A Quick Look at QUIC*

John Dellaverson, Tianxiang Li, Yanrong Wang, Jana Iyengar, Alexander
Afanasyev, Lixia Zhang

ABSTRACT

QUIC represents the latest transport protocol develop-
ment with the potential to replace TCP over time. Instead of
describing the QUIC operations mechanically by enumerat-
ing, step-by-step, how it works, this paper aims to explain
QUIC from the core ideas that its design is based on. We
first describe TCP, the first deployed transport protocol and
the most widely used so far, to explain the basic functions
performed by a transport protocol and the issues observed
from the TCP operations; we also discuss the insights learned
from the design of a few other transport protocols. Then, we
describe the design of QUIC in detail, with a focus on the
fundamental underpinnings of its most important concepts,
including its combination of connection and security setup,
use of IP address independent connection identifiers and
persistent connection state, separate window mechanisms
for congestion control and data delivery reliability, and its
tight coupling with applications, demonstrating how these
new design features effectively address the identified issues
in the existing transport protocols.

* This draft is still work-in-progress.

1 INTRODUCTION

QUIC is the latest transport protocol with a big uptake.
Some people predict that QUIC may eventually replace TCP
over time [13]. Unfortunately, the QUIC specifications are
not only long, but also largely focus on describing the proto-
col operations, with the explanation of why either embedded
deeply in the protocol specifics or otherwise missing. For
many people who want to learn about QUIC quickly, directly
diving into the QUIC specifications does not seem an effec-
tive means to reach the goal. This writeup aims to offer a
comprehensive and insightful look into QUIC.

QUIC looks very different from TCP that people are fa-
miliar with, but exactly what are the differences? And more
importantly, why are these differences? Where did the new
ideas come from? Although the QUIC design and develop-
ment are still in progress, therefore various specific aspects
may change in the future. Nevertheless, we expect that the
core elements focused on by this paper will remain with the
protocol.

We begin our explanation by examining TCP first, its ba-
sic functions, the issues that have been identified, and the
lessons learned from years of transport protocol designs (§2).

Then, we move into examining the QUIC protocol itself, sep-
arated into QUIC connections (§3), QUIC packets (§4), QUIC
recovery (§5), QUIC security (§6), and application over QUIC
(§7). Finally, we articulate the remaining challenges facing
both QUIC and future transport protocols in general (§8).

2 TRANSPORT PROTOCOL 101

In this section, we use TCP as an example to identify the
set of basic functions a (unicast) transport protocol must
support. People familiar with TCP may skip §2.1 and §2.2
to go directly to §2.3, which describes a few other transport
protocols that the QUIC design draws lessons from.

2.1 TCP

As a transport protocol, TCP performs the following three
basic functions.

(1) demultiplexing of data by the use of port numbers;

(2) reliable byte stream delivery with window-based flow
control!; and

(3) congestion control to limit the number of packets in-
side the network.

First, the TCP/IP protocol stack bridges the gap between
semantically meaningful application/service names and the
lower layer protocols by making use of port numbers. Each
standard application or service is assigned a specific trans-
port protocol port number [5, 12]. All the existing transport
protocols use the combination of source and destination port
numbers to deliver incoming packets to the right application
process.

Second, to provide reliable data delivery service between
two endpoints, every data piece, in TCP’s case every data
byte, must be assigned a unique identifier, which allows the
two ends to figure out whether all the data pieces have been
delivered. All transport protocols achieve this goal by first
defining a unique connection identifier, and within the con-
nection assigning each data unit a unique identifier, which
is a monotonically increasing sequence number in general.
With monotonically increasing sequence numbers, the re-
ceiver can inform the sender of all the data it has received up
to Seq# n by a simple cumulative acknowledgment ACK (n).
In order to provide a generic reliable delivery service for different appli-

cations, TCP chose to use byte as its basic data unit, ensuring an in-order
delivery of byte stream.

