of the just-mentioned movements [Birnholz et al.
(1978)]. However, most fetal movements perceived by the mother are fetal kicks because
they are stronger and more powerful, thus easy to be felt. In fact, in clinical practice, doc-
tors and pregnant women often use the term "fetal kicks" to refer to fetal movements (see
Fig 1.1).

Figure 1.1 – A fetal leg movement ("fetal kick") of 20 weeks shown in MRI (Magnetic Resonance Imaging)
Scan (adapted from [Verbruggen et al. (2018)]).

Regular fetal movements are a positive indicator of fetal well-being, whereas both
changes and disappearance of fetal movements could be an sign to fetal hypoxia [Heazell
et al. (2008)], fetal growth restriction [Jakes et al. (2018)] and neurological dysfunction
[Prechtl (1990)]. It is also observed that fetal breathing movements could be reduced in
cases of placental insufficiency [Neerhof et al. (2008)]. To save life of a fetus in case of
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high risk pregnancy especially when placental insufficiency is long-standing, monitoring
of fetal movements and early detection of fetal compromise during pregnancy has its
greatest value [Lai et al. (2016)].

In clinical practice as well as in academia, there exist several major methods for the
monitoring of fetal movements as listed below:

1.2.3.1 Ultrasound Imaging for Fetal Movement Monitoring

Ultrasound-based technology utilizes high frequency pulses to provide images of in-
ternal fetal anatomy, enabling the visualization of fetal movements inside the womb [Whit-
worth et al. (2015)]. Trained expertise may select the most relevant ultrasound mode based
on specific requirements and needs. Recent research on 4-dimensional (4-D) Ultrasound
technology further allows us to observe fetal movements on a real-time basis [Hata et al.
(2010)]. In the literature, real-time ultrasound imaging is often taken as the gold standard
for qualifying fetal movements. However, this technique usually requires an in-hospital
setting. Besides, overuse and non-medical use of ultrasound devices could bring negative
effects such as exposure of the fetus to ultrasound waves and potential danger caused by
uncertified or untrained operators.

1.2.3.2 Maternal Perception of Fetal Movements

In clinical practice, doctors ask pregnant women to qualitatively and routinely record
fetal movements by themselves. This technique is widely known as fetal movement count-
ing or kick counting [Preston et al. (2013)]. Maternal perceptions of reduced fetal move-
ments and early alerting caregivers in case of abnormalities help to determine the optimal
time for delivery especially for high-risk fetus, saving their lives [Neldam (1986)]. In clin-
ical practice, there exist different guidelines for how many kicks are normal in a certain
time based on each country/region’s situation and recommendations. Among them, the
famous "count-to-ten" approach is generally acknowledged within the medical commu-
nity. This approach helps effectively pregnant women to count fetal movements as well as
to identify decreased fetal movement (DFM). The "count-to-ten" approach follows the 2-
hours alarm" criteria, which means that DFM is identified if less than ten fetal movements
are perceived within 2 hours [Winje et al. (2011)]. One example of "kick chart" used by the
mother to record fetal movement counting is shown in Fig. 1.2.

Being widely used worldwide, however, the drawbacks of this approach are obvious.
First, this approach suffers from imprecision and subjectivity, therefore leading to wrong
diagnosis results. In practice, a pregnant woman usually has no time to perform long-term
counting or she cannot fully focus on feeling fetal movements when she is busy working
or caring for other babies. It is also reported that maternal counting of fetal movements
sometimes leads to unnecessary concern and anxiety to the mother, placing an additional
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Figure 1.2 – Fetal movement counting chart (reprinted from [Saastad et al. (2011)]).
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burden on hospitals and maternity healthcare providers whose resources are generally
limited [Mangesi et al. (2015)].

1.2.3.3 Accelerometer-Based Recording of Fetal Movements

As a result of fast developing technologies in microelectronics, sensors/actuators and
telecommunications, monitoring of fetal movements using accelerometer sensors con-
nected with embedded systems, portable devices or a personal computer has gained in-
creasing attention. This technique is based on the fact that the maternal abdominal wall is
thin, resulting in deflections on the abdominal wall when the fetus inside the uterus moves
his body or limbs [Stanger et al. (2017a)]. This inspires researchers to place accelerometers
on the maternal abdomen to record these deflections, and therefore to monitor fetal move-
ments in a non-invasive way. Fig. 1.3 recaps the research work presented in [Boashash et al.
(2014)], within which they utilized three tri-axial accelerometers placed on the maternal
abdomen for the recording of fetal movements (one additional accelerometer was placed
on the maternal chest in order to record maternal body motions - which are used as refer-
ence signals for artifact elimination). Similarly, a fetal movement monitoring device based
on two accelerometers proposed by [Ryo et al. (2012)] together with the fetal movement
signals acquired using their monitoring device is illustrated in Fig. 1.4.

(a) (b)

Figure 1.3 – (a) Tri-axial accelerometers are placed on the maternal abdomen for the recording of fetal
movements, and (b) the acquired fetal movement signals (adapted from [Boashash et al. (2014)]).

Several works have been published on the processing and analysis of accelerometer-
recorded fetal movement signals. Probably the first research work involved in this topic,
[Girier et al. (2010a)] utilized a simple threshold to group the sensor signals into fetal
movement or non-fetal movement based on the signal’s amplitude. [Minjie et al. (2012)] ap-
plied wavelet transform technique to decompose the signal frequency representation into
components of different levels. [Khlif et al. (2011)] [Boashash et al. (2014)] introduced TF
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(a) (b)

Figure 1.4 – (a) An accelerometer-based fetal movement recorder together with (b) an example of acquired
signals using the recorder (only acceleration signals on z-axis were studied and illustrated) with other
physiological signals e.g. maternal ECG and respiration (adapted from [Ryo et al. (2012)]).

(Time-Frequency) analysis in order to achieve a better frequency resolution of recorded
fetal movement signals. However, the drawback of their work lies in the high computa-
tional complexity which hinders it from being applied in wearable embedded systems.
[Layeghy et al. (2014)] [Altini et al. (2016)] employed machine learning technique to clas-
sify the sensor signals into fetal movement or not based on the features extracted from
these signals. [Nishihara et al. (2015)] developed a software for automated detection of
fetal movements based on analyzing the amplitude of the acquired sensor data.

The above-cited researches systematically utilized ultrasound records, which is widely
regarded as the gold standard for fetal movement monitoring, as a reference to evaluate
their proposed methods. However, using ultrasound simultaneously when recording fetal
movement signals with accelerometers raises a problem: moving the probe back and forth
could introduce additional noise which significantly interferes with the accelerometers.
To overcome this problem, [Altini et al. (2016)] [Altini et al. (2017)] utilized maternal
perceptions as a reference for fetal movement recording. Despite that the sensitivity of
maternal perceptions on the ultrasound-observed fetal movements is relatively low, using
maternal perceptions as reference rather than ultrasound is still reasonable [Hijazi et al.
(2010a)]. Finally, differing from the research works that only applied accelerometers, [Lai
et al. (2018)] presented a fetal movement monitoring system based on a combination of
accelerometers and acoustic sensors in order to deal with the problem of maternal body
motion artifacts.

Despite encouraging achievements, the above-mentioned accelerometer-based and
technique-assisted studies still face challenges before they can be widely used in clinical
practice. At the hardware level, they collectively lack a systematic consideration of im-
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plementing their proposed approaches into a portable and embedded system and further
embedding the electronic components into a garment or a wearable accessory in order to
offer a good usability and comfort to the user, limiting their potentials. At the software
level, most of the published studies only focus on the signal processing of sensor-recorded
signals and the related algorithms for the automated detection of these signals. However,
there is no study on how to relate these signals to the real health status of the fetus being
monitored.

The reader may have already noticed the numerous disadvantages of the above-
mentioned fetal monitoring techniques currently used in clinical practice or studied in
the literature, whether for those professional instruments which are expensive, low ac-
cessibility, lack of continuous monitoring ability, need of an in-hospital setting, etc., or for
the newly-developed and accelerometer-based techniques but suffering from limited com-
fort level, low portability, low reliability and low robustness, significantly limiting their
effectiveness and performance.

A combination of sensor-based approach for fetal movement monitoring with the
promise of wearable technology while enhancing the intelligence level by employing em-
bedded AI could be a good alternative to solve these issues. The following section presents
the promise of wearable technology, its successful applications as well as its potential of
solving the above-mentioned issues.

1.3 Wearable Sensors and Systems: A Brief Review

1.3.1 Wearable Technology: Next Generation of Human-Machine Interaction
Medium

Wearable systems based on wearable sensors are a broad concept, it can refer to any
electronic devices integrating small size sensors that can be worn on the human body
in order to 1) offer auxiliary functions to facilitate the everyday life of the wearer (e.g.,
providing information such as time, environmental temperature, humidity, etc.), 2) mon-
itor the health condition of the patients who are under specific situations (e.g., chronic
diseases, intensive care, rehabilitation, etc.), 3) giving guidance to the targeted population
(e.g., the elderly, the disabled, soldiers, athletes, etc.) as well as providing feedback to their
supervisors (e.g. a clinician in the hospital, an officer or a sport coach). Being the next gen-
eration of human-machine interaction medium, wearable systems have great potential in
the future.

A typical wearable system should at least comprise three basic elements, namely 1)
one or a series of sensors and/or actuators, 2) an embedded system comprising a mi-
crocontroller for on-board signal processing and storage, and 3) a physical support (e.g.,
a garment, a wristband, a chest strap, etc.) that integrates sensors and other electronic
components in order to fix them to the human body.
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At first consideration, a wearable system, as its name indicates, should be wearable
and portable. The entire device should be ergonomically and carefully designed with all
the necessary electronic components (e.g. sensors, data processing devices, battery, etc.)
embedded into that physical support which perfectly fits the human body shape. It should
provide services to the user in a comfortable, convenient and intelligible way while mini-
mizing disturbance to the user. It should be light in weight, no or little invasive. Besides,
the design of a wearable device should fully consider minimizing the restriction of the
wearer’s movements, especially if the target users are engaged with intensive physical
movements when wearing these wearable devices (e.g., a wearable system for monitoring
an athlete’s training effectiveness, or a wearable system, used for firefighters in action, that
monitors extreme environmental conditions). Obviously, a system with sensors exposed
and connected by bulky electrical wires and cables to other cumbersome devices and in-
struments, with which the wearer’s daily activities and body motions are significantly
restricted or limited, is outside the scope of the notion of "wearables".

Most recent wearable systems are equipped with a wireless communication unit for
data transmission, such as transmitting raw signals acquired with the sensors or data
from the embedded processing unit, to the nearby access point or personal computer
via short-range communication protocols (e.g., Bluetooth, Zigbee) for offline data storage
and analysis. It is worth noting that most modern wearable devices are connected to the
user’s smartphones or tablets. Connecting the wearable systems to the users’ smart mo-
bile devices brings benefits, as with the rapid development of Information Technology (IT)
and microelectronics technology, these high-end portable communication devices feature
large storage capacity for the local storage of data as well as increased computing power
which can be used for the online processing of the data from wearable sensors and sys-
tems. Besides, they are also served as a GUI (Graphical User Interface) which provides
the user with key information related to the wearable systems in a visual and intelligi-
ble way. Moreover, using these mobile devices as a network gateway or an Access Point
(AP), wearable devices can be easily connected to a remote cloud computing platform or
a remote control center via the Internet. This builds direct interactions between the wear-
ers and their supervisors which, in turn, provide remote services and consultations to
each end-user. Connecting wearable devices to a remote cloud computing platform also
helps to perform new knowledge exploitation from measured physiological data using
advanced data-mining techniques [Park et al. (2014)].

In clinical medicine, remote health monitoring using wearable systems could benefit
the public health care system as it helps to significantly reduce the use of medical re-
sources. This is because that with wearable systems, the information related to the target
patient’s health condition and other physiological parameters can be remotely and con-
tinuously monitored by the caregivers while the patient himself doesn’t have to stay in
hospital during rehabilitation.

A comprehensive architecture of a typical wearable system in the example of health
monitoring for elderly population is illustrated in Fig. 1.5. In this example, heart rate
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sensors and respiratory sensors are fixed on the patient’s body by using a body strap
while motion sensors (e.g., accelerometers) are fixed using a wristband on the wearer’s
wrist and ankle in order to maximize the acquired motion signals’ amplitude when the
wearer moves his limbs.

Figure 1.5 – General representation of a remote health monitoring system based on wearable sensors
(reprinted from [Patel et al. (2012)]).

1.3.2 Intelligent Garments

Garments or clothing are indispensable in our daily life. Our ancient ancestors learned
to cover their bodies with animal skins, leaves, stems or other natural fibers especially if
they lived in a cold climate and needed something other than their skin and hair to keep
warm. With thousands of years in the development of textile industry, people have learned
to make clothes and fabrics with yarns and fibers by using various advanced techniques
such as weaving, knitting and spinning. In modern society, we human beings need gar-
ments not only for covering our torso and limbs to protect ourselves from harsh weather,
but also for many other reasons. For example, we need special clothes to protect our skin
from harm or injury when performing dangerous labor in certain situations (e.g., high-
visibility clothing, usually called "Hi-Vis", features highly luminescent property which
protects the wearer from potential accidents by making the wearer more visible to other
people around). Besides, garments also bring us specific cultural and social meanings.

The fact that a garment is worn during most of the time in a day with close contact
to the wearer’s body motivates researchers to integrate wearable devices into the gar-
ment fabric. This brings significant advantages, since garments provide a suitable support
to those embedded wearable sensors, allowing them to be perfectly located next to the
wearer’s skin when acquiring his or her physiological and motion signals. Besides, com-
pared to wearable accessories such as wristbands or smartwatches, a garment is capable
of integrating more wearable sensors and covering larger area of human body, therefore
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collecting more physiological signals. Moreover, a garment enables to optimally design
the textile structure in order to perfectly integrate miniature electronic components con-
nected with a flexible wireless network into the garment while maintaining the comfort
and accessibility to the wearer even for a long-term use.

The above mentioned garments integrating sensors and other electronic components
into its fabric structure are commonly referred to as intelligent garments, smart clothes or
e-textiles in the literature. Considered as one category of wearable systems, an intelligent
garment is playing an essential role for human activity monitoring and physiological
health monitoring in modern society [Suh et al. (2010)]. Currently, a large number of
intelligent garment prototypes have been developed for monitoring of chronic diseases,
aged people, disabled people, etc. [Chan et al. (2012)]. Several examples are given below.

The cardiovascular illnesses can be detected from online analysis of signals of ECG
measured from the instrumented garment [Maric et al. (2009)]. For patients with diabetes,
glucose level and insulin infusion can be continuously controlled by an artificial pancreas
[Gómez et al. (2008)]. Monitoring of wearer’s posture and movements can be realized
by accelerometers mounted on a belt attached to the lumbosacral region. This allows the
evaluation of motor recovery and physical efficacy for hemiplegic stroke patients [Akay
et al. (2003)]. Human postures and gestures can be monitored by a number of accelerome-
ters and magnetometers mounted on the garment. These sensors can be electronic devices
or textile materials [Lorussi et al. (2009)]. Moreover, complex movements can be detected
by combining several mobile sensors attached to the garment: a gyroscope, a compass,
an accelerometer, a magnetometer, a piezoelectric sensor, and a GPS (Global Positioning
System) [Gabaglio et al. (2000)].

Many intelligent garment prototypes have been developed for helping aged people,
particularly for detecting wearer’s fall and geolocation. Regarding fall detection, the em-
bedded system integrated into the garment can collect signals of acceleration, vibration
and inclination in order to determine if the predefined thresholds are exceeded or not.
This system enables to take a decision from a single signal or a combination of several
different signals [Zhang et al. (2006)]. A tri-axial accelerometer mounted on the wearer’s
belt, combined with a wireless communication network of Zigbee type to a remote cen-
ter, is a method frequently used in these prototypes. The wearer’s position can also be
identified from measures of several accelerometers, mounted on five positions of the hu-
man body respectively: ankles, thighs, hip, arms and wrists, and a detection algorithm of
the microcontroller, merging all measured data on the walk of the wearer [Mannini et al.
(2015)].

Despite numerous publications in the literature, many researches suffer disadvantages
which hinder the effective implementation of their proposed solutions and systems:

1. The current systems have been developed by the approaches of material, design and
ICT (Information and Communication Technology) separately and they lack a sys-
tematic integration of various technologies to meet specific functional requirements
while maintaining human comfort, aesthetics and easy to care. For example, most
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of the wearable systems presented in the literature suffer from a bulky structure
with wires and other electronic components exposed outside to the user, causing an
unpractical and even dangerous measurement environment.

2. The existing systems mainly focus on hardware (sensors, actuators) and related soft-
ware development is relatively weak, which restricts exploitation of measured hu-
man data. In practice, an effective and sustainable business model of wearable sys-
tems can be obtained by deeply exploiting measured physiological data [Park et al.
(2014)].

1.3.3 Sensors Used in Wearable Systems

As an essential component of wearable systems, wearable sensors are designed to
acquire physiological signals such as respiratory rate, heart rate, ECG, EEG (Electroen-
cephalography), EMG (Electromyography), blood pressure and blood oxygen saturation,
motion signals such as gestures or body motions, and location signals of the wearer on
a regular basis based on required specifications, etc. Generally speaking, these wearable
sensors require close contact with the wearer’s body or skin when being worn in order to
ensure good quality of the acquired data. By analyzing and processing the acquired sen-
sor data, a wearable system is able to perceive the environment around it and therefore
take corresponding actions or provide suggestions to its wearer. Physiological signals that
can be measured from human body using wearable sensors are shown in Fig. 1.6.

Correspondingly, different types of wearable sensors have been invented and com-
mercialized in accordance with the requirement of acquiring different types of signals as
mentioned above. A list of different types of wearable sensors in corresponding to the
vital signals that each sensor is able to acquire is shown in Table 1.1.

Table 1.1 – List of vital parameters assessed using different types of sensors.

Type of vital signals Type of sensor Signal source

Electromyogram (EMG) Skin electrodes Electrical activity of a muscle
Electroencephalogram (EEG) Scalp-placed electrodes Electrical activity of brain, Brain potentials
Activity, mobility, fall Accelerometer Gesture posture/limb movements
Respiration rate Piezoelectric/piezoresistive sensor Inspiration and expirationper unit time
Heart sounds Phonograph Record of heart sounds, with a microphone
Blood glucose Glucose meter Assessment of the amount of glucose in blood
Oxygen saturation Pulse oximeter Oxy-hemoglobin in blood
Body or skin temperature Temperature probe or skin patch Body or skin
Galvanic skin response Woven metal electrodes Skin electrical conductivity

Note. Reprinted from [Chan et al. (2012)].

Thanks to the fast developing technologies in microelectronics, sensor technology and
MEMS (Microelectromechanical Systems), it is nowadays possible to manufacture small
size and lightweight sensors with high sensitivity, low price, high performance and energy
consumption efficiency, promoting the vigorous development of wearable technologies.
Today’s sensors can be easily embedded in a garment or an accessory for long-term use
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Figure 1.6 – Physiological signals that are monitored from human body (reprinted from [Cho (2009)]).

without interfering with the wearer’s daily life, which could scarcely be imagined several
decades ago. With careful and ergonomics design, some of wearable sensors can be per-
fectly hidden inside a wearable structure without even being noticed by the user when
being worn. For the sake of clarity, Fig. 1.7 illustrates the Apple Watch, a smartwatch from
Apple Inc, where we can see those tiny size sensors are perfectly integrated into the watch
structure.

Moreover, recent breakthroughs in electrochemical techniques enable sensors to be
flexible [Nag et al. (2017)] and textile-based [Cherenack et al. (2010)], further enhancing
the comfort and flexibility of the wearable systems. Flexible and textile-based sensors are
fabricated with non-rigid materials so that they can be bended at a certain angle or even
folded without interfering with their mechanical and electrical properties. An example
with flexible sensor array is illustrated in Fig. 1.8.

Besides the above-mentioned wearable sensors which are worn on the human body,
there also exist patchable and implantable wearable sensors which are, more exclusively,
used for acquisition of human biochemical signals. This thesis is not aimed at providing
detailed presentation and application of these types of sensors because they are beyond
the scope of our research work, but the interested readers are referred to [Ashbrook et al.
(2018)] for a more detailed introduction.
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Figure 1.7 – Illustration of the Apple Watch with sensors perfectly integrated inside the back of the watch
structure [iFixit].

1.3.4 Processing Units of Wearable Systems

As a result of the advanced technologies in edge computing and IoT, it is now possible
for wearable systems to locally process and store sensor data with high integration level
and high performance microcontrollers. This brings significant benefits to the develop-
ment and evolution of wearable systems, of which the arguments are stated as follows:
1) Rather than sending raw sensor data directly to the nearby access point, wearable sys-
tems can now locally perform preliminary processing and treatment of sensor data, and
only send data processing results to the nearby access point. This could significantly save
the battery life and improve the power efficiency. 2) By running embedded rule-based
decision making algorithms, wearable systems become more intelligent. They can now
provide first-level suggestions to the user and send alarm messages automatically to care-
givers at first time in case of urgency. This also avoids the delay caused by the transmission
of local data to the remote center. 3) Local processing of sensor data also contributes to a
better security level in terms of user data and privacy protection. 4) Most modern micro-
controllers feature popular serial communication protocols such as I2C (Inter-Integrated
Circuit) and SPI (Serial Peripheral Interface), which ensures easy communication with the
nearby sensors via flexible and light-weighted wires. Commonly used microcontrollers
applied in wearable systems are listed in the Table 1.2:

Table 1.2 – Commonly used microcontrollers for wearable systems.

Microcontroller Family Manufacturer Examples

STM32 family STMicroelectronics [Fu et al. (2015)]
AVR family Microchip (Atmel) [Buechley et al. (2008)]
MSP430 family Texas Instruments [Wu et al. (2016)]
Field Programmable Gate Array (FPGA) Xilinx [Ahola et al. (2007)]
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Figure 1.8 – A smart wristband integrating flexible sensors presented in [Gao et al. (2016)].

