Thèse
Année : 2008
Résumé
The retina is a complex neural structure. The characteristics of retinal processing are reviewed extensively in Part I of this work: It is a very ordered structure, which proceeds to band-pass spatio-temporal enhancements of the incoming light, along different parallel output pathways with distinct spatio-temporal properties. The spike trains emitted by the retina have a complex statistical structure, such that precise spike timings may play a role in the code conveyed by the retina. Several mechanisms of gain control provide a constant adaptation of the retina to luminosity and contrast. The retina model that we have defined and implemented in Part II can account for a good part of this complexity. It can model spatio-temporal band-pass behavior with adjustable filtering scales, with the inclusion of plausible mechanisms of contrast gain control and spike generation. The gain control mechanism proposed in the model provides a good fit to experimental data, and it can induce interesting effects of local renormalization in the output retinal image. Furthermore, a mathematical analysis confirms that the gain control behaves well under simple sinusoidal stimulation. Finally, the simulator /Virtual Retina/ implements the model on a large-scale, so that it can emulate up to around 100,000 cells with a processing speed of about 1/100 real time. It is ready for use in various applications, while including a number of advanced retinal functionalities which are too often overlooked.
La rétine est une structure neuronale complexe, qui non seulement capte la lumière incidente au fond de l'oeil, mais procède également à des transformations importantes du signal lumineux. Dans la Partie I de ce travail, nous résumons en détail les caractéristiques fonctionnelles de la rétine des vertébrés: Il s'agit d'une structure très ordonnée, qui réalise un filtrage passe-bande du stimulus visuel, selon différents canaux parallèles d'information aux propriétés spatio-temporelles distinctes. Les trains de potentiels d'action émis par la rétine ont également une structure statistique complexe, susceptible de véhiculer une information importante. De nombreux mécanismes de contrôle de gain permettent une adaptation constante à la luminosité et au contraste. Le modèle de rétine défini et implémenté dans la Partie II de ce travail prend en compte une part importante de cette complexité. Il reproduit le comportement passe-bande, à l'aide de filtres linéaires spatio-temporels appropriés. Des mécanismes non-linéaires d'adaptation au contraste et de génération de potentiels d'action sont également inclus. Le mécanisme de contrôle du gain au contraste proposé permet une bonne reproduction des données expérimentales, et peut également véhiculer d'importants effets d'égalisation spatiale des contrastes en sortie de rétine. De plus, une analyse mathématique confirme que notre mécanisme a le comportement escompté en réponse à une stimulation sinusoïdale. Enfin, le simulateur /Virtual Retina/ implémente le modèle à grande échelle, permettant la simulation d'environ 100 000 cellules en un temps raisonnable (100 fois le temps réel).
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Pierre Kornprobst : Connectez-vous pour contacter le contributeur
https://inria.hal.science/tel-03300180
Soumis le : mardi 27 juillet 2021-23:06:50
Dernière modification le : mercredi 11 décembre 2024-03:31:32
Archivage à long terme le : jeudi 28 octobre 2021-18:12:43
Dates et versions
- HAL Id : tel-03300180 , version 1
Citer
Adrien Wohrer. Model and large-scale simulator of a biological retina, with contrast gain control. Computer Science [cs]. Université de Nice - Sophia Antipolis, 2008. English. ⟨NNT : ⟩. ⟨tel-03300180⟩
Collections
92
Consultations
31
Téléchargements