TCP uses the combination of the two endpoints’ IP ad-
dresses and port numbers to create a globally unique connec-
tion identifier, and a reliable connection setup process to let
both ends agree on the initial sequence number to be used in
starting data communication. TCP also uses a similar reliable
tear down process to let each end inform the other of the
final sequence number that identifies the last byte of the data
it sends to the other. Both setup and tear-down processes
follow a standard 3-way handshake.

For connection setup, to minimize the chance of the se-
quence number used by this new connection colliding with
that used in previous connections?, TCP lets each of the
two ends pick a random number as its initial sequence num-
ber. In this case, the initiating end (client) can start sending
data with the third handshake message, thus there is one
round trip delay to inform each other of the initial sequence
number.

Third, the goal of congestion control (CC) is to limit the
number of packets inside the network. TCP was not designed
to perform CC per its specification [1], TCP implementation
was revised in mid 80’s to add congestion control on top of
its window-based flow control mechanism. TCP-CC lets the
sender maintain a congestion window, and send data within
the constraint of MIN [flow window, congestion window].

2.2 TCP’s Problems

In the following we enumerate the major issues that have
been identified from the use of TCP over the years.

1. The coupling between CC and reliable delivery CC’s
goal is to control the number of packets inside the net-
work, and function was latched onto the same window
mechanism which was originally designed for receiver
to perform flow-control on the sender, and to assure re-
liable delivery. Therefore any packet loss will constrain
the window advancement until the loss is recovered;
during the time period of loss detection and data re-
transmission, the majority, if not all, of the packets
within the window may have been delivered to the
receiver node, i.e. have exited the network. As shown
in Figure 1, where the receiver sets the flow control
window size to be equivalent to 8 packets; we can
assume CC window is also 8 packets. As packet 1’s ar-
rival advances the window to enable the transmission
of packets 2-9; the loss of packet 2 stops the window
from moving forward, even when no packet inside the
network. Therefore the number of unacknowledged
packets does not reflect the number of packets inside

2This is to avoid mistaking the data from previous connection Cpreo for
the new connection, in case Cprep happens to have the same port numbers
and IP addresses.

the network. A few patches of “window inflation, defla-
tion” haven been developed to mitigate this problem,
with added complexity and limited effectiveness [3].

R
Sender: sending window=8 receiver’s window

| | |o[8[7le[s[a[32[2]) | [lo[8[7[6[sal3]x[])
“—ACK(1)
Sendi N \ Receivi
s i
| b

Retransmit packet 2 data-2 is lost, all the rest received

Figure 1: All packets are out of the network; the loss of
packet-2 prevents flow window from moving forward.

2. Head of line blocking (HLB): because TCP assures se-
quential delivery of data byte streams, the loss of one
single packet will block the delivery of all subsequent
packets until the lost packet has been recovered. Fig. 2
shows an example where packet 2 has been delivered
to the receiver but packet 1 is lost during transit. The
data of packet 2 cannot be delivered to the application
until packet 1 has been retransmitted and received,
and passed to the application first, to assure sequential
delivery of all data to the application process. Figure 1
and Figure 2 look similar, with the former reflecting
an issue at the sender (which is blocked from sending
more packets), and the latter an issue at the receiver
(already received data gets blocked inside the kernel).

: Receiving
@@ 1@ brocess

Head Of Line Blocking

Sending
process

Figure 2: TCP Head of Line Blocking.

3. Delay due to connection setup: Every time an endpoint
wants to communicate with another via TCP, a 3-way
handshake is required to set up a TCP connection be-
fore application data can be sent. And if one wants to
secure this connection by TLS, another round trip is
needed for the two ends to exchange security creden-
tials.

4. Limitations due to fixed protocol header : TCP header
is a collection of fixed-size fields. It does have an option
field, which is limited to 40 bytes max. In addition to
carry application data between the two communicat-
ing ends, the TCP protocol design also packs all the
control functions into the same 20-byte TCP header:

connection setup, tear down, and reset; and data ac-
knowledgment. When additional functions are identi-
fied, e.g., Selective ACK, they are added into the option
field which has its own length limit of 40-byte maxi-
mum.