The STM32 family from STMicroelectronics, based on ARM cortex platform, provides
high performance microcontrollers. For example, the STM32F7 series with Arm Cortex-M7

core provides up to 216MHz CPU (Central Processing Unit) frequency. The AVR family
from Microchip often features a 8-bit CPU architecture. It is quite well known in the DIY
(Do It Yourself) community due to the fact that it supports the famous Arduino library
and its ecosystem which is great for prototyping and pilot production of customized em-
bedded devices and systems (note that some recent STM32 microcontrollers also support
Arduino). The MSP430 features advantages such as low cost, low power consummation
and stand alone applications which do not require much processing. The FPGA, on the
other hand, can be configured "in the filed" by the designers to perform specific opera-
tions. It is fully re-programmable and executes all the operations in a parallel way.

Nowadays, high-end microcontrollers support the on-board implementation of sev-
eral Operating Systems (OS) that are specifically designed for running in an embedded
environment with relatively low hardware resource and memory requirements. The use
of embedded OS on a wearable system brings benefits such as the support of real-time
functionalities for time critical applications, multithreading and optimal management of
hardware resources [Ojo et al. (2018)].
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1.3.5 Embedded Intelligence - Improving the Intelligence Level of Wearable Systems

Cutting-edge technologies in AI and ML specially targeted to embedded systems make
it possible to run pre-trained machine learning models on a microcontroller on a online
and real-time basis, enhancing the wearable system’s performance in terms of sensor sig-
nal classification accuracy [Luna-Perejón et al. (2020)]. Being a member of "Intelligence
on the edge", "Egde Machine Learning" or "Edge AI" family, today’s wearable systems are
able to locally process the wearer’s physiological data using the AI algorithms stored
on a hardware device instead of getting them remotely processed in the cloud comput-
ing platform. Successful business applications of embedded AI comprise STM32Cube.AI
ecosystem [STMicroelectronics] and Tensorflow Lite [Google Inc.].

Applying AI and ML to wearable and embedded devices has great potential, since this
not only enables onboard and local data processing, decision making and inference, but
also helps to significantly reduce the power consumption due to wireless transmission
and security vulnerability associated with cloud-based data processing. However, edge
machine learning is still a new field where relative tools, SDKs (Software Development
Kit) and developing environments are relatively immature.

1.3.6 Wireless Communication Solutions Used in Wearable Systems

Faster, farther, the recent advances in various wireless communication protocols
in technologies have significantly boosted the potential capabilities of wearable sen-
sors/wearable systems and have made them become more prevalent than ever. Appli-
cations and contributions of wireless technology to the field of wearable systems can be
found in four aspects:

1. It enables a stable and wire-free data exchange between the embedded processing
unit of a wearable system and the nearby router or access point (e.g., a personal
computer, smartphone or tablet). This contribution is crucial, as it largely enhances
the freedom of movement of the user by eliminating those cumbersome wires con-
necting those body-worn sensors to the nearby devices for offline data storage.

2. It allows the development of a wireless sensor network that wirelessly interconnects
each sensor. Such network configuration is commonly called Wireless Body Area
Networks (WBAN) in the literature [Movassaghi et al. (2014)]. This largely benefits
the comfort and usability of a wearable system as it further helps to remove physical
wires that were once used to connect each sensor to the embedded processing unit.

3. It makes wearable systems more solid and durable by eliminating the physical con-
nections between sensor-sensor and sensor-microcontroller, thereby prolonging ser-
vice life.

4. When it comes to an intelligent garment, wireless technology further improves the
system’s comfort and user experience by eliminating those physical wires and con-
nectors inside the garment fabric.
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A technical comparison of the wireless communication technologies that are com-
monly used in wearable systems can be found in Table 1.3.

Table 1.3 – Technical comparison of key characteristics of the wireless technologies that are commonly used
in wearable systems.

Features IEEE 802.11 WiMedia IEEE 802.15.1 IEEE 802.15.4
( Wi-FiTM) (UWBr) (Bluetoothr) (ZigBeeTM)

Battery life Hours Days Days Years
Cost per module $9 $6 $6 $3

Complexity of MAC
and physical layers

Very complex Simple Complex Simple

Radio spectrum 2.4 GHz 3.1-10.6 GHz 2.4 GHz 868 MHz, 915 MHz,
2.4 GHz

PHY coding OFDM OFDM FHSS DSSS
Max. data rate 54 Mbps 480 Mbps 700 kbps 250 kbps
Network size 32 nodes Unknown 7 nodes 64 000 nodes
Security WEP keys 128 bits AES 64, 128 bits 128 bits AES
Range 100 m 10 m 10 m 30 m
Applications High-bandwidth

applications
High-bandwidth cable
replacement

Low-bandwidth cable
replacement

Low-bandwidth
sensors and
automation

Note. Reprinted from [Hao et al. (2008)].

1.3.7 Applications of Wearable Systems

In the smart wearable market, there exist already many mature commercial products
available especially in sports and fitness tracking. Most of these wearable products feature
different types of sensors integrated inside one single device that is able to monitor motion
sensoring, heart rate, breathing rate, blood oxygen saturation levels, etc. simultaneously.
Fig .1.9 illustrates several successful commercial products available in the market. Specif-
ically, Google Inc. has introduced and industrialized a smartglasses that integrates some
exciting innovative ideas such as an embedded camera for taking photos and recording
videos, a build-in screen and a touchpad for facilitating the manipulation of the glasses.
However, reports from consumer markets have shown that the consumer adoption of such
intelligent glasses is quite low due to their impractical functions and high price [Nunes
et al. (2018)].

From a more general point of view, however, the scope of potential applications of
wearable systems could be much larger. It may includes, but not limited to, vital sign mon-
itoring for patients, well-being monitoring for dependent population (the population aged
0-19 and 65 and over), people suffering from chronic diseases, GPS tracking for soldiers,
firefghters, etc., posture and motion monitoring for training athletes, motor recovery, fall
detection, rehabilitation, movement and muscle activity recovery, the list goes on. After a
critical survey of the published papers, projects as well as commercialized products within
the area of wearable technology between 1993 and 2012, [Chan et al. (2012)] published a
comprehensive review of the state-of-the-art wearable system prototypes/commercialized
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(a) Garmin vivosmartr 4 smartwatch (b) Polarr H10 chest strap (c) Hexoskinr smart shirt

(d) Google Glass

Figure 1.9 – Some examples of commercialized smart wearables, (a) A smartwatch for monitoring heart rate,
blood oxygen saturation levels and GPS tracking, (b) a comfortable chest strap for monitoring heart rate,
(c) a smart shirt for ECG (electrocardiogram), heartbeat, heart rate variability, breathing rate, etc. and (d)
Google Glass, a smart glasses integrated a touchpad, a camera as well as a display.

products dedicated to a variety of applications with most representative and illustrative
examples as listed in Table 1.4. Note that by the time this thesis is being written, some
among them are no longer available (their website links mentioned in the article are no
longer accessible) and have been excluded from the original table.
Table 1.4 – List of wearable systems

Author System description Applications

Santini et al. (1999) Microchip Autonomous controlled release implant
(’Pharmacy-on-a-chip’) or controllable tablet
(’smart tablet’) for oral drug delivery

Curone et al. (2007)
Curone et al. (2010)

’ProeTEX’ smart garment Health-state parameters, environmental variables

Kario et al. (2003) Multifunctional device Heart rate, physical activity
Gómez et al. (2008) Pumping, controller and power

system
Insulin controller to achieve regulation of blood
glucose

Fissell et al. (2007) Unique technology toolkit,
MEMS system

Membrane prototyped for renal replacement

Okubo et al. (2008) Home care sensor system Respiratory diseases
Islam et al. (2007) Wellness monitor Wellness for patients suffering cancer
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Akay et al. (2003) Accelerometer unit Body motion in healthy subjects, patients with
Parkinson’s disease and post stroke hemiplegic
patients

Prochazka et al. (1997) Electrical stimulator garment
(glove)

Controlled grasp and hand opening in quadriplegia

Lorussi et al. (2005) Strain sensors integrated in
garments (gloves, leotards etc.)

Hand posture and gesture monitoring

Niazmand et al. (2011) Sensor based smart glove Parkinson’s disease evaluation
Coyle et al. (2009) Textile-based sensor (’Biotex’) Measuring sweat
Katsis et al. (2011) ’Aubade’ sensor system EMG, ECG, respiration, skin conductivity (EDR)
Jovanov et al. (2003) Wireless intelligent sensor

system
Heart rate variability for stress measuring

Jourand et al. (2010) Wearable textile garment Sudden infant death syndrome
Rimand et al. (2007) Bootee Wearable multiparameter monitor
Anliker et al. (2004) ’Amon’ portable telemedical

monitor
High-risk cardiac/respiratory patients

Wu et al. (2009) RFID ring-type pulse sensor,
optical sensor

Pulse and temperature signals, heart rate measures

Haahr et al. (2008) Electronic patch EMG, arterial oxygen saturation
Ma (2011) Electronic second skin Antenna, LED (Light-Emitting Diode), strain

gauge, temperature sensor, ECG, EMG, Wireless
power coil, RF coil, RF diode

Miwa et al. (2007) Wearable sensor Roll-over detection, sleep quality
Lanatà et al. (2010) Wearable system Several vital signs and physiological variables to

determine the cardiopulmonary activity during
emergencies

Bamberg et al. (2008) Shoe Gait analysis
Simone et al. (2007) Glove Monitoring and functional hand assessment
Beach et al. (2001) In vivo telemetry system Improvement of the function of an implant

evaluated in situ, in blood vessel growth
(angiogenesis), reduced inflammation, reduction of
foreign body encapsulation

Maqbool et al. (2009) Smart pill Monitoring system with scintigraphy for
measuring whole gut transit

Chaudhary et al. (2010) Biosensor Glucose measures
Giorgino et al. (2009) Sensorized cloth Remote monitoring and control of motor

rehabilitation
Vivago ’Vivago’ (Wellness monitoring) Vital signs
Lee et al. (2005) ’Lifeguard’ cigarette pack size

box
Physiological signs

Sung et al. (2005) ’LiveNet’ mobile platform Accelerometer, ECG, EMG, galvanic skin
conductance

Chien et al. (2005) Portable system PCG (Phonocardiography), electrocardiography,
body temperature, Bluetooth

Jagos et al. (2008) Shoe Human gait
Riva et al. (2009) ’Intrepid’ multi-sensor

context-aware wearable
Anxiety

Vuorela et al. (2010) Portable signal recorder Electrocardiography, bioimpedance and user’s
activity

Di Rienzo et al. (2007) ’MagIC’ vest Atrial fibrillation, atrial and ventricular ectopic
beat, ECG, respiration rate, skin temperature

Luprano (2006) ’Mermoth’ clothes ECG, respiratory inductance plethysmography,
skin, temperature, activity

Weber et al. (2005) VTAM clothing ECG, GPS, biosensors and bioactuators
Knight et al. (2005) ’SensVest’ Vital signs: movement, energy expenditure, heart

rate, body temperature
Borges et al. (2008) ’Smart-Clothing’ Fetal movement in the last 4 weeks of the

pregnancy
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Mithril ’Mithril’ Supporting daily use functions: grocery list,
messaging, e-mail, conversational note taking, and
movie recommendations

Pandian et al. ’Smart Vest’ ECG, PPG (Photoplethysmogram), heart rate,
systolic and diastolic blood pressure

Shnayder et al. (2005) CodeBlue’ mote based system Pulse oximetry, ECG, EMG, mobility activity
Chung et al. A u-healthcare system ECG, blood pressure patterns transmitted to the

hospital
Loew et al. (2007) ’BASUMA’ Chronically ill patients
Xiao et al. (2009) ’MicaZ’ mote based system Heartbeat, ECG, blood pH, glucose, mobility,

walking
Guo et al. BSN based system Vital signs
Oliver et al. (2006) Wireless medical monitoring

system
Surgery recovering patients

Sullivan et al. (2005) ’Verichip’ Patient identity
Schneider et al. Implantable sensor Nerve stimulation capable of alleviating acute pain

in patients suffering cancer or Parkinson’s disease
Valdastri et al. (2004) Implantable telemetry platform

system
Gastro oesophagus pressure, pH, glucose
monitoring

Igor et al. (2012) Wireless capsule Endoscopy
Sieg et al. (2004) ’Glucowatch Biographer’ Blood glucose measure
Buford et al. Microwave sensor Blood glucose measure
Jiang et al. (2010) Carbon nanotube electrode Glucose concentration in human serum
Bhattacharya et al. Carbon nanotube based sensor Detection of viruses
Kawano et al. Si microprobe electrode Neural recording, stimulation of neurons
Cherevko et al. Gold nanowire array electrode Glucose detection
Lu et al. Doppler radar system Heartbeat measures
Morgan et al. Doppler radar system Cardiopulmonary sensing
Yazicioglu et al. Ultra-low-power biopotential

interfaces
EEG measure

Hayes et al. (2001) Probe Pulse oximetry, Photoplethysmographic signal or
blood volume pulse

Lee et al. Wearable or automatic
defibrillator

Sudden cardiac death

Bourennane et al. Identification, location Dangerous events detection
BodyMedia ’Bodymedia’ health wear

armband
Vital signs

WelchAllyn ’Micropaq’ wearable device
worn in a carrying pouch

Pulse oximetry, ECG

Cardionet ’Cardionet’ Cardiac patient telemetry system
Medtronic ’CGMS’ Glucose concentration variation

’Guardian’ Hypo and hyper glucose concentration
measurement

Poscia et al. (2003) Varalli
et al. (2003)

’Glucoday’ Subcutaneous glucose level measurements

Bleakly (2011) ’FreeStyle Navigator’ Interstitial glucose measurements

Note: Adapted from [Chan et al. (2012)].

1.3.8 Current Challenges of Wearable Technology

Despite the promising achievement of smart wearable systems in the field of health
monitoring and disease prevention, rehabilitation and fitness tracking, there still exist
significant challenges before they are clinically accepted and used on a large scale. Barriers
that need to be addressed in the future are listed as follows.

1. The consumer market for wearable systems in the field of health and fitness track-
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ing is relatively mature with a large diversity of commercial products can be found
nowadays (e.g., fitness tracking wristbands or smartwatches). This is due to the fact
that they are technically simple and do not require rigorous and accurate feedback
to the wearer. However, when it comes to health monitoring of dependent people es-
pecially for those who are under emergency conditions (e.g., patients suffering heart
diseases, stoke survivors, or aged population with chronic health problems, etc.), the
technical and clinical validation on the wearable systems designed for these target
population could be extremely strict before they can be largely applied on a large
scale. Concerns involve low accuracy in disease detection, false alarms and consider-
able delay in data processing due to limited on-board computation resources, which
could be fatal when it comes to intensive care of patients under special conditions, as
well as computer-supervised rehabilitation for various conditions in both in-hospital
and home-based settings.

2. Wearable systems used for the monitoring of physiological signals such as ECG or
EEG signals suffer body motion artifacts from the wearer which are hard to be fil-
tered with conventional signal processing approaches [Baig et al. (2017)]. Therefore,
future wearable system design should take advanced signal processing techniques
as well as motion artifact elimination techniques into consideration.

3. The level of intelligence of the wearable system as a whole need to be further en-
hanced. This can be done by investigating embedded AI and machine learning al-
gorithms that can be integrated into the wearable system and run online. Besides,
further studies are needed to connect wearable systems to a cloud or remote server
with which data are exchanged over the air and advanced services powered by
cloud-computing and data mining technique are provided remotely to each user.

4. Since it is nowadays possible to transfer, store and process data of each wearable sys-
tem (user) remotely with a cloud server, as well as sharing and communicating each
individual’s information with other users, profound research into data security, pri-
vacy and confidentiality of individuals need to be conducted [Fernández-Caramés
et al. (2018)].

5. Some technique-related issues such as limited battery capacity which hinders long-
term monitoring, lack of waterproofness, etc.

As the reader will discover in the following section as well as in the rest parts of
this thesis, the design of the wearable system proposed in our work fully considers the
first three of the above-mentioned challenges. However, for other aspects such as data
confidentiality, absolutely essential though, is outside the scope of this thesis.
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1.4 Artificial Intelligence Techniques Applied to Medical Diag-
nosis and Monitoring

The origin of the term modern artificial intelligence comes from the field of computer
science and robotics, where researchers attempted to model the process of human think-
ing with mathematical symbols, therefore implementing this biochemical process with a
computer [Nilsson, Nils J. (1980)]. Perhaps the most famous example of AI application
that brings this revolutionary technique into the public eye is IBM’s chess computer Deep
Blue [IBM Deep Blue]. Equipped with a piece of specific AI algorithm which enables it
to learn to play chess games, and finally against a real person, Deep Blue beat the world
chess champion on May 11, 1997.

Applying AI-based techniques in the field of medical diagnosis and monitoring has
gained great attention in recent years. Based on [Hamet et al. (2017)], AI applications in
medicine can be grouped into two branches, namely virtual and physical branch, respec-
tively. The virtual branch represents the applications of AI in the processing of complex
medical data (e.g., electronic medical records, patient health records, biophysical and
biochemical data, etc.), whereas the physical branch represents using AI-based techniques
to intelligently control medical devices and instruments such as using AI to control
operating robots in robotic surgery [Panesar et al. (2019)]. The following text presents
some representative AI algorithms that have been widely discussed in medicine.

Being a member of Neural Network (NN) family, Artificial Neural Network (ANN) is
perhaps the most powerful tool for implementing machine learning and Deep Learning
(DL) in real world applications. NN-based algorithms are capable of learning the underly-
ing non-linear relationships between data, which are difficult to observe through normal
statistics. In medicine, ANN can be applied in disease diagnosis [Er, Orhan (2010)] [Zhou
et al. (2003)], decision support and decision making [Lisboa et al. (2006)], radiology and
image processing and cardiovascular medicine [Itchhaporia et al. (1996)].

Convolutional Neural Network (CNN) is a specific type of ANN with one or a series of
convolutional layers and is a powerful tool for image processing and image classification.
In medicine, CNN helps physicians and radiologists to make predictions of potential
diseases based on MRI (Magnetic Resonance Imaging) or CT (Computed Tomography)
inspections. The advantage of using AI for MRI/CT scan analysis lies on the fact that AI
is able to find tiny abnormalities from high-resolution images which are less visible to the
naked eye. Successful applications of CNN in medicine include medical image analysis
[Jiang et al. (2010)] and MIR image segmentation [Tran, Phi Vu. (2016)].

Fuzzy logic is another powerful tool in dealing with medical data. A medical decision
making often involves uncertainty, and doctors often make diagnosis based on a proba-
bilistic reasoning and incomplete data [Holzinger et al. (2019)]. Fuzzy logic has its inherent
ability to treat these types of data, due to the fact that fuzzy logic uses linguistic represen-
tations and probabilistic reasoning rather than dealing with exact and absolute truth &
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false values. In real world applications, fuzzy IF-THEN rules and membership functions
can be established either by incorporating prior expert knowledge or in a data-driven way
by combining fuzzy logic with other NN-based learning algorithms. A famous example is
ANFIS (Adaptive-Network-based Fuzzy Inference System) algorithm. Compared to other
AI algorithms, the most promising feature of fuzzy logic and fuzzy inference system lies
in its high causability and explainability. Applications include fuzzy logic-based clinical
decision support [Warren et al. (2000)], fuzzy control used in automated control of drug
delivery [Mason, D. G., et al. (1997)] and position and action control in robotic surgery
[Song et al. (2015)].

Cloud-based AI provides superior centralized hardware with high performance AI al-
gorithms for each connected patient to upload and process their medical data remotely.
Differ from a standalone system which is used only by one individual, cloud-based AI
is able to converge data from a large number of patients, therefore building a complete
medical database for future research and studies [Mintz et al. (2019)]. With remotely de-
ployed expert system, remote health monitoring, online consultation and online diagnosis
become possible. A successful application of cloud-based AI in medicine is centralized
management and maintenance of Electronic Health Records (EHRs) [Bahga et al. (2013)].
Moreover, the system can continuously improve its performance by updating algorithm
architecture & parameters using incremental learning (e.g., Fuzzy ARTMAP), continual
learning and reinforcement learning-based algorithms.

Besides, Natural Language Processing (NLP) -based techniques can be used in medical
applications to extract information from electronic medical records or to interact with
patients (e.g., AI-chat-bot).

Compared to conventional medicine, AI-based approaches feature several significant
advantages. A computer is able to perform fast, paralleled and complex computation tasks
within a short time. For example, AI algorithms is able to analyze millions of MRI/CT
scans within hours, which would take years of work if performed by a human being. AI
helps prevent medical errors during diagnosis. AI is able to treat medical data with low
error rate, no fatigue and no emotional bias [Mason et al. (2018)]. Besides, AI helps to
decrease health costs [Hamet et al. (2017)].

As the reader may discover later in the following chapters of this thesis, the design and
development of our proposed fetal movement monitoring system takes fully advantage
of cutting-edge AI techniques when it comes to the processing of data as well as decision
making. The reader can refer to Chapter 4 and 5 where we applied NN-based fuzzy
logic (ANFIS and Fuzzy ARTMAP) for fetal movement acceleration signal classification,
Chapter 6 for a deep discussion of using CNN and DL for automated feature extraction
and signal classification, as well as Chapter 7 for a classical rule-based decision-making
algorithm for long-term evaluation of fetal health.



32 Chapter 1. Research Context

1.5 Objective of the Thesis

Fully taking into account of the existing issues raised in current techniques of fetal
movement monitoring for the assessment of fetal well-being during pregnancy, this work
has aimed to pave the way towards a garment-based intelligent wearable system applied
to the online, remote, continuous and reliable monitoring of fetal movements. Following
the general architecture of typical remote health monitoring systems as illustrated in
Fig. 1.5, the design of this system aims to offer a complete and end-to-end solution for
fetal movement monitoring - from each end user (pregnant woman), through the local
monitoring unit (intelligent garment), up to the cloud computing platform & remote
expert system with remote interactions and exchanges with doctors and medical experts.
This thesis is based on the current research achievements and findings which utilized ac-
celerometers placed on the maternal abdomen to acquire fetal movement data. However,
in contrast to the current research works on this topic, our proposed system has been
dedicated to improving the monitoring system’s intelligence and autonomy by integrating
embedded AI and ML while maintaining maximum accessibility, usability and comfort
to the user (pregnant woman) with minimum negative impacts to her daily life.

The original contributions of this thesis is summarized as follows:

1. An all-round design process of the proposed intelligent garment has been proposed
by combining textile/garment design, sensor integration and ICT approaches (data
analysis, decision support, and communication with the cloud platform), permitting
to optimize the criteria of signal quality, wearer’s comfort and easy-to-care together.

2. The computing capacity of the software has been enhanced by developing a data-
based decision support system with learning mechanisms, whose operations have
been optimally distributed between the microcontroller of the garment and the
wearer’s smartphone. This treatment can effectively improve the autonomy of the
garment, reduce consumed energy and increase data processing efficiency.

3. The capacity of the whole wearable system can be improved by communications and
interactions between the intelligent garment and cloud expert system for further
medical knowledge exploitation and advanced diagnosis of pregnant women (the
details of the cloud expert system has been presented in [Song et al. (2019)]). A new
business model for transactions of the intelligent garment and wearable system can
be further developed by exploiting human body data collected from various wearers.

1.6 Conclusion

Continuous and reliable monitoring of fetal health condition during pregnancy is es-
sential for ensuring normal fetal development. Current techniques for the monitoring of
fetal movements, which are an important measure of fetal health, suffer from several im-
portant issues. Research works that have been published in the literature discussed the
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promising potential of using sensor technology (accelerometers) for in-home and auto-
mated monitoring of fetal movements. However, still at their early stage, these works
collectively suffer from drawbacks such as impractical to use, low portability, low intelli-
gence level as well as poor reliability and robustness.

The promising advances of wearable technology as well as its successful applications
in health monitoring, rehabilitation and sport/fitness tracking have motivated us to apply
this technology into this research topic for solving the existing issues. Within the scope
of IOTFetMov research project, our work aims to design and develop a garment-based
wearable system integrating accelerometers, advanced signal processing techniques and
embedded AI for online, reliable and continuous monitoring of fetal movements. This
system is capable of qualitatively evaluating fetal health based on the continuous and
quantitative counting of fetal movements. Taking one step further, the intelligent garment
is connected to a cloud computing platform with a remote expert system in order that
remote health monitoring and consultations becomes available. It ensures remote and ef-
fective interactions and exchanges between the patients and doctors. This work is of great
importance as it introduces, for the first time, the advantages of wearable technology such
as low-cost, high comfort level, out-of-hospital setting as well as remote and ubiquitous
health assessment to the field of fetal movement monitoring.

This chapter gives the reader a brief and comprehensive overview of the research
context. It also emphasizes the multidisciplinary nature of this research work (see Fig.
1.10). In the following chapters of this thesis the reader will discover detailed information
of different aspects throughout the entire design and development process of the proposed
system, as well as the solutions and discussions to the problems encountered.

Figure 1.10 – The convergence of these two multidisciplinary research topics results in a new era.





2Overall Description of the

Materials and Methods

2.1 Introduction

In this chapter, we provide a summary that is intended to give the reader an overview
of the key information contained in the following chapters of this thesis. This chapter
briefly presents the key theoretical ideas and techniques applied behind the design and
development of the proposed wearable system for automated monitoring of fetal move-
ments, as well as our reflections and discussions on some crucial issues. For the sake of
brevity, this chapter does not dig too much into technical details. However, topics and
issues that are further discussed and studied in the subsequent chapters are labeled with
hyperlinks which redirect the reader to the corresponding places.

2.2 Towards an IoT-based Intelligent Garment - An Overview of

the System Architecture

Before going more into technical details of the proposed wearable system, we would
like to give the reader a comprehensive overview of its general architecture. As illustrated
in Fig. 2.1, the general architecture of the system mainly consists of two subsystems,
namely local monitoring unit and centralized cloud monitoring unit, respectively. De-
tailed descriptions of each part are given below:

1) The local monitoring unit comprises an intelligent garment (wearable device) worn
by the mother and a local monitoring platform e.g. a piece of application software with
GUI running on an Android smartphone.

When being worn, the four accelerometers embedded in the intelligent garment can
be correctly placed on the maternal abdomen for data acquisition of fetal vital signs.
Two microcontrollers connecting the accelerometers process the acquired signals, make
decisions based on the embedded algorithms and transmit data related to the fetus’ well-
being to the upper level of the monitoring system (the monitoring platform located in the
local monitoring unit).

35
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Figure 2.1 – General architecture of the proposed wearable system for fetal well-being monitoring.

On the other hand, the local monitoring platform can be implemented into any mobile
device commonly used nowadays (e.g., a smartphone, a tablet computer or other cus-
tomized devices). The monitoring platform communicates with the intelligent garment
via Bluetooth protocol. The main role of this monitoring platform is to provide the user
with her baby’s health status on a real time and online basis via a user-friendly interface.
Besides, as we will describe later in Section 2.5, the monitoring platform is not just a tool
for information visualization, we can be quite sure to transfer and implement algorithms
that are too computationally heavy for the embedded microcontrollers into here, since
nowadays most consumer-grade smartphones and tablets offer a decent performance in
terms of both data processing ability and data storage. Furthermore, working as an access
point or a gateway, the local monitoring platform connects the wearable system to the
outer world via the Internet, transmits the information related to fetal vital signs to the
centralized cloud monitoring unit, which itself is connected to hospitals and caregivers,
for providing the users (pregnant women) with advanced diagnosis and treatment.

2) The centralized cloud monitoring unit dedicated to clinical professionals mainly
comprises a distributed data storage module for collecting fetal well-being features and
other key data transmitted from the local monitoring platform, a user interface for inter-
actions between the clinician and patient, a medical knowledge base with self-updating
(self-learning) mechanism and a parallel cloud computing module for evaluating medical
solutions. The role of this unit is to provide each user connected to it via the wearable
system with advanced diagnosis and treatment based on the processing of their uploaded
data. As the reader may have already noticed, detailed discussions of this part, which has
been developed by another colleague in our research group, is beyond the scope of this
thesis. For more detailed information concerning this part, the reader is referred to the
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original publication [Song et al. (2019)].

For the sake of clarity, the organization of the following contents of this thesis is illus-
trated in Fig. 2.2.

Figure 2.2 – Figure illustrating contents of different chapters.

2.2.1 The Wearable Device

2.2.1.1 Garment Design

When it comes to an intelligent garment, the main function of the garment is to embed
and fix wearable electronic components into the garment’s fabric structure while ensuring
good comfort and convenience to the wearer - as are its most basic requirements. When
being worn, a well designed intelligent garment should accurately locate the embedded
measuring sensors to their required location on the wearer’s body with a desired pressure
- not too tight, not too loose. Fixing measuring sensors in their specific location with a
close contact with the wearer’s body structure is necessary to avoid any displacement
that could generate additional noise due to the frictions between the sensor and fabric.

In our study, the design of the intelligent garment concerns the following aspects:
– The choice of the most appropriate garment fabric

We conducted a series of tests among different fabrics in order to compare their
properties in terms of signal attenuation and comfort. A knit made from a mixture
of polyamide (90%, abrasion resistant to long-time wear without deformation) and
elastane (10%, elastic and cling to the skin) fibers with a Jersey pattern has been
proved to be the most relevant fabric at the Point of Maximum Impulse (PMI).

– Design of the most relevant garment style dedicated to long-term use
We have initially considered and designed several garment models to meet the re-
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quirement in terms of both comfort and functionality: the first model features two
belts connected with a dorsal part. The placement of these belts on the maternal
abdomen can be adjusted with regard to different scenarios. An extra dorsal part is
equally considered, providing additional length when it comes to pregnant women
with big waistlines. Another garment model comprising a whole piece of fabric cov-
ering a large area of the maternal abdomen has also been considered at the early
stage of the research, however, a sensory evaluation conducted among several preg-
nant women on this garment design has shown that this model is too tight and less
comfortable for a long-term wearing.

An ergonomic design of the garment style/shape as well as a reasonable integration
of the wearable electronic devices into the garment structure contribute significantly to
the originality and innovation of the IOTFetMov project. For a detailed discussion and
analysis on this topic, the reader is referred to Chapter 3.

2.2.1.2 Hardware Design

The design of the intelligent garment hardware mainly incorporates four accelerome-
ter sensors (NXP Semiconductors N.V., MMA8451Q [NXP Semiconductors]) for data ac-
quisition and a high-performance 32-bit microcontroller (NXP Kinetis KL16 Sub-Family
[NXP Semiconductors (2012)]) for the implementation of signal processing-related algo-
rithms. The accelerometers are set to a measuring range of ±2g (1g = 9.81m/s2) and
digital sensitivity of 4096 counts/g. We choose a sampling frequency of 60Hz by follow-
ing the Nyquist-Shannon sampling theorem which restricts the sampling frequency to be
at least two times higher than the maximum frequency of the signal to be sampled - as the
spectrum of most accelerometer-recorded fetal movement signals does not exceed 20Hz
[Boashash et al. (2014)]. Experimental results has shown that this setting is appropriate
for fetal movement signal acquisition with most maternal-perceived fetal movements be-
ing successfully captured (see Fig. 2.9 and Fig. 2.10a for a better understanding of what
accelerometer-recorded fetal movement signals look like). Data communication between
the four accelerometers and this microcontroller is implemented via the I2C protocol. Be-
sides, the microcontroller interconnects with an external SPI flash memory chip of 256Mb
(Winbond, W25Q256FV [Winbond (2014)]) for local storage of data. A second microcon-
troller chip (Texas Instruments, CC2541 [Texas Instruments (2012)]) is considered, which
allows the garment to communicate with the monitoring platform via the Bluetooth 4.0
specification (known as Bluetooth Low Energy, "BLE"). The wireless throughput of the
system is merely 5 bytes/second when working 1, due to the optimal distribution of the
workload between the intelligent garment and the local monitoring platform. The con-

1. Based on Bluetooth 4.0 specification, the default values for the maximum ATT payload (the maximum
packet length) is 20 bytes, as the reader will read in the subsequent chapters, the embedded system processes
signals and sends processing results (one packet) once every 4 seconds, that is to say, a throughput of 5 bytes
per second.
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nection between the two microcontrollers is implemented with UART (Universal Asyn-
chronous Receiver-Transmitter) interface. Besides, a Li-ion battery of 1100mAh provides
power to the intelligent garment. It is able to work about 53 hours under continuous op-
eration after fully charged. The block circuit diagram of the above-mentioned hardware
design for the intelligent garment is illustrated in Fig. 2.3a.

Furthermore, a carefully and thoughtfully design of the hardware’s PCB (Printed Cir-
cuit Board) layout minimizes the size of the circuit boards, ensuring that the wearer is not
too much aware of their presence when wearing the garment on a long-term basis. Finally,
the main circuit board containing all the electronic components (e.g. microcontrollers, an-
tenna, battery, etc.) are put together into a small size portable box which can be easily
fixed to the garment. Detailed illustrations of the hardware prototype can be found in Fig.
2.3b.

(a) Block circuit diagram of the intelligent garment hardware.

(b) Actual pictures of the main circuit (in a small size box) and the sensor circuit.

Figure 2.3 – Intelligent garment hardware.
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Since we do not utilize other types of sensors when designing this system, for the
rest of this thesis no differentiation between accelerometers and sensors is made when
mentioning our monitoring system.

2.2.1.3 Embedding the Hardware into the Garment

Integration of the electronic devices into the garment while maintaining the latter’s
comfort and high convenience level is another key element to be considered during the
design of an intelligent garment. Specifically, in the late pregnancy, the pregnant woman’s
waist and abdomen bear a significant weight coming from the fetus, and therefore any
extra equipment added to the maternal body would increase this burden.

Our proposed method of integrating the electronic components into the garment fab-
ric is shown in Fig. 2.4, where two of the sensors are mounted into one belt and two
others into another one. This configuration allows to cover a large area on the maternal
abdomen and collect as much information as possible. The box containing the main circuit
can be attached on the upper belt in front of the body, which does not bother the pregnant
woman when she is lying down on her side (which is always the case during late preg-
nancy). The box can be taken off when washing the garment, protecting the hardware.
The sensors are to some degree waterproof, and can be washed together with the gar-
ment. Wires for sensor network interconnections are soft and flexible, crossing and hiding
inside a two-layer-structure fabric with extra length so that they won’t get broken when
the fabric is stretched. A pregnant woman wearing the final intelligent garment prototype
that integrates all the electronic components is illustrated in Fig. 2.5.

Figure 2.4 – Embedding the hardware in the garment.

2.2.2 Local Monitoring Platform

As its name implies, the local monitoring platform acts as an interface between the
user and the intelligent garment, Here I carefully choose the term local to describe this
monitoring platform in order to differentiate it from the remote monitoring platform located
in the centralized cloud monitoring unit for clinical professionals. The local monitoring
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Figure 2.5 – An overall picture of the final intelligent garment prototype integrating the sensors and the
main circuit (invisible, inside that small size box).

platform can be implemented in the form of an application into any user-side smart de-
vices e.g. a smartphone or a tablet computer. In our research, we have utilized an Android
smartphone as the target smart portable device due to the development simplicity and
fast prototyping with Android ecosystem.

The monitoring platform communicates with the garment in an autonomous way.
We have developed a decision making framework which, based on several pre-defined
rules, is able to automatically monitoring the fetus’ health condition by analyzing fetal
movement counting in a long-term way. It alerts the user when something abnormal is
detected e.g. reduced fetal movement, and informs the user to visit the doctor in case of
necessary. For more detailed description about this topic, the reader is referred to Chapter
7 of this thesis.

By interacting with this monitoring platform via its user-friendly GUI, the pregnant
woman is able to access key information coming from the garment she is wearing. This
feature could significantly enhance the usability and user experience on the proposed
intelligent garment. More importantly, the mother is able to visualize key information
related to her baby’s health status on a long-term basis in the form of statistical tables and
graphic charts, which helps to detect potential symptoms of fetal compromise at early
stage. The GUI of the local monitoring platform is illustrated in Fig. 2.6.
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Figure 2.6 – GUI of the local monitoring platform.

Another important role of the local monitoring platform is to communicate with up-
per levels of the proposed IoT wearable system e.g. the cloud computing platform or the
remote expert system. Deployed in the user’s smartphone or tablet, the monitoring plat-
form can easily access the internet via Wi-Fi or cellular network, therefore remotely visit
the database of the centralized cloud monitoring unit and get advanced consultations and
suggestions from the remote expert system. It also builds a communication bridge be-
tween the patient (pregnant woman) and doctors: doctors can access the information of
all the users (garments) at distance. whereas each end user, in return, can interact with
her assigned specialist remotely while staying at home.

2.3 An Overview of the Applied Methodologies

This section presents a variety of the methodologies and algorithms applied during the
design and development of the proposed wearable system for fetal health monitoring. It
gives the reader a sketchy description of how the system utilizes accelerometers to capture
fetal movements and how to monitor and assess fetal well-being in an automated way by
using these acquired signals. It also guides the reader to the other corresponding chapters
and sections of this thesis when more detailed descriptions and discussions are presented
elsewhere. The content of this section covers aspects including signal pre-processing of the
fetal movement signals acquired using accelerometers, classification of the pre-processed
signals into different categories using machine learning techniques, automated fetal move-
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ment counting, and a novel rule-based decision making algorithm which qualitatively
evaluates the fetus’ health status on a continuous and long-term basis.

2.3.1 Architecture of the Proposed Fetal Health Evaluation Algorithm

As shown in Fig. 2.7, the acquired acceleration signals are first pre-processed before
entering the next levels of the system. Signal pre-processing procedure includes signal
magnitude calculation, filtering and segmentation. Peak and threshold detection further
excludes abnormal signals (e.g., signals with extremely large amplitude) and labels them
as artifacts. Cross-correlation compares signals having the same timestamp but from dif-
ferent sensors. It calculates the cross-correlation values between each two channels and
eliminates signals that have a high degree of similarity based on the cross-correlation re-
sults. This is based on the observation that fetal movements are always captured by one or
two sensors only, whereas when it comes to a maternal body motion, all the four sensors
displace simultaneously in the same direction (high cross-correlation value). This mech-
anism further enhances the system’s robustness with strong anti-interference ability. As
a result, only signals that have not been excluded by both threshold detection module
and cross-correlation module are entered to the next levels of the system. Feature extrac-
tion module extracts representative features from raw acceleration signals, thus reducing
the computational burden of the system. Classification module classifies signal segments
into different groups based on the extracted features, therefore identifying fetal move-
ments signals from other noise signals and artifacts. Fetal movement counting module
counts fetal movements based on the classification results (labels). Finally, decision mak-
ing evaluates qualitatively the fetus’ health status and sends alert messages in case of
necessary.

The whole process of the above mentioned fetal movement monitoring algorithm re-
peats as signals are acquired by the sensors in a continuous way. The reader may have
noticed from Fig. 2.7 that some modules are compulsory (solid box) for the normal func-
tioning of the system while others are optional (dotted box). This flexible configuration
helps to reduce the computational burden as a whole when running on a low-performance
embedded hardware (disable some optional modules accelerates calculation but at the ex-
pense of the system’s robustness and signal classification accuracy). Whether or not an
optional module is activated also depends on its subsequent modules: e.g., when using
raw acceleration signals as input to the classification module, feature extraction is not
necessary. Detailed explanations and discussions of each module inside the system can be
found in the following parts of this section.

2.3.2 Signal Pre-Processing

The raw fetal movement signals acquired using accelerometers undergo a series of pre-
processing operations in order to improve data quality, find and remove outliers. Signal
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Figure 2.7 – General workflow of the proposed fetal well-being monitoring system.

pre-processing includes signal magnitude calculation, filtering and signal segmentation,
respectively. A detailed description can be found below.

2.3.2.1 Calculation of Signal Magnitude

The accelerometer used in our research work features three axes (refer to Subsection
2.2.1 of this chapter, part Hardware Design), meaning that the acquired signals contain x, y
and z channel. However, it is accepted that signal amplitudes contain more important and
informative information than the direction when it comes to detecting fetal movements
[Khlif et al. (2011)]. Besides, using magnitude can also eliminate the disturbances caused
by sensor rotation. Given the three-channel data, the amplitude of acceleration signals is
calculated as follows (note that the gravitational acceleration has been extracted so that a
stationary sensor measures 0g for all the three axis):

ga =
√

gx2 + gy2 + gz2 (2.1)

For the rest of this thesis only the signal magnitude is studied and analyzed.

2.3.2.2 Filtering

Filters play an important role in signal processing. A well-designed filter helps to ef-
fectively and efficiently eliminate noise signals within a specific frequency range. In our
study, we mainly focus on the elimination of low-frequency noise signals (e.g. maternal
respiration, maternal slow body motion) and high-frequency noise signals (e.g. mechani-
cal noise caused by the sensor itself or by the friction from contacts between the wearer’s
skin and the sensors).
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It is widely known that the respiration frequency of a healthy adult is between 15-20

times per minute (0.2Hz - 0.33Hz). Also, some publications reported that fetal movement
signals are mostly inferior to 20Hz [Boashash et al. (2014)]. Based on the given informa-
tion, we designed an 8

th order bandpass IIR (Infinite Impulse Response) filter with lower
3dB frequency of 0.5Hz and higher 3dB frequency of 20Hz. Fig. 2.8 visualizes the mag-
nitude response (blue line) as well as the corresponding phase response (red line) of the
designed filter.

Figure 2.8 – The magnitude and phase response of the designed IIR filter (type band-pass, band width =
[0.5Hz - 20Hz]).

2.3.2.3 Signal Segmentation

A single data point on an acceleration signal does not offer significant information.
When it comes to online and real-time processing of acceleration signals, a widely ac-
cepted solution is to utilize windowing techniques to split time-based signals into seg-
ments [Preece et al. (2009)]. In our research, we utilize a moving window with a length
of 4 seconds for signal splitting and therefore extracting representative information from
each signal segment. The choice of 4 seconds as the window size is based on an intuitive
and visual inspection of all the acquired fetal movement signals, most of whom are found
to be able to get covered by this window size. Signal segments are also called epochs.

2.3.3 Peak and Threshold Detection

Peak and threshold detection helps to roughly eliminate abnormal signals that fea-
ture amplitudes too large or too small. It comprises a minimum threshold and a maximum
threshold, respectively. Signals to be filtered out include background noise with amplitude
lower than the minimum threshold, as well as large signals caused by the intensive body
motions of the wearer, which are detected and eliminated by the maximum threshold.
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2.3.4 Cross-Correlation for Artifact Elimination

An underlying connection between the similarity among the signals from different
sensors acquired at the same time and whether or not these signals are generated by
the wearer’s body motions is another interesting finding after undergoing an intuitive
and visual inspection of all the acquired acceleration signals. As an example illustrating
this finding as shown in Fig. 2.9, some artifact signals caused by a series of maternal
body motions (located inside the red rectangle) often feature high similarity, whereas an
observed isolated fetal movement signal (in the green circle) marked by the mother (thin
red lines) only appears on the first channel.

Figure 2.9 – Signals showing artifacts caused by maternal body motions (red rectangle) featuring high
cross-correlation values among each channel and an isolated fetal movement (green circle).

The reason behind this observation is explained as follows: artifact signals caused
by maternal motions often feature a high similarity degree (high cross-correlation value)
among each other, meaning that the whole garment might have had an overall movement
at a certain time caused by the wearer’s body motions, causing a displacement of all the
four sensors. On the other hand however, fetal movements often occur over small areas
inside the mother’s abdomen, therefore those deflections on the mother’s abdominal wall
caused by the fetus are often captured, though this is not always the case, by only one or
two sensors.

It is worth mentioning that the position of the four sensors on the maternal abdomen
as well as the distance between each other could significantly influence the effectiveness
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of this approach (if the sensors are too close to each other, the cross-correlation value for
fetal movement signals from the four channels would be high enough that the system
is no longer able to distinguish maternal artifacts). In practice, we put two sensors on
the lower abdomen close to the fetus in order to ensure good quality of fetal movement
signals with sufficient amplitude, and two others located on the upper body (close to the
breast) for acquiring maternal body motions. For more information about how to detect
fetal movements based on the information fusion of the signals from the four channels
(sensors), the reader is referred to Subsection 7.2.1 of Chapter 7.

The cross-correlation values among epochs from the different channels evaluates the
degree of signal similarity, thus helps to distinguish and eliminate maternal artifacts.
Being computationally simple, the cross-correlation module together with the peak and
threshold detection module could significantly reduce the system’s computational burden
as a whole. More detailed discussion about this topic can be found in Subsection 2.5.1 of
this chapter.