Three specific fields in the TCP header have been di-
rectly affected by the continued increase of network
speed over time. The sequence number and ACK fields
each are 4-byte long, and the flow control window size
is 2-byte only. These small, fixed size fields limit TCP’s
performance at high network speed: the first two wrap
around too quickly, making them no longer unique;
and a small size of flow control window directly limits
a TCP connection’s throughput which is upper bound
by (window size X RTT). Again the TCP header option
has been used to extend their lengths.

5. Unique connection identifier and IP address The IP
address of either end host in a TCP connection may
change during the connection’s lifetime, due to a vari-
ety of reasons: host multihoming, mobility, or running
behind an NAT. Because TCP uses the combination
of two endpoints’ IP addresses and port numbers as
the connection identifier, any change in either IP ad-
dress would break the existing connection, resulting in
all the data exchanged up to that point being thrown
away. To recover from the failed TCP connection, a
new 3-way handshake is required to set up a new con-
nection.

2.3 Other Transport Protocols

Although TCP has been the dominant transport protocol
in use by far, several other transport protocols have also been
developed over the years, each filling some needs missing
from TCP.

2.3.1 T/TCP. Transaction TCP[4] was developed to sup-
port distributed applications with frequent realtime transac-
tions, without paying the cost of delay and overhead from
TCP’s connection setup process. T/TCP keeps the connection
state after the initial establishment, namely the connection
identifier with associated sequence number of both ends.
Keeping a persistent connection state adds additional sys-
tem memory cost, but avoids the 3-way handshake delay for
subsequent short transactions, which may be separated by
long idle time periods in between.

2.3.2 SCTP. The design of Stream Control Transmission
Protocol (SCTP) [18] preceded QUIC by 10+ years. Its design
addresses three of the identified TCP issues.

For TCP issue #2 Head-of-Line-Blocking, SCTP allows
each SCTP connection to contain multiple data substreams,
removing the head-of-line blocking problem between the data

belong to different substreams. A lost packet of substream-
1 will not block SCTP from passing to the application the
received data for substream-2, confining the HOL problem
to be with each substream, which is still delivered in-order.
However, SCTP does not fully address the HLB problem. Each
SCTP connection uses a single TSN (Transmission Sequence
Number) for both reliable delivery and congestion control, in
the same was as TCP does. Therefore, when the TSN window
is blocked by lost packets, the sender cannot send any new
data for any substream, suffering a similar problem as TCP.

For TCP issue #4, SCTP defined multiple typed chunks,
each chunk has its own defined header formate; and multiple
chunks can be packed into a single SCTP packet within the
MTU limit. Each connection management command, e.g.
setup, tear-down, reset, etc., is defined as a separate control
chunk, so is the Selective ACK. Application data are carried
in data chunks as ADUs, each identified by [stream ID, stream
seq#]®. This design gives SCTP flexibility of defining new
connection management commands by simply adding a new
chunk type.

SCTP partially addressed TCP issue #5 on IP address
changes. Each end of a SCTP connection (called an asso-
ciation) can have multiple IP addresses, and the set may
change during the connection’s lifetime. Nevertheless, SCTP
connection identifiers are still bound to IP addresses.

2.3.3 RTP. Asits name suggested, Real-time Transport Pro-
tocol (RTP) [9] is designed to support real time applications,
such as video conferencing. Real-time multimedia streaming
applications require timely delivery of data, and to achieve
this primary goal it can tolerate packet losses to certain
degree. The protocol also provides facilities for multicast
packet delivery and jitter compensation. Due to its radically
different purposes and requirements from previous trans-
port protocols which focus on reliable data delivery, RTP
pioneered a few new concepts in transport protocol designs.

First, RTP is the first widely used transport protocol that
runs over UDP, resulting in RTP implementation being out-
side the kernel. UDP [16] can be viewed as a NO-OP transport
protocol other than using port numbers to demultiplex in-
coming packets to intended application processes, and an
optional checksum. However, UDP does offer a likely unno-
ticed but a rather important advantage: it allows applications
to control what data to be packaged into each IP packet, thus
enabling the realization of the application data unit (ADU) [7].
This user space implementation allows RTP to be tightly inte-
grated with the application implementations to utilize ADU.