2.3.5 Training of Machine Learning Algorithms for Signal Classification

Classification of signal segments into different categories based on either extracted
informative features or raw signal data points is another important step towards a fully
automated system for online fetal well-being monitoring. By training a machine learning
model with labeled signal samples e.g., signals containing fetal movement, maternal ar-
tifacts or only background noise, the trained model can classify new data over a fixed
window. That way, we can develop a monitoring system which is able to distinguish fetal
movement signals from acquired acceleration data in a real-time and autonomous way
without any human interference. Compared to simple threshold-based fetal movement
detection approaches, integration of machine learning algorithms into the monitoring
system for signal classification could significantly boost the system’s performance and
robustness in terms of classification accuracy.

An effective, accurate and robust classification of acceleration signals is an important
part which plays a key role in building a reliable fetal movement monitoring system.
This topic will be discussed extensively in the rest parts of this thesis. For more detailed
information the reader is referred to Chapter 4, 5 and 6.

2.3.6 Automated Counting of Fetal Movements

Now that the reader has a fundamental understanding of how the proposed mon-
itoring system acquires, pre-processes and classifies acceleration data, thus detects and
distinguishes fetal movement signals from the ongoing acceleration data stream. Next
question is: how to relate these classification results to the fetus’ health condition? Or how
to qualitatively evaluate the fetus’ health condition based on these quantitative informa-
tion?
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In order to answer this question, we would like to break it down into two smaller parts
that will be addressed separately:

1. How to count fetal movements based on these labeled signals over the time win-
dow of 4 seconds?

As mentioned earlier in this thesis, fetal well-being can be assessed by regular
counting of fetal movements. Currently available recommendations on daily fetal
movement counting can be found in [World Health Organisation (WHO) (2018)]. In
clinical practice, various methods have been described, with two widely acceptable
methods listed as follows:

– if fewer than 6 distinct movements are felt with 2 hours, and
– if fewer than 10 distinct movements are felt within 12 hours (the "count-to-ten"

method).

Therefore, our next target is to build a liaison or find the causality between the signal
classification results over the 4 seconds window and the corresponding number of
fetal movements. Taking it one step further, we need to develop a decision making
framework which integrates the above-mentioned rules and qualitatively evaluates
the fetus’ health condition based on the number of fetal movements.

We propose an novel algorithm to address this issue. For detailed information and
rigorous discussions the reader is referred to Chapter 7.

2. How to accurately distinguish real fetal movements from other artifacts e.g., ma-
ternal body motions?

This problem is in essence related to the robustness, reliability and anti-interference
capability of the monitoring system as a whole. Accelerometers are attached on the
maternal abdomen, which means any maternal movement involving this part of the
body can result in a displacement of those embedded accelerometers, introducing
artifacts. If poorly addressed, this problem could lead to catastrophic consequences
which no one wishes to see: the system incorrectly regards artifacts as real fetal
movement and keeps claiming that the fetus is under normal conditions whereas
the baby’s real health status remains unknown, leading potential fetal death. This
issue is related to the system’s specificity in terms of classifying different types of
signals acquired by the accelerometers. The reader is referred to Chapter 5 and 6 for
a detailed discussion about this topic with our consistent pursuit of improving the
system’s specificity.

These two issues are actually so crucial and challenging that the research work on
how to address them constitutes the main tasks during my PhD study. It is worth noting
that, according to the clinical practice of medical experts, it is advisable to monitor fetal
movements from about 20 weeks to late pregnancy. Therefore, the intelligent garment has
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been designed for this period. We do not consider fetal movements in early pregnancy
(before 20 weeks) since they are too weak to be detected either by any sensor or perceived
by the mother (they cannot generate deflections with a considerable force on the maternal
abdominal wall).

2.4 Data Acquisition and Labeling

Considering the unclear nature of accelerometer-recorded fetal movement signals as
well as the need of building an initial acceleration signal dataset with reliable labels for
training machine learning algorithms, raw data acquisition with the proposed intelligent
garment hardware was conducted. With these offline acquired data, we are able to conduct
a deep and rigorous study of the nature of accelerometer-recorded fetal movement signals.

2.4.1 Data Acquisition Criteria and Strategies

Throughout my research as a PhD student, we have successfully conducted several
signal acquisitions in the hospital Jeanne de Flandre, Lille, France, under the guidance
and supervision of Professor Julien De Jonckheere, researcher in the research institute
INSERM, CIC-IT 1403, Lille, France. During data acquisition, our intelligent garment
sent raw acceleration data directly to the Android monitoring platform without any pre-
processing. The Android smartphone, on the other hand, saved these acquired data locally
into a text file. The average recording duration was about 15 minutes, which varies de-
pending on the pregnant woman’s comfort and willingness.

Before starting a measurement, the pregnant woman was asked to locate the area on
the abdomen where she felt the strongest fetal movements, and one belt was placed just
above this area so that the most intensive fetal movement signals could be collected by
the two sensors in this belt. However, the placement of the second belt varied according
to the specific experimental requirements. For some measurements the two belts were
placed next to each other to focus on the area where the most intensive movements were
perceived by the mother. In other cases however, it was placed on the pregnant woman’s
upper body (close to the breast) to record maternal heartbeat signals for future analysis
of this artifact. A comparison of the system performance between these two experimental
set-tings may also help to find out the most efficient way for multisensory fetal movement
monitoring.

During data acquisition, the subject (pregnant woman) was instructed to hold a push
button in the hand so that each time she felt a fetal movement by herself she pressed the
button to record it. The push button recordings can be used as reference to label fetal
movement signals from the recorded data. Fig. 2.10a illustrates the experimental setup
for fetal movement data acquisition. Note that there may be a delay between the actual
occurrence of each fetal movement and the corresponding push-button action, which de-
pends on each pregnant woman’s habit, concentration level and response time. Note that
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in the later research stages, we added three additional buttons namely talking, walking and
body motions located on the touch screen of the Android monitoring platform, which were
used by the observer (usually myself) to label artifact signals simultaneously in case of
any above-mentioned artifact was visually observed (see Fig. 2.10b).

(a) Maternal labelings of fetal movements with a push button. (b) GUI with 3 buttons
for the observer to label
artifacts.

Figure 2.10 – Experimental setup for fetal movement data acquisition.

For some measurements, the pregnant woman was required to stay still in order to
collect clean and undistorted signals without any interference caused by maternal body
motions, while for other measurements the subject was allowed to move her body, talk or
even walk. These activities were noted synchronously by the observer and were stored for
future analysis.

2.4.2 Labeling of Fetal Movement Signals

After recording, one clinical expert was demanded to further inspect the offline
recorded data and label any outliers. He then labeled fetal movements signals from the
data with respect to the maternal perception markers. More precisely, areas that are 5

seconds in advance of each maternal perception marker were regarded as potential areas,
bursts or spikes located in these areas were labeled as potential fetal movements. Visual
inspections were performed to exclude abnormal signals such as maternal body motions
(usually with much larger signal amplitude or a different wave morphology with regard
to a typical fetal movement signal).

Fetal movement signals is labeled by human beings, which cannot guarantee abso-
lute correctness. In fact, although we require the subject to keep quiet during the test, it
is unrealistic to force them to remain absolutely still and not to introduce any maternal
movements. On the other side however, machine learning models depend on data. With-
out a foundation of high-quality training data, even the most effective algorithms can be
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rendered useless. In the principle of utilizing fewer but high quality training patterns for
machine learning, hoping not to include any pseudo patterns into training dataset, any
signal with an uncertain behavior was regarded as non-fetal movement.

2.5 Some Thoughts about System Efficiency

2.5.1 Reducing the Computational Burden

Fetal movements happen infrequently: studies show that it varies from 25 per hour
to 4 in 24 hours in the third trimester [Rådestad (2010)]. It is also reported that the fetus
stays inactive during sleep cycles which could last up to 1 hour, resulting no or only a few
movements [Suwanrath et al. (2010)]. Running on a real-time basis however, our monitor-
ing system keeps analyzing irrelevant signals e.g. mechanical noise from the sensor itself,
leading unnecessary calculations and wireless data transmission.

As mentioned earlier in this chapter, by involving threshold-detection and cross-
correlation modules prior to deep analysis of the acquired signals, the calculation burden
of the monitoring system as a whole can be significantly reduced. This is because the
epochs that are labeled as artifacts by either of these two modules are abandoned with-
out further processing or analysis. That way, the computational resources can be reserved
for analyzing important and useful signals, which could make the system act faster and
more efficient. This idea of multistage signal processing is illustrated in Fig. 2.11, where
the width of arrows qualitatively represents the volume of data flow. For more details
about the threshold-detection and cross-correlation-based approach the reader is referred
to Subsection 2.3.3 and 2.3.4.

Figure 2.11 – Data Stream demonstrating how to reduce the computational burden by using threshold
detection and cross correlation.

We admit that applying manually fixed threshold may, to some extent, negatively
affect the system’s performance in terms of both sensitivity and specificity. Solutions to
this issue may lie in a statistical analysis of fetal movement signal magnitudes based on
a large dataset, which allows us to choose a more reasonable value for the minimum and
maximum thresholds.
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2.5.2 Distribution of Computational Tasks Between the Garment and the Local Mon-
itoring Platform

As the reader may have already noticed, the proposed intelligent garment comprises
two parts that can be used for edge-computing: the microcontroller embedded in the gar-
ment and the local monitoring platform, respectively. Now that we need to implement the
entire proposed fetal health evaluation algorithm (see Subsection 2.3.1 of this chapter) into
the intelligent garment, we have to think about how to optimally distribute the workload
between these two computing devices.

Now let’s take a look at two extremes: implementing the whole algorithm only into
the garment and implementing it only into the local monitoring platform, respectively.

1. Implementation of the proposed algorithm only in the garment (microcontroller)
This option provides the garment with high degree of intelligence and autonomy
in terms of monitoring and assessment of fetal well-being. In this case, the local
monitoring platform merely serves as an GUI for information visualization and a
data pass-through device, which sends garment data directly to the upper level with-
out any further processing. One significant advantage of this configuration lies on
the reduction of volume of the data being wirelessly transmitted, since the garment
processes the data locally and only transmits the processing results to the upper
level. However, considering the limited computational power and storage capability
of common microcontrollers, implementation of the whole monitoring system raises
challenges especially when it comes to implementing machine learning-based algo-
rithms. Our research work of implementing a pre-trained neural network classifier
into a high-performance microcontroller can be find in Chapter 7.

2. Implementation of the proposed algorithm only in the local monitoring platform
(smartphone)
This option is relatively easy to implement since modern smartphones often have
more powerful processing ability and extended memory space than an embedded
system using traditional microcontrollers. In this case, the garment transmits raw
data directly to the higher level without any processing. However, this configuration
may lead to mass volume of data being transmitted wirelessly, resulting in exten-
sively consumption of the battery of the intelligent garment.

Based on the above analysis, we need to find an optimal balance between these two ex-
tremes in order to effectively improve the autonomy of the garment, reduce consumed
energy and increase data processing efficiency. In our research, the general guideline is
to empower as much autonomy as possible to the garment (microcontroller), minimizing
the data transmission between the garment and the local monitoring platform.
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2.6 Conclusion

The design of the proposed system for continuous and reliable fetal movement mon-
itoring fully reflects its key features such as low cost, high portability, high accessibility
as well as ubiquitous monitoring at anytime and anywhere. Compared to most existing
clinically-available fetal health monitoring techniques which often involve expensive and
cumbersome instruments and devices, trained personnel for the manipulation, as well
as limited accessibility (they are usually located in hospital), the proposed system has
competitive superiority in terms of portability and ease of use. Besides, the fact that each
intelligent garment is connected to the centralize cloud monitoring unit (see Fig. 2.1),
though not technically and detailed explained in this thesis, further equipped the sys-
tem with remote and online health monitoring ability, demonstrating a good example of
e-textile and e-health in the field of antenatal care.

In this chapter we have presented the general architecture of the intelligent garment
used for fetal well-being monitoring, as well as the methodologies and algorithms applied
in order to implement each part of the system framework. Topics and issues to be further
discussed in subsequent chapters of this thesis have been marked with hyperlinks that
redirect the reader to the corresponding places. The rest of this thesis is organized as
follows: Chapter 3 discusses the design and development of the garment fabric and style,
Chapter 4, 5, 6 and 7 present detailed solutions and discussions focusing on the key parts
of the data-based decision support system with learning mechanisms.

Note that although the general concept and architectural blueprint of the wearable
system has already been set at the beginning of the project, the methodologies and algo-
rithms, however, evolve and update continuously as my understanding grows concerning
the research context and the targeted problems to be solved.





3Garment Design: The Choice of the

Most Appropriate Fabric and

Garment Style

3.1 Introduction

As a key component of intelligent garments and the actual physical support for their
embedded electronic components, the garment itself plays a crucial role in comfort and
usability. The design of a garment which is specifically dedicated to wearable systems in-
volves several aspects: First, as regards comfort and flexibility, the garment fabric should
be soft, elastic and resistant, offering the wearer support from the abdomen as well as
from the back. This requires the choice of the most relevant textile parameters namely:
1) the best fabric texture (binding/yarn intertwining within the fabric and 2) the use of
comfortable fibers and threads for the wearer. Secondly, garment design should fully con-
sider the morphology of the target users (in our case they refer to pregnant women who
feature a changing morphology at different pregnant stages) without causing any discom-
fort to them even for long term use. In our study, we have utilized advanced 3D human
body scan technology for data acquisition of accurate body measurement information of
pregnant women of different gestational weeks before the actual design and making of
our intelligent garment prototypes. The fact that the design of garment style fully takes
these morphology data in to consideration helps the final garment to be perfectly fits the
pregnant women’s body shape. Thirdly, the design of the garment should ensure those
in-textile sensors to have a decent working environment for data collection with the op-
timal SNR (Signal-to-Noise Ratio). In the context of our research, a tight contact between
the accelerometers and the abdominal skin need to be guaranteed, minimizing the noise
generated by frictions between sensor-fabric and fabric-skin. However, the level of this
tightness should be deliberately selected and controlled. More importantly, the garment
after integrating electronic components should not bring any discomfort and inconve-
nience to the wearer’s daily life.

This chapter presents the work that has been done in the frame of garment design
when developing our intelligent garment. Corresponding to the above-mentioned argu-
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ments, the contents of this chapter is divided mainly into two parts: the choice of the most
appropriate textile and towards an ergonomic garment design - the design of the most
comfortable garment style, respectively.

3.2 Choice of the Most Relevant Fabric Parameters

In the context of signal acquisition, the most optimal fabric for our intelligent garment
should be the one with minimum signal attenuation. This is because that with a known
hit (e.g., a fetal kick on the mother’s abdomen) that acts on the fabric of the intelligent
garment (with at least one accelerometer nearby that can capture this hit), the less signal
attenuation that the fabric features, the higher signal amplitude we can get from sensor
output, thus the better signal SNR we can achieve.

In order to test the signal attenuation ability of different knitting structures in terms
of fetal movements, therefore selecting the most relevant knitting construction with mini-
mum signal attenuation, we have to first find out a suitable method to simulate/model a
fetal movement, as well as to get to know what type of force with which strength level a
typical fetal movement features. For the sake of simplicity, we consider in this thesis that
most maternal-perceived fetal movements are fetal kicks (see Subsection 1.2.3 of Chapter
1). Several works have been published in the literature presenting their research works of
modeling and simulating fetal kicks [Verbruggen et al. (2016)] [Sazali et al. (2019)] (see
Fig. 3.1). Referring to the results from both of the just-mentioned works, we choose a force
of 200cN (centinewton, 1cN = 0.01N) as the minimum force generated by a fetal kick that
can be captured by our monitoring system.

Figure 3.1 – (a) Image of experimental setup showing Instron machine, probe and silicone rubber sheet, and
(b) a graph comparing average of experimental forces with forces predicted computationally (reprinted from
[Verbruggen et al. (2018))].

Based on the above information, we have conducted a series of tests to compare dif-
ferent knitting constructions while fixing all the other features (e.g., yarn characteristics).
As shown in Fig. 3.2, we utilized a solenoid to generate a specific force of 200cN on the
surface of a knitting fabric where an accelerometer was integrated. The use of the solenoid
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is to imitate fetal kicks. Acceleration signals in response to the solenoid hits were acquired
for 6 types of knitting samples: Jersey, Locknit, 1x1 rib, Roman Stitch, 2x1 rib and English
Rib, respectively. Fig. 3.3 illustrates the acceleration response signals of these fabrics after
receiving one hit from the solenoid.

Figure 3.2 – Testing of signal attenuation of different fabrics using a solenoid.

Figure 3.3 – Acceleration g values of different knitting constructions in terms of signal attenuation.

The calculation and evaluation of signal attenuation concerning different knitting pat-
terns in response to one hit generated by the solenoid is described as follows. Here we take
Jersey pattern as an example, Fig. 3.4 illustrates its acceleration response after receiving
one hit. The data is sampled with a sampling frequency of 1000Hz, that is to say 1 mil-
lisecond interval between each two adjacent sampling points. After several oscillations in
response to the hit, the acceleration value returns to 1g, which represents the gravitational
acceleration (oscillation stopped).
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Figure 3.4 – Figure illustrating acceleration signal magnitude attenuation property of Jersey fabric after
receiving one hit.

Now let us focus on the signal between two adjacent sampling points. As shown in
Fig. 3.5, we approximately consider that the area under the curve (indicated with red color
in the figure) between point n and n + 1 equals to the surface of the trapezoid (the green
area together with the gray area) that is defined by the four points (n, y(n)), (n, 0), (n +

1, y(n + 1)) and (n + 1, 0).

Figure 3.5 – Figure indicating how to evaluate the signal attenuation given a acceleration signal in response
to one hit.

Based on the above assumption, we can therefore calculate the area under the curve
by calculating the area of the trapezoid using the following equation below:

Sur f aceTrapezoid = Sur f aceTriangle + Sur f aceRectangle

=
1
2
× L1× L3 + L1× L2

(3.1)

where L1 = 1 (millisecond), L2 = y(n + 1) and L3 = y(n) − y(n + 1). The y(n) and
y(n + 1) are actually acceleration g values.
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Take one step further, the entire signal oscillation intensity in response to the hit on
the fabric can therefore be evaluated by summing up all the trapezoid surfaces as shown
below:

Sur f aceTotal = ∑ Sur f aceTrapezoid,

Signal attenuation of the other above-mentioned knitting patterns has been evaluated
using the same method. Then, the pattern with minimum signal attenuation property has
been identified after a horizontal comparison of the experimental results of all the seven
candidate patterns. We identified that the most relevant fabric is a knit with a Jersey pat-
tern, which is capable of transmitting at least 80% of original human movement data.
Besides, the final fabric material is made from a mixture of polyamide (90%, resistant
to long-time wear without deformation) and elastane (10%, elastic and cling to the skin)
fibers, which has been justified by the textile engineer’s experience and many commer-
cialized maternity support belts [Bérangère (2016)]. This fiber proportion can effectively
guarantee the fabric properties of softness, resistance to friction and elasticity.

3.3 Towards an Ergonomic Garment Design - Design of the Most

Adaptable Garment Style

3.3.1 Acquisition of Pregnant Women Body Measurement Using Human 3D scanning
Technology

In order to design a garment with the optimal size and shape that is fully adapted
to pregnant women’s body morphology, we utilized 3D body scanning technology with
Size Streamr [Size Stream] to obtain body measurement data of pregnant women with
different gestational ages. This technology is capable of obtaining full body measurements
by using infrared sensors installed on the aluminum frame of a 3D scanner, providing a
non-invasive human body scanning solution (see Fig. 3.6). The scanner is capable to detect
more than 100 data points and provides more than 400 types of measurements including
circumferences, lengths, surface areas and body volume. An example of measurement
data acquisition using the software coming with the Size Stream 3D scanner is illustrated
in Fig. 3.7.

In order to collect data while the subject’s body shape changes as pregnancy develops,
two pregnant women came to our laboratory once per week for an entire body scanning.
These two subjects have different body morphologies, ensuring rich and differentiated
body measurement data. The measurement data obtained from the 3D scanner enable us
to choose the most appropriate garment size and shape. That way, the garment can fit
the wearer’s morphology with a minimum gap. We also designed a desirable pressure
between the textile surface and skin (small negative ease allowance values) in order to
ensure close contact of the embedded sensors with the user’s skin.
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Figure 3.6 – Figure demonstrating size measurement of a pregnant woman’s body shape based on 3D scan.

Figure 3.7 – Size measurement of pregnant women using 3D body scan.

3.3.2 Design of the Most Appropriate Garment Style for Long-term Use

Now we have body measurements of several pregnant women with different mor-
phologies at different pregnancy stages. The next step is to consider garment styles and
patterns. In our study we initially designed two garment models M1 and M2, with the
first model (M1) utilizes two separate belts connected with a dorsal support part and the
second model (M2) consists of a whole piece of fabric covering a large area of the wearer’s
abdomen (see Fig. 3.8).

We further conducted a sensory evaluation in order to find out the most relevant model
based on user experience [Bérangère (2016)]. Five pregnant women of different gestational
ages were involved and each of them was instructed to wear the two models sequentially
for several minutes and give their feedback concerning the comfort and usability of each
model. The sensory evaluation results have shown that M2 is too tight and not comfortable
for a long-term wearing, and could make the user feel stuffy especially when the weather
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Figure 3.8 – Two garment styles have been initially designed.

Table 3.1 – Sensory evaluation of the two candidate garment models

18 weeks 28 weeks 29 weeks 30 weeks 33 weeks
Criteria M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

Comfort 0 +2 0 +2 N/A +2 0 +2 +2 +2

Abdominal support 0 +2 +2 +2 N/A +2 0 +2 +1 +2

Dorsal support 0 +2 0 +2 N/A +2 0 +2 +2 +2

Relief from back pain N/A +2 N/A N/A N/A +2 0 +2 +2 +2

Freedom of movement +1 +2 +1 +2 N/A +2 0 +2 +1 +2

Model chosen X X X X X

N/A: not fitted, 0: not appreciated, +1: appreciated at first but feeling uncomfortable after a few minutes,
and +2: appreciated.
Note. Reprinted from [Bérangère (2016)].

is hot. As a result, the M1 model has been chosen, based on which the final garment
prototype are made. The sensory evaluation results are shown in Table 3.1.
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3.3.3 Validation of the Proposed Garment in Terms of Tightness with Virtual Fitting

For validating the size and shape of the final garment prototype, we evaluated its
virtual fitting on a typical pregnant 3D human model using the Modaris 3D Fit CAD soft-
ware. From Fig. 3.9, a fabric pressure coloration map that is usually used for expressing
garment comfort, we can find that the surface of the prototype is in very light blue (very
small gap with skin), ensuring tight contact between the sensors and the body surface.
The proposed prototype is neither loose (without dark blue color) nor too tight (with-
out red color), showing that a good compromise can be established between comfort and
tightness.

(a) Tightness simulation for the abdominal side (b) Tightness simulation for the dorsal side

Figure 3.9 – Tightness simulation results.

3.3.4 Validation of the Proposed Garment by the Wearers Based on Sensory Evalua-
tion

One advantage of the intelligent garment proposed in our study lies on its ergonomic
design based on advanced 3D body scan technology applied to pregnant women of differ-
ent gestational ages. In order to evaluate the appreciation of the real intelligent garment
in terms of wearer’s comfort and tightness, we further carried out a quantitative descrip-
tive sensory evaluation. In this test, 4 pregnant women covering different gestational ages
(week 27, 28, 33 and 34, respectively) have been involved. Each subject was invited to wear,
for 10 minutes, the proposed prototype (G3) and two commercialized maternity support
belts frequently used by pregnant women (G1 and G2), and then give a score from the
set f0 (not fitted), 1 (not appreciated), 2 (appreciated at first but feeling uncomfortable af-
ter a few minutes), 3 (appreciated)g to each criterion of garment comfort, determined by
designers. These criteria include: C1: overall garment comfort, C2: feeling dorsal support,
C3: feeling relief from back pain, C4: easy to put on.

The evaluation results given by all the four subjects on these criteria are shown in Fig.
3.10. 3 subjects complained about the unfitful size of the first belt (G1) thereby failed to
put it on, resulting in missing blue curves in Fig. 3.10a, Fig. 3.10b and Fig. 3.10d. The
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(a) S1 (27 weeks) (b) S2 (28 weeks)

(c) S3 (33 weeks) (d) S4 (34 weeks)

Figure 3.10 – Sensory evaluation results of the two commercialized maternity belts (G1, G2) along with our
proposed garment (G3). the 4 subplots are illustrated based on feedbacks from 4 subjects S1-S4 (pregnant
women), in terms of 4 criteria C1-C4.

same scenario occurred for the second belt (G2). The evaluation results show that the pro-
posed intelligent garment prototype is mostly appreciated (>=2) by the pregnant women
at different gestational ages due to its capacity of adaptation to various morphologies.

3.4 Conclusion

This chapter has discussed the choice of optimal fabric material and knitting pattern
used for the intelligent garment while maintaining a good SNR and comfort to the user,
as well as the ergonomic design of the garment style and shape. Original contributions
are concluded as follows:

1) We have conducted rigorous tests to evaluate the influence of different types of
knitting patterns on the attenuation of signals acquired by the embedded sensors, with
which we are able to choose the most relevant material for fabricating the garment.
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2) We have obtained the most appropriate garment size/shape based on the 3D body
scans on several pregnant women of different gestational weeks and different morpholo-
gies. The ergonomic design of the garment ensures the embedded sensors have a tight
contact with the wearer’s abdomen when being worn without causing much pressure and
discomfort to the wearer. This offers good user experience and satisfaction to th wearer
even for a long-term use.

Most of the garment design and developing phase discussed in this chapter had been
carried out before I started my PhD thesis, except the sensory evaluation of the final
prototype as presented in Subsection 3.3.4, which was conducted during the third year
of my research work. For other aspects of information related to the garment design, the
reader is referred to the original publication [Bérangère (2016)].



4Fetal Movement Signal

Classification Using ANFIS

4.1 Introduction

This chapter presents the research work done during my first year’s PhD study, which
was a preliminary study trying to understand the nature of accelerometer-recorded fetal
movement signals. The objective of this study has been to attempt find out distinguishable
and unique features of fetal movement acceleration signals, which would be essential to
efficiently and accurately separate them from the ongoing sensor data stream.

Attempts to extract the most representative information, in terms of both time and
frequency domains, from the raw acceleration signals were made. These representative
information, or features in the field of machine learning, are then used to train a machine
learning classifier, which then will be able to classify new signals into several distinguish-
able categories (or classes) after being trained. We evaluate the effectiveness of our feature
extraction approach by evaluating the classification performance of the machine learning
classifier trained with these features.

When it comes to the choice of a suitable machine learning model, we employed AN-
FIS (Adaptive-Network-based Fuzzy Inference System) in that early research stage. The
ANFIS model architecture is actually an integration of neural networks and a fuzzy logic
system, so that it has potential to capture the benefits of both in a single framework. For
more information about the ANFIS algorithm the reader is referred to Subsection 4.2.4 of
this chapter.

Due to the continuous evolution and improvement of the fetal movement monitoring
system as the research progresses, some premise parameters used in this chapter e.g.,
the cutoff frequency for the filter and whether or not overlapping the window for signal
segmentation, may slightly differ from the general architecture of the system presented in
Section 2.3.1 as well as from other subsequent chapters. Nevertheless, the basic principles
remain consistent.

65



66 Chapter 4. Fetal Movement Signal Classification Using ANFIS

4.2 Preliminary Knowledge

4.2.1 Basic Principles of Fuzzy Logic and Fuzzy Systems

The idea of fuzzy theory was first introduced in [Zadeh (1965)]. Fuzzy logic is a gener-
alization of standard logic. Unlike the typical way of thinking and analyzing things in the
field of computer science, where a binary value equals either 0 or 1 - True or False, fuzzy
logic, however, deals with uncertainty. Similar to possibility theory, fuzzy logic represents
uncertain information, meaning that output of a fuzzy logic system can be any values be-
tween 0 and 1, indicating the possibility that an object might be categorized to a specified
class or an specific action might be taken.

Fuzzy logic divides input data entity that is being analyzed into several regions,
namely fuzzy sets [Zimmermann (1993)]. E.g., the exam marks of a student can therefore be
grouped into linguistic representations such as "bad", "average" or "good", based on member-
ship functions associated to each group (see Fig. 4.1). Note that different types of member-
ship functions can be chosen based on specific requirements. Commonly used member-
ship functions are Triangular, Trapezoidal, Singleton and Gaussian. The concept fuzzification
refers to the process of assigning a numerical input value to a fuzzy set with respect to
the corresponding degree of membership. In our example, the output of this student’s exam
marks after fuzzification is "80% average and 20% good" which means that this student is
rather an average one. By this way, his mark is fuzzified.

Figure 4.1 – An example of exam marks represented in a fuzzified way.

Fuzzy logic measures the degree to which the proposition is correct, based on IF-
THEN rules. Let’s say this student took two examinations A and B, examples of the
mathematical expression of fuzzy logic to qualify his level is shown below.

IF mark A is good AND mark B is good THEN this student is qualified
IF mark A is bad AND mark B is bad THEN this student is not qualified

4.2.2 Applications of Fuzzy Logic in Medicine Fields

Fuzzy theory and fuzzy logic-based systems have largely been applied in the world of
medicine [Mardani et al. (2019)]. It is well known that there are many complex illnesses
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with diverse possible symptoms with uncertainty in medical issues, and a medical expert
often make his decision based on the reasonable consideration of the uncertainty of evi-
dence which exists in the medical data as well as in observations. In other words, most
medical diagnosis are made on the basis of possibility of the identified symptoms.

Fuzzy logic has advantages of simulating human behaviors and dealing with uncer-
tain situations in the real world. It has become an effective and efficient tool for describing
vagueness and imprecision using precise mathematical expressions (membership func-
tions). It is easier to map quantitative values obtained with medical measuring devices
or from historical patient data to a qualitative linguistic expression, which significantly
improves the user’s ability to comprehend. For example, in intensive care, fuzzy logic and
fuzzy systems help to group a patient’s current situation into several categories or medical
states (e.g., extremely critical, critical, serious but stable, guarded, etc.) based on a short-
term but comprehensive analysis of the vital signs and physiological signals of the patient
under intensive care [Bates et al. (2003)]. Another interest of using fuzzy-based approaches
lies on its ability of combined analysis on different sets of symptoms, which may be asso-
ciated with different problems or causes. Compared to other conventional data-driven AI
approaches, a fuzzy system is more like a rule-based inference system with its IF AND/OR
IF THEN rules, connecting different sets of symptoms, either representing human expert
knowledge or being extracted from a deep mining of medical data [Medina et al. (2018)]
[Nauck et al. (1999)].

In our case, a fuzzy-based inference system might be a good alternative for fetal move-
ment signal pattern recognition and classification due to the blur boundary between fetal
movement signals and some artifacts e.g. maternal body motion signals. In clinical prac-
tice, the clinician asks the mother to note down, on a fetal movement counting chart, whether
or not fetal movements occur during successive pre-defined and short-term periods (e.g.,
record every 5 minutes with total record time: 2 hours. Please refer to Fig. 1.2 in Chapter
1 for more information). This is rather a possibility-oriented question (0 or 1, impossi-
ble or possible), whereas monitoring and evaluation of fetal movement would not make
much sense if the clinician accurately quantify these fetal movement counts. Besides, with
simple fuzzy IF-THEN rules and computationally inexpensive inference procedure, the
computational burden of the system as a whole can be significantly reduced, improving
the power efficiency.

4.2.3 Artificial Neural Network

Inspired by the architecture of human-being’s nervous system, an ANN mainly com-
prises neurons and connections that links these neurons. An ANN may comprise a series
of layers with each layer receives the output from its precursor layer as its own input, and
feeds its successors with its output. A typical architecture of two successive layers in an
ANN is shown in Fig. 4.2.

The f () denoting activation functions. As its name implies, an activation function is
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Figure 4.2 – An typical architecture of two successive layers in an ANN.

used to activate a specific neuron (or mute it) by calculating the weighted sum of its
inputs. The use of activation functions helps an ANN to learn and approximate complex
and non-linear behaviors between a system’s input and its output. Some typical activation
functions are listed below:
Rectified Linear Unit (ReLU):

f (x) = max(0, x)

Sigmoid:

f (x) =
1

1 + e−x

Tanh:

f (x) =
2

1 + e−2x − 1

Forward passing of a system’s input through all of its layers until obtaining the fi-
nal output is called inference. By running inference, an ANN is capable to classify and
recognize new inputs.

An ANN learns from labeled dataset, called training. It runs inference procedure with
all the samples from the training dataset and compares its outputs with the samples’
labels. The difference between the actual values (labels) and the predicted values (ANN’s
output) is formulated in the form of cost function. The more accurate the system predicts,
the smaller value the result of the cost function will be. The goal of training process is to
find a set of weights and biases that minimizes the cost function.

Updating the system’s weights based on the cost function is realized by calculating the
latter’s partial derivative with respect to the weights and biases. This process is known as
backpropagation, as it propagates errors back to the whole network and adjusts the system’s
parameters in a way that a better prediction can be made next time.
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The original intention of employing ANN in our study lies in its ability to learn and
model non-linear and complex relationships, which is the case in fetal movement signal
processing and classification. Besides, ANN does not impose much restrictions on the
structure of input data.

In our study, we have attempted to make full use of the advantages of fuzzy logic
in dealing with uncertainties (in our case, the uncertainties come up with processing
of medical data) while trying to combine it with the automatic training and learning
capabilities of ANN. In this way, the fuzzy inference system can be trained automatically
and learn information in a data-driven way. Fortunately, there exist already several types
of mature algorithms being able to meet this need, and the algorithm to be presented in
the following subsection is the most famous one.

4.2.4 Adaptive Neuro Fuzzy Inference System (ANFIS)

The ANFIS was first advanced by Dr. Jyh-Shing Roger Jang [Jang (1993)]. This algo-
rithm is in nature an ANN with some of its neurons implemented using fuzzy set theory
(e.g., a membership function). Unlike other conventional fuzzy inference systems, ANFIS
is able to learn automatically from training data due to its inherent ability of machine
learning. The original version of ANFIS presented in [Jang (1993)] uses gradient descent
and backpropagation, as well as least squares estimate to adjust the network’s member-
ship functions and other parameters.

We take two fuzzy IF-THEN rules in order to describe how an ANFIS works as follows.

Rule 1: IF x is A1 AND y is B1 THEN f1 = p1x + q1y + r1

Rule 2: IF x is A2 AND y is B2 THEN f2 = p2x + q2y + r2

where x and y are the two inputs to the ANFIS, Ai and Bi, i = 1, 2 are two fuzzy sets
corresponding to x and y, respectively, and pi, qi and ri, i = 1, 2 are adjustable system
parameters. The network architecture of the ANFIS in accordance with the above setting
is shown in Fig. 4.3.

Figure 4.3 – ANFIS architecture. Circles indicate fixed nodes, whereas squares indicate adjustable ones.
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As shown in Fig. 4.3, a typical ANFIS features five layers 1. The outputs of layer 1

are the results from the membership functions µ() applied to the inputs. As mentioned
earlier, there exist different types of membership functions. For example, Gaussian mem-
bership function can be expressed as:

µ(x) = exp [−( x− c
a

)2] (4.1)

where a and c are adjustable parameters that can be modified during the training process.
The mathematical expressions of each layer are as follows.

Layer 1 :

O1
i = µAi(x), i = 1, 2, and (4.2)

O1
i = µBi−2(y), i = 3, 4 (4.3)

where O denoting output with the superscript 1 indicating the first layer.

Layer 2 :

O2
i = ωi = µAi(x)× µBi(y), i = 1, 2 (4.4)

Layer 3 (the normalization layer):

O3
i = ωi =

ωi

∑ ωi
, i = 1, 2 (4.5)

Layer 4 :

O4
i = ωi fi = ωi(pix + qiy + ri), i = 1, 2 (4.6)

Layer 5 :

O5 = ∑(ωi fi) =
∑ ωi fi

ω1 + ω2
, i = 1, 2 (4.7)

As shown in the above mathematical expressions, there are several adjustable param-
eters i.e. membership function coefficients a and c in Layer 1 (note that this may change
based upon the type of the applied membership function), as well as pi, qi and ri in Layer
4. These parameters are updated during the training process.

1. In fact, there are three types of fuzzy inference system. Fig. 4.3 illustrates the famous type-3, namely
Takagi and Sugeno’s type. For more information about ANFIS the reader is referred to [Jang (1993)].
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4.3 Feature Exaction based on Statistical Features in Time and

Frequency Domain

In this section I will present to the reader my first attempt to extract features from ac-
celerometer recorded signals. The goal is to accurately distinguish fetal movement signals
from ongoing background noise by using the extracted features.

If we analyze maternal motion-free acceleration signals, we can intuitively find that fe-
tal movement signals feature relatively large amplitude (compared to that of background
noises) with short occurrence time (refer to Fig. 2.10 of Chapter 2). Therefore, statistical
features calculated from signal amplitude could be representative. Besides, based on a
visual inspection of the acquired signals, we also find that most fetal movement signals
feature peaks and spikes, meaning that they could contain high-frequency components
which are concentrated in a very narrow band. [Boashash et al. (2014)] reported a similar
observation (see Fig. 4.4). This finding inspires us to further analyze the signals’ frequency
representations in the hope that the machine learning classifier, trained with a combina-
tion of both time and frequency domain features, is able to distinguish fetal movement
signals from other fetal movement-like artifacts even if in the case that both of them fea-
ture the same signal amplitude.

(a) (b)

Figure 4.4 – (a) A fetal movement signal with its time-frequency representation and (b) a non-fetal move-
ment signal with its time-frequency representation. (adapted from [Boashash et al. (2014)])

For statistical measures on time domain features, at the early stage of the research work
we employed mean and standard deviation due to its simplicity of calculation but also the
ability of identifying, roughly though, the peaks and spikes in the signal. The mean of the
absolute value of the signal amplitude (acceleration g value) presents the overall signal
intensity whereas the standard deviation measures the degree of dispersion.

Discrete Wavelet Transform (DWT) is a powerful tool for time-frequency analysis of
non-stationary signals. It provides a multi-resolution way to extract information from time
series signals by decomposing them into a collection of frequency sub-bands [Heil et al.
(1989)]. In the literature, DWT is widely used in medical data-related signal processing
and feature extraction tasks [Subasi et al. (2010)] [Jahankhani et al. (2006)]. In our study,
the choice of DWT for the estimation of signal frequency domain features is based on the
observation that fetal movement signals feature different energy distribution character-
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istics and different frequency components when compared to other fetal movement-like
artifacts. We utilize 3-level DWT to extract time-frequency information from segmented
fetal movement signals. Furthermore, in order to reduce the volume of the extracted fea-
ture data, mean and standard deviation of DWT coefficients of each level are calculated
[Jahankhani et al. (2006)].

Finally, together with the mean and standard deviation calculated from signal ampli-
tudes, an eight-dimensional feature vector is extracted from each signal epoch. Detailed
discription of the eight extracted features are listed below:

1. Mean of the absolute value of the amplitude

2. Standard deviation of amplitude values

3. Mean of the absolute values of the coefficients in each sub-band of the wavelet coef-
ficients

4. Standard deviation of the coefficients in each sub-band of the wavelet coefficients

Table 4.1 shows the feature vector extracted from one fetal movement signal sample
and that from one noise signal. From the table we can clearly observe the difference
between these two feature sets. A more intuitive visualization of the difference between
the two extracted feature vectors can be found in Fig. 4.5.

Table 4.1 – Extracted features of one fetal movement signal segment and one noise signal segment.

Amplitude D1 D2 D3 A3

Fetal movement Abs Mean 0.0130 0.0157 0.0123 0.0126 0.0180

Std 0.0228 0.0225 0.0213 0.0213 0.0269

Noise Abs Mean 0.0024 0.0027 0.0022 0.0027 0.0028

Std 0.0032 0.0034 0.0027 0.0036 0.0035

Note. Abs Mean: mean of the absolute value, Std: standard deviation.

4.4 ANFIS-Based Classification Approach

The general architecture of the proposed ANFIS-based fetal health evaluation system
is shown in Fig. 4.6. The filter that we utilized in this study is an IIR bandpass filter with a
range of [0.2Hz, 20Hz], and we set the threshold detection module with parameters [0.05g,
0.8g]. The cross-correlation module is not involved (refer to Subsection 2.3.1), instead, the
system simply excludes all the signals from the four sensors within a specific time interval
in case if the any sensor’s signal amplitude exceeds the upper threshold.
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Figure 4.5 – A comparison of the feature distribution of a fetal movement signal with that of a noise signal.

4.4.1 Data acquisition

Just like other data-driven machine learning approaches, the development of the pro-
posed ANFIS-based approach mainly comprises two steps: training and testing, respec-
tively, which relies on a large volume dataset to achieve a good classification performance.
However, by the time this approach was developed, we had acquired only two fetal move-
ment signals, each with an acquisition time of about 20 minutes. It is therefore straight-
forward to utilize one signal for training the ANFIS model and the other one for testing
the trained model’s performance. Detailed description of data acquisition can be found in
Section 2.4 of Chapter 2.

After filtered, thse two signals were split into segments using a time window of 4

seconds in length with 50% overlapping. These split signal segments (also called samples)
were then labeled by an expert clinician based on the maternal perception markers (fetal
movements or not) documented during data acquisition. A brief recapitulation of these
two datasets after signal processing and labeling is shown in Table 4.2.

Table 4.2 – Description of the two datasets used for ANFIS training and testing.

Number Length (min) Number of channels (sensors) Samples per channel Usage

1 15.2 4 456 Training
2 23.5 4 705 Testing
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Figure 4.6 – Flowchart of the proposed ANFIS-based system.

4.5 Experiment and Results

4.5.1 Training of the ANFIS Classifier

We tested the performance of the proposed ANFIS-based approach using Matlab
R2017a (The Mathworks, Natick, MA) running on a personal computer. The initial set-
tings of the ANFIS model are described in Table 4.3:

Table 4.3 – Description of the two signals used in ANFIS training and testing.

Item name Value Remark

Fuzzy inference type Sugeno
Number of inputs 10

Number of input membership functions 20

Number of outputs 1

Number of output membership functions 2

Range of outputs [1, 2] 1: Fetal movement, 2: Noise

The training of the ANFIS model mainly comprises two steps:

1. Initialize each input membership function of the ANFIS model by using the statis-
tical distribution of the training dataset. Take the membership function for signal
amplitude for example, the mean and standard deviation values of the signals’ am-
plitudes over the entire training dataset were calculated, then the parameters c and
a in Equation 4.1 were set accordingly.

2. Train the ANFIS model in an iterative way using the entire training dataset (we
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did not divide the training dataset into batches). Note that compared to the initial
version presented in [Jang (1993)], our ANFIS model was trained with the SCG
(Scaled Conjugate Gradient) algorithm [Møller (1993)] for determining the optimum
values of the nonlinear parameters, due to its faster execution time. We utilize root
mean square error (RMSE) for evaluating the training and test performance. The
RMSE is formulated as follows:

RMSE =

√
∑N

i=i (di − oi)2

N
(4.8)

where N denotes the total number of training samples in the training dataset (N =

456× 4 channels = 1824 in our case), oi and di are the ANFIS model’s outputs and
the samples’ corresponding real classes (labels), respectively.

The number of iterations was set to 100 in order that the training RMSE value fully
converges to its minimum. The RMSE training curve is illustrated in Fig. 4.7.

Figure 4.7 – The RMSE training curve of the ANFIS model.

4.5.2 Evaluation of the Trained ANFIS Model

The performance of the trained ANFIS model was evaluated using the second dataset.
The classification accuracy on the testing dataset is 88.51% (624 out of 705 epochs have
been correctly classified). The classification results of the signal corresponding to the third
sensor is illustrated in Fig. 4.8.
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Figure 4.8 – Offline evaluation results of the proposed algorithm on the second signal.

4.6 Conclusion

The experimental results presented in Section 4.5 have shown a decent classification
accuracy using an ANFIS-based classifier. As a member of fuzzy inference systems, one
of the most significant advantages of ANFIS algorithm lies in its ability of linguistic mod-
eling and approximate reasoning. However, only two types of signals had been consid-
ered by the time this work was conducted (fetal movement signals and background noise
signals when the user stays still, respectively). The system was therefore not capable of
monitoring fetal movements when there exist other artifact signals (e.g, if the mother is in
activity during the measurement). Another limitations about this research lies on its in-
completeness in terms of qualitative monitoring of fetal movements. In fact, merely being
able to provide the number of signals labeled as FetMov (fetal movement) or NonFetMov
(not a fetal movement) based on a 4-time interval, the monitoring system proposed in this
chapter failed to propose a solid solution on how to relate these acquired fetal movement
signals to the baby’s real health condition. It was not until in the second year that I started
to consider how to count fetal movements in a more rational and reasonable way rather
than only focusing on the signal classification. For a detailed discussion about how to
relate quantitative signal classification results to a qualitative evaluation of fetal health,
the reader is referred to Chapter 7.
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5.1 Introduction

As my understanding of the research project grows, my interests have been implicated
in more specific issues concerning the accurate identification of fetal movement signals as
well as the effective elimination of artifacts. It was at that stage of the research work that
I started to think seriously about the following issues:

1. I started to notice the importance of analyzing not only fetal movement signals
but also artifacts caused by the wearer (the pregnant woman) e.g., artifacts from
maternal body motions or even from her walking activities. Indeed, it is not usual
that a pregnant woman monitors her baby’s movements while walking, because in
this case it is hard for her to perceive fetal movements by herself. However, we have
still attempted to detect fetal movement signals from mixed walking signals, which
could be of benefit to improve the system’s robustness dealing with different usage
scenarios. If not handled properly, these artifacts could result in serious problems in
terms of timely and accurately monitoring the fetus’ health especially if the system
has a poor specificity in distinguishing fake fatal movements from real ones.

2. I started to think about which features are most representative among others when
dealing with signal classification-related problems, and how to find them. Classify-
ing signals using the most relevant features has advantages: it can boost the clas-
sification accuracy and reduce the computational burden as redundant features are
eliminated.

3. I considered the problem about how to make full use of all the four sensors when
detecting fetal movements. Are there any relationship/correlations between signals
coming from different sensors? It is at that time that I utilized cross-correlation
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values between the two adjacent channels as a auxiliary tool to process signals (see
Subsection 2.3.4 of Chapter 2).

4. I also realized the underlying difficulties in the acquisition of large volume of valu-
able fetal movement acceleration signals, which has been an obstacle to the use of
data driven-based machine learning algorithms for signal classification. This is the
reason why I started to put my focus on some machine learning algorithms who
have incremental learning ability - Fuzzy ARTMAP used in this chapter is an exam-
ple. Incremental learning allows an algorithm to continuously update its parameters
(e.g. weight vectors or topology) once new training samples are available without
catastrophic forgetting of what it has learned before.

Following the above-mentioned issues, this chapter mainly discusses two topics 1) a
more rigorous and serious approach to extract features from fetal movement acceleration
signals, and 2) signal classification using Fuzzy ARTMAP algorithm. Contents presented
in this chapter are a combination of two published papers during my second year of PhD
study both of which utilized Fuzzy ARTMAP classifier for the classification of acceleration
signals. The experimental results concerning the first publication is stated in Section 5.4,
and those for the second publication can be found in Section 5.5.

5.2 Preliminary Knowledge

5.2.1 Feature Dimensionality Reduction with Sequential Feature Selection Algorithm

There has been attention to feature selection technique for decades [Fu (1970)]. In a
classification task, feature dimensionality reduction by using feature selection helps to find
the optimal feature subset from the original set and eliminate feature space redundancy
and find the optimal feature subset. This brings benefits such as dealing with overfitting
problem as well as reducing computational complexity [Motoda et al. (2002)].

Sequential Feature Selection (SFS) algorithm is one popular method to employ feature
selection. Being a family of greedy search algorithm, this algorithm can be implemented
in two ways: 1) Forward Sequential Selection (FSS), which starts with one feature only
and progressively adds one feature at a time until the classifier reaches the highest clas-
sification, and 2) Backward Feature Selection (BSS), which start with the original feature
set and remove one feature at a time [Aha et al. (1996)].

5.2.2 Principle Component Analysis

The very first discussion about the Principal Component Analysis (PCA) can be traced
back to early 20

th century [Hotelling (1933)]. This approach has widely been used in
statistical analysis during the decades. PCA maps data from a high dimensional space into
new orthogonal axes, which are called Principal Components (PCs), in order to reduce the
dimension of the original feature space. Besides, PCA allows to visualize a high-dimension
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feature set by transforming the original feature set into a 3-dimensional or 2-dimensional
space.

5.2.3 Fuzzy ARTMAP

Based on adaptive resonance and fuzzy set theory, fuzzy ARTMAP is a lightweight
machine learning algorithm different from other neural network-based algorithms. The
most important advantage of using fuzzy ARTMAP lies in its easy implementation in
an embedded microcontroller due to its low computational complexity. Another advan-
tage lies on its property of incremental learning, with which it can continuously update
its parameters (e.g. weight vectors or topology) once new training samples are available
without catastrophic forgetting of what it has learned before. More detailed description
on the fuzzy ARTMAP algorithm can be found in [Carpenter et al. (1992)].

Figure 5.1 – Architecture of the fuzzy ARTMAP algorithm.

The architecture of the fuzzy ARTMAP is shown in Figure 5.1. It mainly consists of
two fuzzy ART modules interconnected through the map field module Fab. During the
supervised training, the Fa

0 layer in the ARTa module is fed with complement coded input
vectors, and the ARTb module deals with the relevant correct prediction labels. If the
prediction result given by ARTa based on input vector does not match the correct label
given by ARTb, match tracking will take place. Match tracking triggers ARTa to search for
another category that correctly predicts the label given by ARTb or adds a new category
in case if no existing categories matches. Selection of one category from Fa

2 is done based
on the category choice function 5.1.

T j =
| I ∧ω j |
α+ | ω j |

(5.1)

where I is the complement code of input vector, α is the choice parameter, ωj is the weight
of node j, and the fuzzy AND operator ∧ is defined by equation 5.2.

(p ∧ q)i = lim (pi, qi) (5.2)
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The node that with the highest category choice value in Fa
2 is then tested with the

vigilance value ρ according to the match criterion equation 5.3, if this condition is met,
the parameter update is executed by equation 5.4.

| I ∧ω |
| I | ≥ ρ (5.3)

ωnew
j = β(I ∧ωold

j ) + (1− β)ωold
j (5.4)

where β is the learning rate with the range of [0, 1].

5.3 Data Acquisition

By the time these two papers were published, I had already successfully collected
15 signals from 14 subjects (pregnant women) between the 25

th - 39
th week of gestation.

A wide range of gestation weeks was covered in order to collect different types of fetal
movement signals. Only subjects with singleton pregnancy were considered. The average
recording duration was about 15 minutes. During the measurement, the subject was asked
to hold the push-button in the hand to record maternal perceptions. After each data ac-
quisition, a clinical expert labeled the acceleration signals with respect to the maternal
perception markers.

Fetal movement patterns were labeled by human beings, which cannot guarantee ab-
solute correctness. In fact, we do require the subject to keep quiet during the test, but
it is unrealistic to force them to remain absolutely still and not to introduce any mater-
nal movements. In the principle of utilizing fewer but better training patterns for machine
learning, hoping not to include any pseudo patterns into training dataset, only 382 epochs
were finally labeled as fetal movements among all the recorded data. At the same time,
some artifact signal samples (e.g., the wearer’s body motion signals, walking, etc.) have
also been acquired. These artifact signal samples are used for the training of the classifier
model together with the fetal movement signals.

The acquired signals were pre-processed identically as presented in Subsection 2.3.2 of
Chapter 2. A detailed description of the dataset after pre-processed can be found in Table
5.1.

Table 5.1 – Description of the training dataset.

Type Number of samples (length: 4 seconds)

Fetal movement 382

Fetal heartbeat 655

Wearer’s body motion 368

Walking 552

Background noise 598
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5.4 Combination of Time-Domain and Discrete Wavelet-Domain

Features for an Effective Elimination of Maternal Body Mo-
tion Artifacts

This section presents a pilot experiment focusing on distinguishing between real fetal
movement signals and maternal body motion signals. Similar to the feature extraction ap-
proach presented in Section 4.3, we have utilized a series of informative features extracted
from both time and wavelet domain in order to maintain the computational simplicity of
time features as well as the multi-resolution analysis ability of different frequency sub-
bands when it comes to DWT.

5.4.1 Description of the Extracted Features

1) Time-domain features
The time-domain features extracted from the original signals comprise the following:

– Maximum absolute value of signal magnitudes
– Mean absolute value of signal magnitudes

2)Wavelet-domain features
Daubechies 2 (db2) wavelets with 4-level have also been utilized with the frequency

range of each level shown in Table 5.2.

Table 5.2 – Frequencies corresponding to different levels of wavelet decomposition (4-level), with a sampling
frequency of 60Hz.

Decomposed signal Frequency range (Hz)

CD1 15 - 30

CD2 7.5 - 15

CD3 3.75 - 7.5
CD4 1.875 - 3.75

CA 0 - 1.875

In order to further decrease the dimensionality of the extracted DWT features, the
following statistical information over the wavelet coefficients from each sub-band were
calculated and used as the candidate features for the signal classification task [Subasi
(2007)]:

– Mean value of the absolute values of the coefficients.
– Average power of the coefficients.
– Standard deviation of the coefficients.
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– Ratio of the mean absolute values among all the sub-bands.

From the above four statistical features, the first and second represent the frequency
distribution of a signal, and the other two represent the amount of changes in frequency
distribution.

Finally, the combination of both the time-domain features and the statistical values
calculated from the DWT coefficients results in a 22-dimensional feature vector. That is to
say, after feature extraction, each time-based signal sample from the dataset (containing
240 data points) is now transferred to a vector of 22 data points.

5.4.2 Principal Component Analysis for Feature Visualization

We utilize PCA to map each 22-dimensional feature vector calculated using the above-
mentioned feature extraction approach in 3-dimension space. Fig. 5.2 visualizes PCA re-
sults calculated based on the feature vectors from two categories: fetal movement and
maternal body motion, respectively. From the figure it is observed that the samples from
these two categories are clearly separable by a red dotted line, proving that the above-
mentioned feature extraction approach is able to generate representative features that can
effectively separate these two types of signals from each other.

Figure 5.2 – PCA results providing a visualization of the selected feature set. It is observed from the figure
that the two categories are clearly separable in a 3-dimensional space, as indicated with a red dotted line.
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5.4.3 Training of Fuzzy ARTMAP Classifier Using the Extracted Features

In this pilot study, 147 fetal movement samples from two categories, namely fetal
movement and maternal body motion, respectively, are carefully selected from the original
dataset, and the features calculated from these samples by using the above-mentioned
approach were used to train a fuzzy ARTMAP model. The initial parameter settings of
the model is listed in the Table 5.3.

Table 5.3 – Initial parameter settings of the fuzzy ARTMAP model.

ARTα vigilance ρα Bias No. of epochs No. of classes Learning rate
0.75 0.000001 100 2 1

5.4.4 Validation of the Trained Model on New Data

We prepared a new signal (not part of the original dataset) to validate the trained
fuzzy ARTMAP classifier. This new signal with a length of 10 minutes was recorded with
a pregnant woman of 29 weeks gestation by using our intelligent garment working on
raw data recording mode (sending raw sensor signals directly to the Smartphone without
any pre-processing). Although the mother was recommended to avoid intensive body
motions during the measurement, totally 4 maternal movements were recorded by the
observer. During the measurement, the mother totally pressed the push button 15 times
(each representing one maternal perception of fetal movement). The recorded signal from
the third sensor together with the corresponding maternal markers is illustrated in Fig.
5.3a).

Correspondingly, the classification results of the trained fuzzy ARTMAP classifier on
this offline data is shown in Fig. 5.3b. It is observed that the system accurately identi-
fied the fetal movements from around 150 seconds to 600 seconds. However, the classifier
delivered some false positive outputs at the beginning of the signal where no maternal
annotations are recorded. This is because that the subject was not yet ready for data ac-
quisition when just settled down, which involves artifact signals that the system wrongly
considered as fetal movements.

The experimental results have proven that the proposed monitoring system feature
good sensitivity. However, since there is no absolutely trustworthy reference for fetal
movement, and the mother may not be able to feel some fetal movements which are actu-
ally detectable by the monitoring system, it is difficult to evaluate the system’s specificity.
This experiment further confirmed that the moving window with a length of 4 seconds
is suitable for fetal movement signal detection. It is worth noting that, this experiment
introduced, for the first time, another time window with a length of 10 seconds. This sec-
ond window working synchronously with the first one were used for artifact elimination
based on a large time granularity [Altini et al. (2017)]. Using this "multiple-length win-
dow" configuration, the monitoring system successfully excluded the two maternal body
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(a) Acceleration data from sensor 3 (purple) together with maternal perception (red) and the observer’s markers for
labeling the artifacts (green).

(b) Output of the proposed monitoring system (blue) together with maternal perception (red).

Figure 5.3 – Classification results.

motion artifacts at around 50 seconds and 550 seconds, further reducing false positive
rate.

5.5 Selecting the Most Relevant Features

For effective classification of time series signals, it is important to identify a set of
features with high discriminative ability. However, finding a good data representation is
very domain specific and is related to available measurements. On the one side, it is always
better to be too inclusive rather than discarding any potential vital information [Guyon
et al. (2008)], on the other side however, extracting high-dimensional features from raw
data makes it challenging to implement the related algorithm into wearable embedded
systems due to the latter’s limited memory and restricted computational capability.

This section presents our research work (the second publication mentioned in the
current chapter) concerning identifying the most representative features from a set of data
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and removing the irrelevant or less important features which do not contribute much to
the classification accuracy.

5.5.1 Finding out the Most Representative Features

We first listed all the potential informative features in both time domain and DWT
domain [Subasi (2007)] [Phinyomark et al. (2012)] (see Table 5.4). We then utilized SFS
algorithm to find out the most representative features from the candidate features. For-
ward sequential selection algorithm was used. Besides, we assigned a Random Forest (RF)
classifier for directing the search of the sequential algorithm for the most relevant features.

Table 5.4 – List containing candidate features utilized for feature selection.

Domain type Number Feature name

Time domain

1 Maximum of absolute value
2 Minimum of absolute value
3 Mean
4 Standard deviation
5 Max.Abs - Min.Abs
6 Integrated value
7 Simple square integral

8, 9, 10 Absolute value of the 3rd, 4th and 5th temporal moment
11 RMS
12 Log detector
13 Waveform length
14 Difference absolute standard deviation value
15 Skewness
16 Kurtosis

DWT

1 Mean absolute values of the coefficients
2 Average power of the wavelet coefficients
3 Standard deviation of the coefficients
4 Ratio of the absolute mean values in all the sub-bands

In our previously researches, we systematically utilized Wavelet Daubechies 2 (db2)
wavelet because it is widely used in the literature to solve similar classification prob-
lems [Tautges et al. (2011)]. However, no detailed and rigorous examination on other
types of wavelet has been conducted. This section investigates the performance of differ-
ent wavelets based on the classification accuracy of accelerometer signals. More exactly,
Daubechies wavelet db1, db2, db6, Symmlet wavelet sym6, sym10 and Coiet wavelet coif2,
coif4 were tested respectively. The result shows that the db2 wavelet outstands among oth-
ers, validating our prior assumption (see Table 5.5).
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Table 5.5 – Performance comparison of different wavelets on acceleration signal classification.

Feature space Wavelet type Accuracy

DWT

db1 0.966

db2 0.967
db6 0.962

sym6 0.964

sym10 0.954

coif2 0.963

coif4 0.959

Feature dimensionality reduction was applied separately to the candidate features of
time-domain and those of DWT-domain (see Fig 5.4), and the final feature set was ob-
tained by combining the optimal subsets in both time domain and DWT domain (see Ta-
ble. 5.6). Combining the subsets from these two domains helps to improve the robustness
and generalization ability of the monitoring system, as time-domain features are compu-
tationally simple whereas those of DWT-domain represent signals energy distribution in
frequency sub bands.

(a) (b)

Figure 5.4 – Average classification performance on the training samples, with forward feature construction
on time domain (a) and db2 wavelet (b).

5.5.2 Evaluation of the Classification with the Fuzzy ARTMAP Classifier

We utilized the famous 7 : 3 (training : testing) configuration to train and evaluate
the performance of the fuzzy ARTMAP model, meaning that 70% of the entire training
samples (feature vectors extracted from the entire collected acceleration data presented
in Section 5.3) were used for training the model and the others used for testing. The
confusing matrix of the classification results on testing data is shown in Table 5.7.
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Table 5.6 – Final feature set comprising both time and wavelet features.

Domain Feature number

Time 1, 5, 6, 7, 12, 13, 14, 15

DWT (db2 wavelet) 1, 2, 3, 4 for D1; 2, 4 for D2; 2, 4 for D3 and 4 for D4

From the confusing matrix it is observed that compared with the other artifacts, those
caused by maternal body movements are relatively difficult to be distinguished from real
fetal movement signals (with about 10% of the fetal movement signals misclassified as
maternal body motion). The reason behind this is that some maternal body movements
may cause abdominal deflections similar to those caused by a real fetal movement.

Table 5.7 – The confusion matrix of the classification results on test set (with fuzzy ARTMAP classifier).

CLASSIFIED

Unknown FetMov Body motion Walking Heartbeat BG

TR
U

TH

Unknown 0 0 0 0 0 0

FetMov 0 92 12 4 3 3

Body motion 0 5 103 0 0 0

Walking 2 0 3 159 0 0

Heartbeat 0 2 0 0 193 0

BG noise 0 0 0 0 0 185

FetMov: fetal movement and BG: background noise.

5.6 Conclusion

The contents in this chapter mainly come from the two publications during the sec-
ond year of my PhD study. At that stage of the research I have already acquired a decent
amount of acceleration data containing not only fetal movement signals but also other
types of artifacts e.g. body motion signals collected from the wearer. It is with these col-
lected data that I was capable of conducting a more serious and rigorous feature extraction
and analysis than the research work presented in the previous chapter. Finally, a feature
set that comprises 17 informative and representative features has been decided after a
greedy bast-first search from all the candidate features using the SFS/FSS algorithm.

In this chapter we utilized a fuzzy ARTMAP model for signal classification-related
tasks. As a member from the family of incremental learning algorithms, this algorithm
features the ability of continuous learning from new incoming data without catastrophic
forgetting of what it has been learned before. This brings significant benefits especially
when dealing with the lack of training data.

As the reader can see from the experimental results presented in this chapter, the fuzzy
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ARTMAP model trained with the final feature set has achieved almost perfect classifica-
tion performance in terms of both sensitivity and specificity, which validated the efficiency
and efficacy of the proposed feature extraction approach.

Promising though, this chapter still failed to answer "how these classification results
relate to the fetus’ well-being", which will be presented in Chapter 7.



6Towards Automated Feature

Extraction of Fetal Movement

Signals

6.1 Introduction

As the reader can discover from the previous chapters, the processing of accelerometer-
recorded fetal movement signals suffers from noises and artifacts mainly caused by ma-
ternal body motions and complex interactions between the sensors integrated in a wear-
able system and wearer’s skin. An effective fetal movement monitoring system should
be capable of accurately distinguishing real fetal movements from other artifacts as poor
specificity could lead to sever consequence: the system regards noise signals as true fetal
movements whereas the actual health condition of the fetus remains uncertain, resulting
in potential fetal death. Therefore, there is a strong need to develop a robust and accurate
system to overcome this problem.

In the literature, most proposed solutions to this issue involve hard-coded thresh-
olds with features that are manually extracted from raw acceleration signals. [Girier et al.
(2010b)] proposed simple statistical features, however, their system performed poorly
in terms of both sensitivity and specificity, [Boashash et al. (2014)] developed a time-
frequency approach based on the finding that fetal movement signals feature different fre-
quency distribution compared to artifacts, [Nishihara et al. (2015)] and [Ryo et al. (2012)]
presented their studies of analyzing accelerometer recorded signals both manually and
with an automated software platform.

Despite great achievements, however, most of these studies based on the manual fea-
ture extraction of acceleration signals are still in their early stage. It is well known that
feature extraction requires deep expertise in the field, badly selected features cannot accu-
rately represent the underlying structure of the data, significantly degrading the perfor-
mance of the model. This is the reason why a fetal movement monitoring system based
on simple and manually extracted features with fixed thresholds often performs poorly
in terms of accuracy and specificity especially when operating in a noisy environment
(e.g., maternal body motions which are recorded by the accelerometers attached to the
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mother’s body). Based on a visual inspection of the acquired samples, [Boashash et al.
(2014)] described that fetal movement acceleration signals can be grouped into two types
based on signal morphology. However, our pilot experiment using a Self-organizing Map
(SOM) for data clustering shows poor relevancy between signal morphological features
and their corresponding categories (clusters) (see Subsection 6.4.1of this chapter for more
detailed information), revealing the difficulty of manual and intuitive feature extraction
by human observers.

In recent years, some studies applied machine learning techniques to avoid the use of
manually fixed thresholds, [Altini et al. (2016)] and [Altini et al. (2017)] trained a RF (Ran-
dom Forest) model using time-domain features computed from raw signals over a time
window, and [Layeghy et al. (2014)] employed SVM (Support Vector Machine) trained
with time-frequency features of raw acceleration data. However, this raises two main con-
cerns:

1. These studies systematically suffer from a lack of a large training dataset. It is
well known that the acquisition of valuable medical signals could be quite time-
consuming and inefficient. Taking fetal movement acceleration signal acquisition as
an example, studies show that the number of fetal movements varies from 25 per
hour to 3 in 24 hours in the third trimester [Rådestad (2010)]. It is also observed that
the fetus stays inactive during a sleep cycle which could last up to 1 hour, resulting
in no or only a few movement signals acquired for hours. Besides, the mother has to
keep quiet and stay still during data acquisition in order not to involve any maternal
body motions, largely interfering with her normal daily life.

2. Manually labeling of acquired raw data is another heavy task, and mistakes and in-
accuracy in data labeling negatively affect a dataset’s quality and the overall perfor-
mance of the system. Labeling of fetal movement signals can be done with maternal
annotation of fetal movements: before data are acquired, the mother is asked to hold
a push button in the hand and push it each time she feels a fetal movement. However,
studies show that only about 30% of fetal movements are perceived by the mother
[Hijazi et al. (2010b)]. Miscellaneous though, this manipulation is inevitable for data
labeling. Some studies proposed ultrasound imaging which works simultaneously
with data acquisition by accelerometers to record and label fetal movements. How-
ever, moving the probe back and forth, which is necessary for an ultrasound scan,
could introduce additional noises, interfere with the nearby sensors, and distort use-
ful signals.

To the best of our knowledge, there is no study in the literature that employs deep
learning techniques to learn to automatically extract features from raw fetal movement
acceleration signals, neither does a deep and rigorous feature engineering based on a
large dataset.

This chapter describes a novel approach based on deep learning with data augmen-
tation technique to address the above mentioned issues. The promise of deep learning
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lies on its ability of automatically learning and extracting internal representations directly
from a large dataset without human intervention [Schmidhuber (2015)]. In this way, we
neither need to manually extract and analyze features from signals, nor involve any hard-
coded thresholds. Working as a classifier, the trained deep learning model can be used as
an effective tool to classify fetal movement signals and detect other artifacts, improving the
monitoring system’s performance and robustness. Secondly, in order to address the prob-
lem of training data missing, we employ a 1-dimensional deep convolutional Generative
Adversarial Network (GAN) which is trained with a small dataset of fetal movement ac-
celeration signals and learns to generate new plausible signal samples from random noise,
leading to expansion of the original dataset. The successful generation of plausible fetal
movement signals is crucial, as it makes it possible to train a deep learning model for reli-
able classification of fetal movement signals without the actual demand for acquiring and
labeling a large amount of real data. The experimental results show that an 1-Dimensional
Convolutional Neural Network (1D CNN) deep learning model trained with the extended
training dataset (real signal samples together with synthesized ones) achieved better clas-
sification performance in terms of both sensitivity and specificity compared to previous
publications, leading to the validation of the proposed approach. As the continuation and
extension of our previous research work as presented in the earlier chapters of this thesis,
this chapter further demonstrates the feasibility of implementing the pre-trained 1D CNN
into a common microcontroller with limited computational and storage capacities, paving
the way towards the application of the proposed approach to wearable systems for online
and real-time pregnancy health monitoring.

The work presented in this chapter provides guidance on applying deep learning to
human physiological signal classification especially when the size of the available dataset
for training the deep learning model is limited.

6.2 Preliminary Knowledge

6.2.1 1-Dimensional Convolutional Neural Networks

Featuring one or a series of convolutional layers, a CNN is an member in NN family
in deep learning. It is widely used for image recognition and processing tasks. A typical
CNN model comprises one or a series of convolutional layers, pooling layers and fully-
connected layers. The advantage of CNNs lies on its convolutional kernels (filters) which
automatically extract key information from the original images without human interven-
tion [Rawat et al. (2017)].

1D CNNs are similar to traditional CNNs except that they feature 1-dimensional
convolution kernels in order to process time series data. Suppose the input vector to a
convolutional layer is x = [x1, ..., xn], its output can be formulated as:

ol,j
i = σ

(
bl

j + ∑M
m=1 wl,j

m xl−1,j
i−m

)
,
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where i ∈ [0, k] with k the dimension of the output vector, l is the layer index, j is the
feature map index, b is the bias value, w denotes the weight, m represents the kernel size
and σ represents the activation function.

Activation functions play an key role in the accuracy and the computational efficiency
of a CNN model. There exist several types of activation functions, the most commonly
used are given below:

Rectified Linear Unit (ReLU):

σrelu(x) = max(0, x)

Sigmoid:

σsigmoid(x) =
1

1 + e−x

and Tanh:

σtanh(x) =
2

1 + e−2x − 1

A fully-connected layer takes the inputs from its precedent layer and applies weights
on them. The mathematical expression of a fully-connected layer can be formulated as
below:

f l
i = ∑

j
wl−1

ij (σ(ol−1
j ) + bl−1

j ),

where l is the index of the current layer, ol−1
j denotes jth output from the previous layer,

wl−1
ij is weight of the previous layer associated with jth nodes connected to the ith node of

current layer, σ is the above-mentioned activation function and b denotes the bias value.
Training of a CNN model involves an important notion: backpropagation, which is the

abbreviation of "backward propagation of errors". Backpropagation updates the model’s
weights based on the errors between the model’s outputs and actual labels of the training
dataset. Backpropagation through the fully-connected layer (which is often the case for
the layer before the output layer) can be formulated as below:

∂E

∂wl
ij
= al

i

∂E

∂xl+1
j

,

where a denotes σx+ b and E is the cost function, which typically represents the difference
between the predicted value and the actual dataset labels.

Similarly, the weights w of previous layers of the model are updated in a propagative
way using the chain rule formulated as follows:

∂z
∂x

=
∂z
∂y
·

∂y
∂x

.
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6.2.2 Generative Adversarial Networks

First proposed by [Goodfellow et al. (2014)], Generative Adversarial Networks (GANs)
have been widely studied in the literature. As illustrated in Fig. 6.1, a typical GAN model
comprises two sub-models: a generator and a discriminator, respectively. Fed with ran-
dom input z from a prior noise distribution pz(z), the generator attempts to generate
plausible-looking samples x with x = G(z) by learning the distribution of data, whereas
the discriminator takes a sample as input and estimates whether it is real or fake based
on the model’s output D(x). It is in essence a binary classification problem from the point
of view of the discriminator: a sample x is considered to be real if D(x) ∈ [0.5, 1], and fake
if D(x) ∈ [0, 0.5).

Figure 6.1 – Overview of GAN structure.

Training of GAN is described as follows: within each iteration, the discriminator first
estimates given inputs (a mix of real and fake instances) and, based on the corresponding
data labels of these inputs, calculates loss using the following loss function:

Ex∼Px [logD(x)] + Ez∼Pz [log(1− D(G(z)))]

where E denotes the expected error over the input dataset, D(G(z)) denotes the discrim-
inator’s estimate on a fake instance. We then train the two sub-models based on the loss
value. The generator’s parameters and weights are updated to the target that D(G(z)) = 1,
which means that the discriminator estimates fake instances as real. Conversely, the dis-
criminator learns to achieve D(x) = 1 with D(G(z)) = 0 in order to perfectly distinguish
real from fake. In other words, the discriminator always tires to maximize its probability
of success in prediction while the generator minimizes it. This min-max objective of the
GAN training process (also named the zero-sum game) can be formulated by the equations
below:

max
D

V(D) = Ex∼Px [logD(x)] + Ez∼Pz [log(1− D(G(z)))]
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min
G

V(G) = Ez∼Pz [log(1− D(G(z)))]

The discriminator’s prediction accuracy degrades as the generator continuously im-
proves with training. It will drop to 50% after enough iterations, meaning that the dis-
criminator estimates its inputs by "guessing" because it cannot tell the difference between
fake and real. A properly trained GAN can be used for data augmentation, as it is capable
of generating plausible data to increase both the size and diversity of the original training
dataset without actually collecting huge volumes of real data.

Despite the promising potential, however, there exists a well-known challenging prob-
lem when training a GAN model, commonly referred to as "mode collapse". When mode
collapse occurs, the trained generator is able to create only one single or a small number
of modes despite the multimodal nature of the given training dataset instead of produc-
ing a wide variety of outputs. The mode collapse problem lies on the fact that during the
training, the generator is always trying to find the only output that seems most plausible
to the discriminator [Salimans et al. (2016)].

There exist several GAN variations published in the literature due to different archi-
tectures and implementation strategies concerning the discriminator and the generator.
Our study focuses on 1-dimensional GANs in order to deal with fetal movement time
series signals. More specifically, we choose 1D CNN architecture to implement our GAN
models. For more related detailed description, the reader is refereed to Subsection 6.3.3 of
this chapter.

6.3 Methodology

6.3.1 General Overview of the Proposed Approach

We present a multistage approach in order to develop a robust and reliable deep
learning model for real-time fetal movement acceleration signal classification. Previously
acquired raw data are first pre-processed prior to training, followed by training a 1-
dimensional deep convolutional GAN model to generate new plausible samples and ex-
pand the original dataset (stage 1). A 1D CNN model is then trained with the expanded
dataset (the original dataset together with the synthesized instances generated by the
trained GAN model) which can be used for fetal movement signal classification. We fur-
ther implement the pre-trained 1D CNN model into a common microcontroller, demon-
strating the application of the proposed approach into an embedded wearable system
for online pregnancy health monitoring (stage 2). The general workflow of the proposed
approach is shown in Fig.6.2.

6.3.2 Pre-processing of Raw Acceleration Signals

We re-utilized the data that have been collected as described in Subsection 5.3 of Chap-
ter 5. For the pre-processing approach of the raw data, the reader is referred to Subsection
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Figure 6.2 – General workflow of the proposed approach.

2.3.2 of Chapter 2. Please note that in order to employ deep neural network-based al-
gorithms, we further performed data normalization which re-scales signal amplitudes
(acceleration g values) to [0− 1] interval.

6.3.3 1-Dimensional Deep Convolutional Generative Adversarial Network for Data
Augmentation

The proposed 1D GAN architecture in this chapter is mostly inspired by the well-
known Deep Convolutional Generative Adversarial Network (DCGAN) [Radford et al.
(2016)], which performs promisingly in image generation tasks and provides a robust
starting point for most GAN applications. Dealing with time series accelerometer signals
(1D data arrays) rather than images, we modify the original network architecture by em-
ploying 1D convolutional layers. Convolutional layers are utilized in both discriminator
and generator sub-models, meaning that both of them are in essence 1D CNNs in terms of
model architecture. Other layer-level modifications have also been considered compared
to the original DCGAN architecture in order to achieve a promising performance in our
study. The architecture of the proposed 1D GAN model is shown in Fig. 6.3. Detailed
description is shown below:

6.3.3.1 Generator

Input to the generator is random noise with uniform distribution:

z ∼ U(−1, 1)

The generator is comprised of an fully-connected layer, two 1D convolutional layers next
to each other followed by a dropout layer to prevent overfitting, a pooling layer, then a
flatten layer and another fully-connected layer. Outputs of the generator are 1D vectors of
240 data points identical to the size of a real fetal movement single sample in the dataset.
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Figure 6.3 – The proposed 1-dimensional deep convolutional GAN architecture.

6.3.3.2 Discriminator

Inputs to the discriminator are time series signals with a fixed length (in our case 240

data points):

x = [x1...xn], n = 240

The discriminator has a similar architecture and configuration to the generator, it also
features two adjacent 1D convolutional layers, followed by a dropout layer, a pooling
layer, a flatten layer and two fully-connected (dense) layers. Outputs of the discriminator
are binary values indicating whether an input sample is real or fake (generated).

One point worth mentioning is that between the two fully-connected layers, a mini-
batch discrimination layer is employed to prevent mode collapse [Salimans et al. (2016)].
The minibatch discrimination allows the discriminator to compare the similarity of the
generated samples within a batch, and thus penalize the generator if this similarity value
is high. As illustrated in Fig. 6.4, we denote an output from a discriminator’s interme-
diate layer as f (xi) ∈ RA with xi representing a given input instance, Mi ∈ RB×C is
a matrix resulted from multiplying f (xi) with a transformation matrix T ∈ RA×B×C,
cb(xi, xj) = exp(−||Mi,b −Mj,b||L1) ∈ R which is the L1-distance between the rows of two
matrices to compute the similarity between xi and other samples in the same batch. The
similarity o(xi) = [o(xi)1, o(xi)2, ..., o(xi)B, ] ∈ RB is fed into the next layer of the discrimi-
nator together with f (xi).

When training the GAN model, we utilize binary cross-entropy loss function for both
the generator and the discriminator as formulated below:
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Figure 6.4 – Minibatch discrimination.

L = −
1
N ∑N

c=1[yn log yn + (1− yn)log(1− yn)]

where N denotes the number of samples.

6.3.4 1D CNN for Fetal Movement Signal Classification

We utilize a 1D CNN deep learning model for the classification of fetal movement
signals. Our initial attempt was to reuse the discriminator of the trained GAN previously
presented in this chapter as an auxiliary classifier. However, in real applications, a practi-
cal and robust pregnancy health monitoring system should be able to distinguish not only
real fetal movement signals from fake ones (binary classification), but also to distinguish fe-
tal movements from other human activities e.g. maternal body motions and background
noise (multiclass classification). As the readers will discover in Section 6.4 of this chapter, the
1D CNN model is trained with a multi-label dataset comprising fetal movement signals
as well as the above mentioned artifacts. In this case, the model is no longer trained with
binary cross-entropy loss function as mentioned in Subsection 6.3.3 of this chapter, but has
to be with categorical cross-entropy loss function since the model is considered to gener-
ate multiclass outputs. It therefore seems desirable to train a new 1D CNN model with
the appropriate architecture. This new model with a similar architecture to the proposed
GAN discriminator is shown in Fig. 6.5. After trained with the extended dataset, the 1D
CNN model is capable of accurately classifying time series signals with fixed length (240

points) into multiple classes with better performance compared to the results presented
in previous publications (see Subsection 6.4.3 for details).
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Figure 6.5 – The proposed 1DCNN used for fetal movement signals classification.

6.3.5 Implementation of the Pre-trained 1D CNN Model into a Microcontroller

As a subsequent work of our previous research work, one task of this study is to an-
alyze the feasibility of embedding the pre-trained 1D CNN model into a microcontroller
(STM32F7 series, STMicroelectronics Int. N.V. [STMicroelectronics]) of which the process-
ing and memory resources are limited compared to an ordinary personal computer. That
way, our proposed approach can be applied to microcontroller-based wearable systems
with embedded accelerometers to perform online fetal movement signal classification of
acceleration data, providing online and real-time pregnancy health monitoring. More de-
tailed information and discussion about this topic can be found in Subsection 6.4.5.

6.4 Experimental Results

6.4.1 Data Clustering of Fetal Movement Signals

It is reported in the literature that there are mainly two types of accelerometer-recorded
fetal movement signals in terms of signal morphology (shape): one type of signals featur-
ing one or two high frequency spikes or bursts and the other one with linear behaviors
[Boashash et al. (2014)]. However, their finding is only based on an intuitive visual obser-
vation.

We suggest that different signal morphologies represent different fetal movement pat-
terns (e.g., independent limb motions, head motions, fetal body motions, etc. [Birnholz
et al. (1978)]), as different patterns feature different posture and intensity. For example,
fetal limb motions could lead to the collected acceleration signals containing higher fre-
quency compared to those corresponding to slow body movements. Different fetal move-
ment patterns could also affect the amplitude (acceleration g value) of the acquired sig-
nals. We admit that there are also signals combining both behaviors, which probably
indicates a combination of fetal body and limb movements occurred simultaneously. The
causality between signal morphologies and the corresponding fetal movement patterns is
not in the scope of this study.

In order to investigate whether our fetal movement dataset can be grouped based on
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different morphologies, we employed a self-organizing map (SOM) for data clustering.
One advantage of utilizing SOM for data analysis lies on its ability of visualizing the
underlying group information of a given dataset by reducing input dimensions (feature
vector size) into a two-dimensional space, which is called a map. Unlike other feature
analysis tools such as PCA (Principle Component Analysis), SOM is an unsupervised al-
gorithm, it features competitive learning and uses a neighborhood function to preserve
the topological properties of the input space. The SOM was implemented with a PC
running Matlab R2017a with Deep Learning Toolbox. The model was parameterized to
2-dimensional layer of 64 neurons (8×8 matrix).

The original dataset were pre-processed to offer better signal representation before be-
ing fed into the SOM model: mean values were subtracted, followed by squaring their ab-
solute values, signals were then smoothed with a moving time window of 10 data points
(meaning that average value was calculated inside each window), resulting in 24x1 di-
mension feature vectors. This manipulation highlights spikes in a signal while eliminated
other redundant and irrelevant features (see Fig. 6.6).

Figure 6.6 – An example of pre-processing data before feeding to SOM.

The clustering result shown in Fig. 6.7 clearly indicates the dataset are mainly grouped
into three areas (containing 134, 70 and 41 samples, respectively). However, after a visual
inspection to the samples located in each of these three top hit areas, we still found that
different signals in terms of morphology are all mixed together, which violated our ini-
tial assumption of only one homogeneous signal morphology should be found inside one
given cluster. Without showing any statistical associations, the experimental result pre-
sented in this subsection indicates that the signal morphology is not a key-feature (at least
not the only one) that could exclusively represent the essential nature of a fetal movement
signal. A Deep analysis and feature extraction need to be done in order to find out real
key-features. This experimental result further underlines the tricky nature and potential
unreliability of intuitive and manual feature extraction by human observers, and therefore
encourages the use of deep learning algorithms to automatically learn and extract features
from raw fetal movement acceleration data.
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Figure 6.7 – Fetal movement signal clustering results using SOM.

6.4.2 Training of 1D GAN for data augmentation

The 1D GAN model presented in the previous part of this paper was trained with the
dataset containing real fetal movement signal samples. The convolutional layers in both
the generator and discriminator utilized ReLU as activation function, while the output
layers employed Sigmoid. The model was implemented with TensorFlow’s high-level API
Keras (TensorFlow version v2.1.0). During the experiment, we found that the generator
suffers from high loss values if the batch size is too large, we therefore set batch size to
20, meaning that it takes 19 iterations to complete 1 epoch which passes through all the
382 samples). The training process repeated 800 times (epochs) in order that the generator
produced plausible fetal movement signals. The general training process is illustrated in
Fig.6.8.

Figure 6.8 – Training process of the GAN model.

The training loss curves for both generator and discriminator are shown in Fig. 6.9. The
convergence being noisy, though, it is observed that all curves successfully reached to a
balance at about 1500 iterations. The generator’s curve remains relatively stable and holds
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the value to about 4x100, whereas the two discriminator curves (both for real samples
and fake ones) feature large volatility especially at about 1000th iteration. Plausible signals
could be generated after training, with some examples illustrated in Fig. 6.10).

Figure 6.9 – Training loss curves for the generator and discriminator.

Being able to generate high quality synthesized fetal movement signals, the trained 1D
GAN model was then used for data augmentation. Totally 3000 fetal movement samples
have been generated using the trained GAN model. In order to avoid class imbalance
of the extended dataset which could negatively affect the trained model’s performance,
we further generated 3000 maternal body motion signals using the same 1D GAN model
as it is proved to be equally competent. A detailed description of the extended dataset
distribution is shown in Table 6.1.
Table 6.1 – Sample Distribution of the Extended Training Dataset

Category Number Generated number Total number

FetMov 382 3000 3382

BM 368 3000 3368

BG noise 3584 0 3584

FetMov: fetal movement, BM: maternal body motions, BG noise: background noise.

6.4.3 Training of 1D CNN

We used the extended dataset obtained in last subsection to train the 1D CNN model
previously presented in this paper. We used adam (adaptive moment estimation) with
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Figure 6.10 – Some generated signals.

learning rate set to 0.001 as the optimization algorithm. Same as the 1D GNN configu-
ration, the convolutional layers employed ReLU as activation functions with the output
layer utilizing Sigmoid. The entire dataset was split into training and testing set with the
ratio of 70% : 30%, respectively. The evaluation of the model was repeated 10 times and
the confusion matrix of the best performance is shown in Table 6.2. Calculations of these
performance criteria are expressed as follows.

Sensitivity =
TP

TP + FN
× 100%

Speci f icity =
TN

TN + FP
× 100%

Table 6.2 – Confusion matrix

Predicted
FetMov BM BG noise

A
ct

ua
l FetMov 975 7 8

BM 2 984 0

BG noise 0 0 1125

FetMov: fetal movement, BM: maternal body motions, BG noise: background noise.

To validate the effectiveness of the proposed approach, we further conducted a per-
formance comparison in terms of classification sensitivity and specificity between the 1D
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CNN network trained with the extended dataset and other published studies in the liter-
ature. Only the studies that used maternal perceptions as reference to label data were in-
volved. The comparison results (see Table 6.3) show that the our 1D CNN model achieved
better classification performance with a sensitivity of 98.5% and specificity of 99.9%.

Table 6.3 – Performance comparison

Method Sensitivity Specificity

Time features + variable-length window [Altini et al. (2017)] 0.74 N/A
Time domain features [Altini et al. (2016)] 0.75 N/A

Time/frequency features [Subsection 5.5.2 of Chapter 5] 0.807 0.989

Proposed algorithm (calculated based on Table 6.2) 0.985 0.999

6.4.4 Horizontal Comparison of the Performance of the Three AI Algorithms Used
in This Thesis under the Same Condition

This subsection further trains the three above-mentioned AI classifiers, namely ANFIS
in Chapter 4, fuzzy ARTMAP in Chapter 5 and 1D CNN used in this chapter, by using
the same dataset as presented in Subsection 5.3 and same training strategy i.e. splitting
the dataset into training : testing of 70% : 30%. This allows a horizontal performance
comparison of these three AI algorithms. In terms of classifier input, ANFIS and fuzzy
ARTMAP utilize the extracted features as presented in Section 5.5, whereas the 1D CNN
is fed with acceleration signal amplitudes. Advantages and drawbacks of each algorithm
are discussed as well.

The two confusion matrices corresponding to ANFIS and 1D CNN are shown in Table
6.4 and Table 6.5, respectively. Together with that of fuzzy ARTMAP (already presented
in Table 5.7), we can therefore evaluate the performance of each algorithm as shown in
Table 6.6.

Table 6.4 – Confusion matrix of the classification results on test set (with ANFIS classifier).

CLASSIFIED

FetMov Body motion Walking Heartbeat BG

T
R

U
TH

FetMov 93 21 2 0 0

Body motion 6 104 0 0 0

Walking 3 0 158 0 0

Heartbeat 21 7 0 180 0

BG noise 3 0 0 0 168

FetMov: fetal movement and BG: background noise.

From Table 6.6 we conclude that the three algorithms feature approximately the same
performance in terms of classification sensitivity and specificity with 1D CNN outstands
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Table 6.5 – Confusion matrix of the classification results on test set (with 1D CNN classifier).

CLASSIFIED

FetMov Body motion Walking Heartbeat BG

TR
U

TH

FetMov 94 8 0 7 3

Body motion 6 94 2 4 0

Walking 0 0 179 0 0

Heartbeat 3 0 0 190 0

BG noise 0 0 0 0 177

FetMov: fetal movement and BG: background noise.

Table 6.6 – An Horizontal Comparison of the Three Algorithms

Category Sensitivity Specificity Pros Cons

ANFIS 0.802 0.949 computationally simple;
highly interpretable

N/A

fuzzy
ARTMAP

0.807 0.989 support incremental learn-
ing

N/A

1D CNN 0.839 0.986 better performance need large training data; low
interpretability

Note: We consider fetal movement signals as positive when calculating TP, TN, FP and FN.

slightly among others regarding sensitivity. Having performed this comparison using a
relatively small dataset, we claim that the 1D CNN model could perform much better if
it is fed with a larger training dataset, as has already been proved by using an extended
training dataset containing plausible generated data earlier in this Chapter.

6.4.5 Implementation of Pre-Trained CNN into a Microcontroller

The implementation of the pre-trained 1D CNN into a embedded platform was real-
ized using ST’s Discovery kit with STM32F746NG microcontroller, STM32CubeMX frame-
work, Keil µVision 5 IDE (Integrated Development Environment) and ST-Link. As one
member of the ST’s high performance STM32F7 family, The STM32F746NG microcon-
troller features 1MB of Flash memory and 320KB RAM (Random-access Memory) with up
to 216MHz system frequency. After converted into c-code that could further compile and
run on the microcontroller, the pre-trained 1D CNN Keras model occupied 808.27KBytes
Flash memory and 61.95 KBytes of RAM, which is within the microcontroller’s capacities.
Detailed information concerning the storage and memory usage can be found in Table
6.7. The on-board experiments which run the embedded 1D CNN model on the micro-
controller showed that it takes an average duration of 121.62 ms for one inference with
200MHz system frequency. Considering the wearable system proposed by our previous
work which embeds 4 accelerometers, this inference time needs to be multiplied by 4,
resulting in less than 500ms. Given the previous setting that signals are split based on
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a 4 seconds window (meaning that the inference system should be able to complete the
processing of the current signal within 4 seconds before the next window arrives), this
inference duration is fully acceptable for online and real-time processing of acceleration
signals.

Table 6.7 – Memory analysis of the embedded CNN model

Layers ROM used (Bytes)

Conv layer 1 (input side) 1024

Conv layer 2 (network side) 49408

FC layer 1 (network side) 756624

FC layer 2 (output side) 1212

Total 808268 (789.32 KBytes)

Conv: convolutional, FC: fully-connected.

6.5 Conclusion

This chapter presents a novel approach using deep learning techniques for the auto-
matic and accurate classification of fetal movement acceleration signals. The promise of
employing deep learning lies on its ability of automatically extracting underlying rep-
resentations of signals without human intervention, thus avoiding the unreliability and
difficulty of manual feature extraction. In order to deal with the lack of large dataset
for training the deep learning model, we employed data augmentation using a 1D deep
convolutional GAN model to generate plausible fetal movement signals, extending the
original dataset. Experimental results shows that a 1D CNN deep learning model trained
with the extended dataset can achieve better classification performance compared to pre-
vious work, validating the proposed approach. Besides, the successful implementation
of the pre-trained 1D CNN model into a microcontroller makes it possible to apply the
proposed approach to wearable systems for real-time pregnancy health monitoring.

Further work involves developing a novel customized hardware platform integrating
the microcontroller validated in this study and building a robust and accurate wearable
system for online fetal movement monitoring combining our previous research results. We
will also conduct a deep analysis of the proposed machine learning models by fine-tuning
the relevant parameters for further boosting the system’s performance in terms of signal
classification accuracy.





7Qualitative Evaluation of Fetal

Health Condition

7.1 Introduction

Previous chapters have aimed to accurately classify 4-second time series signals into
different categories, and therefore identify fetal movement signals while effectively elim-
inating artifacts from the ongoing acceleration signals. However, only based on this short
time interval one cannot reasonably evaluate the fetus’s health condition. This chapter
presents a specifically designed algorithm for counting of fetal movements over a larger
time intervals, which is based on analyzing a series of consecutive short-length time
epochs. Take one step further, this chapter presents a role-based decision making process
for long-term autonomous fetal health monitoring by analyzing fetal movement counting.

Figure 7.1 – Multiplexing of data: from quantitative signal classification results to qualitative fetal health
evaluation.

As shown in Fig. 7.1, from a macroscopic point of view, if we consider this fetal move-
ment counting algorithm as a black box (in the sense that we do not pay much attention to
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the internal structures of the algorithm), then the input to this black box is a sequence of
the signal classification outputs of any given machine learning classifier presented in the
previous Chapter 4, 5 and 6, and its own output would be the number of fetal movements
during the period corresponding to the total length of its input time series. The main
objective of this algorithm is to build a bridge or to find a mapping relationship between
the signal classification outputs (based on short time intervals) and the clinically accepted
fetal movement counting criteria.

The reader may ask: why don’t we count fetal movements directly based on the 4-
second intervals? The reason is stated as follows: splitting signals over a 4-second window
is suitable for identifying most of fetal movement acceleration signals since this window
length is large enough to cover them (see 2.3.2.3), however, it is too short for counting fetal
movements compared to the conventional clinical fetal movement counting approaches.
Let’s consider a situation where the fetus is quite active and moves much, then the mon-
itoring system would count up to 25 fetal movements within one minute (4×25 seconds
= 60 seconds) if based on the classification interval, which obviously makes no sense. In
fact, as suggested by clinical professionals, a successive series of short fetal movements
could be regarded as, more reasonably, as one fetal movement phase.

In this context, we set the basic time interval for fetal movement counting to 1 minute
in accordance with the way a clinician or a mother counts fetal movements in clinical
practice. For the sake of simplicity, This new interval is denoted as Minimum Counting
Interval (MCI). Correspondingly, the short window length used for signal segmentation
and classification is denoted as Minimum Processing Interval (MPI). Based on the above
setting, one MCI consists of 15 consecutive MPIs.

7.2 Methodology

7.2.1 Fetal Movement Counting Algorithm

This subsection will present a novel algorithm for counting fetal movements (based on
1-minute interval) based on signal classification results (based on 4-second interval). The
proposed algorithm comprises two steps: information fusion of the classification results
from the four sensors (spatial information fusion) and information fusion from a successive
MPIs to one MCI (temporal information fusion), respectively. Detailed descriptions of these
two steps can be found below.

7.2.1.1 Step 1: Spatial Information Fusion - Information Fusion of Data from the Four Sensors

The reader has already noticed that our proposed wearable system features four ac-
celerometers for physiological signal acquisition, which means that after running the in-
ference procedure one time on the trained machine learning model, we get 4 signal clas-
sification results (each sensor correspondents to one result). We therefore need to define
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some rules which merge these results into one single label in order to quantitatively an-
alyze whether or not the system has detected fetal movements. According to the clinical
experiments, we define the basic principles and rules as shown in Algorithm 1.

Algorithme 1: The spatial information fusion algorithm.
for the 4 classification results generated from the different sensors within the same
basic time interval do

if at least two results are labeled by the class of “fetal movement” then
label the merged result by the class of “fetal movements”

else if at least two classification results are labeled by the class of “maternal body
movements” or “walking” then

label the merged result by the same class
else

label the merged result by the class of “no action”
end if

end for

7.2.1.2 Step 2: Temporal Information Fusion - Information Fusion from Consecutive MPIs to
an MCI

Next, based on the spatial information fusion results, we perform the temporal infor-
mation fusion in order to finally determine whether or not to count one fetal movement
based on its MCI label. We determine the following principles:

1. If the number of basic time intervals labeled by the class of "maternal body move-
ments" or "walking" exceeds 80% of the total number of basic time intervals, we
consider that fetal movement cannot be identified in this decision time interval (un-
certain status) because it is masked by strong signals of the wearer’s activities.

2. If the condition in 1) is false and the number of basic time interval labeled by the
class of fetal movements is more than a predefined threshold Th (we have Th=2 in our
experiments), we consider that a fetal movement exists in this decision time interval.

3. If the conditions in 1) and 2) are both false, we consider that there is no fetal move-
ment in this decision time interval.

Each MCI has three possible outputs, which are "FETAL MOVEMENT DETECTED", "NO
FETAL MOVEMENT" and "UNKNOWN", respectively. Particularly, a MCI output could
be "UNKNOWN", since when excessive artifacts are present, fetal movement signals could
probably get distorted and overlaid, thus remains undetected, in which case the system is
unable to clarify whether a fetal movement really occurs or not. An pseudo code explain-
ing this procedure is shown in Algorithm 2. Figure 7.2 further illustrates this idea.

Specially, the intensity (represented by I) of a counted fetal movement can be calculated
using Equation 7.1, in which N denotes the number of the MPIs that are labeled by the
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Algorithme 2: The temporal information fusion algorithm.
for all the basic time intervals within a specific decision time interval do

count the number of the merged results that are labeled by the class of “fetal
movements”, “maternal body movements”, “walking” and “no action”, generated by
the spatial information fusion algorithm

end for
if the number of the basic time intervals labeled by the class of “maternal body
movements” or “walking” exceeds 80% of the total number of the basic time intervals
included in this specific decision time interval then

label this decision time interval as “unknown”
else if the number of the basic time intervals labeled by the class of “fetal movements”
exceeds a predefined threshold Th then

label this decision time interval as “a fetal movement event was detected?
else

label this decision time interval as “no fetal movements”
end if{The threshold Th is currently set to 2}

class of fetal movement inside this MCI, and ik is the maximum of the signal magnitude
values in the kth labeled MPI.

I = ∑
ThinAlgorithm2≤k≤N,N≤15

ik (7.1)

Figure 7.2 – Merging MPIs to one MCI.

In general, fetal movement counting estimation is efficient when the wearer’s activities
are less intensive or intermittent.

7.2.2 Towards Long-Term Evaluation of Fetal Health

Taking one step further, this subsection presents a rule-based decision making pro-
cess which analyzes fetal movement counting on a long-term and continuous basis, and
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qualitatively evaluates fetal health conditions. Based on the relevant publications in the
literature ([Graven et al. (2008)] [Jakes et al. (2018)] [Frøen et al. (2008)]) as well as clinical
professionals’ experiences, the decision making process mainly follows three principles as
listed below:

1. The fetus should be active when awake.

2. The fetus should be quiet when sleeping.

3. Either change in intensity or in interval should cause concern.

The working process of the decision making algorithm is briefly described as fol-
lows: the algorithm will first learn and establish the sleep-wake cycle of the fetus by
continuously monitoring fetal movements during several days. It will divide one day into
intervals of 2 hours and label each interval as "wake" or "sleep" based on a statistical
analysis of the recorded fetal movements. It then stores the sleep-wake cycle information
locally for future use. Once this information is documented, it starts monitoring the fetal
health conditions based on both recorded sleep-week cycle and the real-time fetal move-
ment counting information. Once it detects abnormalities, it sends an alert message to
the mother as well as the caregiver. It is also possible that the stored sleep-wake cycle
information updates regularly as the fetus evolves. A detailed flowchart illustrating this
process is shown in Fig. 7.3

Figure 7.3 – Illustration explaining how the fetal movement counting algorithm works: classification results
on a 4-second window of 4 sensors are merged into one single output, then 15 consecutive epochs of 4-second
are merged in to a new window of 1 minute in length which is used for fetal movement counting.

This algorithm is implemented into the wearer’s smartphone with a user-friendly
graphical interface (see Fig. 2.6 in Chapter 2). Please note that this part is still in pro-
cess and actually we are trying to find a way for clinical validation.

7.3 Experimental Results

In order to evaluate the overall performance of the proposed local decision support
system on estimation of fetal movements, we test it with a new pregnant woman wearing
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the proposed intelligent garment and compare the final results given by the system with
the maternal perception counting. We propose the following validation criteria: for each
decision time interval (MCI, 1 minute) labeled as one fetal movement, when it overlaps a
maternal perception counting by at least 50%, we consider that this decision time interval
is regarded as a validated counting, otherwise it is characterized as a false positive and
vice versa. The experimental results have proved that the proposed algorithm has a high
agreement with the maternal perceptions (see Fig. 7.4), and has potential applications in
assisting the pregnant woman with counting of fetal movements. A statistical summary
of the algorithm’s counting results with regard to the maternal perceptions is shown in
Table 7.1. We can find that a high estimation of fetal movements can be obtained with a
true detection rate of 84%.

Figure 7.4 – The estimated counting of fetal movements on new data over 15 minutes. The experimental
results show high compliance with the maternal perception.

Table 7.1 – Statistical Report of the System’s Counting Results

TFM DF FD MD TDR

13 11 0 2 0.84

TFM: total fetal movements perceived by the mother, DF: Detected fetal movements, FD: false detections,
MD: missed detections and TDR: true detection rate.

7.4 Conclusion

This chapter presents a novel algorithm for fetal movement counting based on short
time series acceleration signal classification results. The proposed algorithm helps to build
a connection between the short time interval used for acceleration signal classification and
the time interval used for counting fetal movements in clinical practice, which is much
longer than the former. Therefore, the health condition of the fetus can be continuously
evaluated by using the current clinically available criteria (e.g., the "count to ten" method:
at least 10 distinct movements should be felt by the mother within 12 hours) on the number
of fetal movements counted by the proposed algorithm. By this way, we can establish an
early warning mechanism which is able to automatically detect reduced fetal movements
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and send alerting messages to the mother and the caregivers to save the fetus’ life. Besides,
long-term analysis of the trends and changes of fetal movements in terms of both number
and strength helps to achieve a long-term assessment of fetal well-being and detect early
symptoms of fetal compromise.





General Conclusion

This doctoral thesis presents the research work during my three years’ PhD study in
Gemtex (Génie des Matériaux Textiles) Laboratory, ENSAIT, France. The main objective
of this thesis is to design and develop a garment-based wearable system for reliable eval-
uation of fetal well-being by continuous monitoring of fetal movements. This work fully
addresses the existing issues of current clinically-available fetal movement approaches
and proposes an easily-accessible and reliable way for online, remote and ubiquitous
monitoring of fetal movements. The design and develop of the proposed system mainly
follows the following roadmap:

stage 1: analyze of the current clinically-available fetal movement monitoring approaches
as well as the up-to-date publications and research works on this topic in the literature;
troubleshoot existing problems and challenges; study the advances and features of wear-
able technology that could be solutions to these issues.
stage 2: design the overall architecture of the wearable system while fully considering
the solutions to the issues identified in stage 1; define every functional blocks inside the
system.
stage 3: wearable system hardware design, including sensors and embedded control and
signal processing system; wearable system garment design; integration of the hardware
into the garment structure.
stage 4: once the wearable system realized in stage 3 is able to be worn comfortably while
being capable of acquiring data using the embedded sensors, we can use it to collect fetal
movement data and build an initial database for future studies and analysis.
stage 5: data analysis of the acquired fetal movement signals, including data pre-
processing, data segmentation, labeling, etc.
stage 6: train the selected machine learning algorithms for data classification, and estab-
lish a decision-making framework based on the signal classification results - integrating
intelligence into the system.
stage 7: verification and evaluation of the wearable system’s performance on continuous
and quantitatively monitoring of fetal movements and qualitatively assessing of fetal
well-being.

This thesis covers multidisciplinary topics and is of great significance by means of the
introducing e-health and remote health care using wearable technology to the traditional
field of fetal health monitoring. Original contributions of this work are profound:
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1. Unlike other researches on this topic, this work for the first time proposed an com-
plete and comprehensive wearable system for fetal movement monitoring while sys-
tematically considering every aspects during the system design - textile/garment
design, sensor integration and ICT approaches.

2. It for the first time proposed a robust and solid solution for the automated, online
and long-term evaluation of fetal health condition based on the accurate classifica-
tion of accelerometer-recorded fetal movement signals.

3. It to the greatest extent integrates intelligence into the system, boosting its robust-
ness and autonomy.

4. It further establish a valuable initial fetal movement signal database with maternal
labels for other researchers to continue on this topic.

We believe that the work and contributions conducted in this thesis provides an in-
novative insight and guidance to future research and initiatives on maternal and fetal
medicine.

Further improvements need to be considered before the proposed system can be com-
mercialized and ready to be used in clinical practice:

1. Some technical improvements need to be considered such as total waterproofness,
easy maintenance and repair of damaged components, etc.

2. The influence of sweat, moisture and washing processes especially after long-term
use need to be studied.

3. Advanced noise elimination techniques enabling the system to detect and identify
fetal movements even when the mother engages in intensive physical activities could
be an option for further improving the system’s robustness and reliability.



Postscript

Over the three years, my experience as a PhD student has taught me a lot. My un-
derstanding of the mission and the context of the IOTFetMov research project improves
as the research work evolves, so do my professional competences in signal processing,
embedded systems & embedded machine learning and wearable technology. This valu-
able experience with rigorous thought and creativity has also taught me how to organize
my own thoughts when dealing with an unknown issue and how to systematically dig in
my own brain for novel ideas and possible solutions. It has taught me to keep going and
try all the possible ways till success. It has improved my ability to work on some issues
individually as well as in a team. This valuable PhD experience has definitely made me a
better person when it comes to improving myself by continuing to learn and expanding
my horizons, and is of great importance for my future professional careers.
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Titre Développement d’un vêtement connecté et intelligent par l’intégration des capteurs physiologiques
et muni d’un système d’aide à la décision - application à la surveillance en ligne de la santé humaine

Résumé Les mouvements fœtaux sont un indicateur significatif de l’état de santé du fœtus. La diminution
ou l’arrêt des mouvements du fœtus perçus par la mère peuvent être des signes précurseurs que le développe-
ment fœtal nécessite une surveillance accrue. En pratique, la perception maternelle de la diminution des
mouvements fœtaux aide à déterminer le moment optimal pour l’accouchement, surtout dans les cas de
grossesses à risque. Cependant, le dénombrement des mouvements fœtaux par la mère souffre d’imprécision
et de subjectivité en raison des habitudes, des activités et des périodes de veille et de repos de chaque mère.
Cela conduit généralement à une inquiétude et une anxiété inutiles pour la mère. A contrario, la technologie
basée sur l’échographie peut être utilisée pour une surveillance précise et fiable des mouvements du fœtus.
Cependant, des inquiétudes ont été exprimées dans la littérature concernant l’exposition prolongée et intense
aux ultrasons, ce qui pourrait avoir des effets négatifs. En outre, leur usage nécessite un environnement en
milieu hospitalier, parfois éloigné du cadre de vie, une immobilisation de la mère et des personnels formés
pour la manipulation.
Dans cette étude, nous présentons un nouveau vêtement intelligent pour la surveillance en ligne des mouve-
ments du fœtus. Le système proposé est principalement composé de : 1) un vêtement soigneusement conçu
pour améliorer le confort de la femme enceinte et garantir la qualité des signaux acquis, 2) un réseau de
capteurs avec un système embarqué et communicant intégrés à des emplacements judicieux sur le vêtement
et 3) une application mobile connecté au vêtement et faisant le lien avec le cloud auprès de professionnels
de santé permettant à la mère de transmettre et visualiser en retour les informations importantes liées à la
santé du fœtus. Ces travaux mettent en avant le développement d’outils algorithmiques d’aide à la décision
locale pour un comptage en ligne et fiable des mouvements du fœtus basé sur les données des capteurs. Le
système conçu et embarqué est connecté à distance à un système expert sur une plateforme de cloud comput-
ing avec lequel les cliniciens sont en mesure de poser un diagnostic avancé. Distincts des solutions portables
existantes, le vêtement intelligent proposé dans cette étude prend pleinement en compte les problèmes liés
à l’électronique / les signaux et à la conception du textile / vêtement. L’équilibre entre l’intelligence em-
barquée et celle du cloud a été pensé pour garantir une nette amélioration. Les résultats expérimentaux ont
montré que le système proposé peut effectuer efficacement et automatiquement le comptage des mouvements
du fœtus et a des applications potentielles pour offrir une solution innovante dans le domaine de la santé
humaine, libérer les femmes enceintes et soulager les systèmes de santé pour une application au suivi du
développement du fœtus. Cette recherche fournit des conseils pour l’application de la surveillance à distance
de la santé en utilisant des wearables dans le domaine des soins prénatals.

Mots-clés mouvements fœtaux, wearable systems, vêtement intelligent, surveillance à distance de la santé,
intelligence artificielle, systèmes d’aide à la décision.



Title Development of an Intelligent Garment Integrating Physiological Sensors and a Decision Making
System - Applied to the Online Human Well-being Monitoring

Abstract Fetal movements are one significant indicator of fetal health status. Reduction or discontinuation
in fetal movements perceived by the mother could be a sign that fetal development requires enhanced moni-
toring. In practice, maternal perception of reduced fetal movements helps to determine the optimal time for
delivery especially for high-risk pregnancy. However, fetal movement counting by the mother suffers from
imprecision and subjectivity due to each mother’s personal habits, customs and activity-rest periods, which
usually leads to unnecessary concern and anxiety to the mother. Ultrasound-based technology, on the other
hand, can be used for accurate and reliable monitoring of fetal movements. However, concerns have been
expressed in the literature about the exceeded exposure of ultrasound, which could have a negative effect.
Besides, it requires an in-hospital setting which can sometimes be far from the living environment, immobi-
lization of the mother, and trained personnel to manipulate the device.
In this study, we present a new garment-based wearable system for online monitoring of fetal movements. The
proposed system is mainly composed of: 1) a garment carefully designed for enhancing pregnant women’s
comfort and guaranteeing the quality of measured signals, 2) a network of sensors/a communicating em-
bedded system integrated into the right positions of the garment and 3) a mobile application connected to
the garment and linking to the cloud with healthcare professionals allowing the mother to transmit and vi-
sualize in return the key information related to her baby’s health. This work highlights the development of
an embedded decision-making algorithm for online and reliable counting of fetal movement based on the
sensor data. The proposed system is connected to a remote medical expert system on the cloud computing
platform with which clinicians can make advanced medical diagnosis. Different from the existing wearable
systems, both the electronic/signal issues and textile/garment design have been fully taken into account in
the proposed intelligent garment, and a balance between the embedded intelligence and that of the cloud has
been considered to guarantee an overall improvement. The experimental results has proved that the proposed
system can effectively and automatically perform fetal movement counting, and has potential applications
in offering an innovative solution in the field of human health, benefiting pregnant women, alleviating the
burden on health systems for applications to the monitoring of fetal development.. This research provides
guidance for the application of remote health monitoring by using wearable systems in antenatal care.

Keywords fetal movement, wearable system, intelligent garment, remote health monitoring; artificial in-
telligence, decision support system.
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