3Note that each stream seq# identifies a data chunk given by the application,
whose size can be larger than the network MTU. Therefore SCTP needs to
handle data chunk fragmentation and reassembly, in contrast to TCP’s byte
stream data model, where each seq# identifies a data byte which allows TCP
to chop an application data segment at any byte boundary.

Second, RTP is the first widely used transport protocol
that uses IP multicast delivery. A multicast RTP session is
identified by the IP multicast address plus a pair of UDP
port (one for RTP, one for RTCP). Furthermore, RTP data
packets carry timestemps and sequence numbers, the former
for media replay and the latter for detecting losses.

2.4 Securing Transport Protocols: TLS and
DTLS

Internet applications need crypto protection, which has
been patched onto the existing transport protocol.

The primary advantage of the Transport Layer Security
(TLS) protocol is that it provides a transparent connection-
oriented channel. Thus, it is easy to secure an application
protocol by inserting TLS between the application layer and
the transport layer, typically TCP. TLS encrypts all the data
exchanges of a TCP connection, providing authenticity and
confidentially protection between two communicating end
points [17]. TLS runs in the user space and relies on TCP to
provide reliable delivery for its own structured data units
used for data encryption. A handshake process is required
for TLS to establish cryptographic parameters needed for
the encryption before the application data can be sent over
the TCP connection.

Datagram Transport Layer Security (DTLS) protocol [8]
is designed to secure applications that use UDP as the trans-
port protocol. The basic design philosophy of DTLS is to
construct “TLS over datagram transport”. TLS requires reli-
able packet delivery and cannot be used directly in datagram
environments where packets may be lost or reordered. DTLS
makes only the minimal changes to TLS required to fix this
problem. DTLS uses a simple retransmission timer to handle
packet loss, a sequence number to handle network packet
re-ordering, and performs its own message fragmentation
and reassembly when needed. In essence, DTLS performs all
the tasks of TLS with its own TCP-equivalent reliability sup-
port. As a result, using DTLS to secure application datagrams
require multiple round trips.

2.5 Summary: Transport Protocol
Functions over IP

Based on the observation of the transport protocol designs
and their usages over the last few decades, below we make
a summary of the basic functions that a unicast transport
protocol running over IP needs to provide and the related
design questions. Note that all the existing transport proto-
cols use port numbers for data demultiplexing inside a host
in a straight forward way, thus we omit it in the following
enumeration.

1. defining connection identifier and data identifier
2. transport connection management

e Globally unique connection ID that binds the
two ends of the connection, wishes to be IP address
independent but must map to IP addresses reliably.

e connection state setup and tear down

e Control information exchange between the two
ends; wish to have flexibility in defining new control
messages.

o support of host IP address changes (can be due to
host multihoming, physical mobility, or other causes)

3. reliable data delivery
e Unique data identifier that must be reliably ex-

changed with the other end.

e Window flow control for reliable delivery; wish
to avoid the head-of-line blocking problem.

4. Congestion control: * needs to control the number of
packets inside the network.

5. Security To be more specific, people currently view en-
crypted connections as network security, although TLL
encrypted channels provide only data confidential-
ity; remote party authenticity and trust are managed
through third-party certificate authorities (CAs).

Connection establishment and security have been separate
steps, e.g. setup a TCP connection first to enable reliable data
delivery, then set up TLS association on top of it. DTLS
implicitly combines the two.

In addition, transport protocols have traditionally been
implemented inside the kernel, one reason is for performance
efficiency. Every coin has two sides, here the other side of
the story is the lack of control on the data packaging and
difficulty in making protocol changes. RTP’s way of running
over UDP makes it outside the kernel and supports ADUs.
As we see next, QUIC adopted the same approach.

3 QUIC CONNECTION

QUIC is a transport protocol originally designed by Google
to improve transport performance for encrypted traffic and
to enable rapid deployment and continued evolution of trans-
port mechanisms. [6] QUIC uses UDP as an underlying pro-
tocol and its implementation runs in the user space, making
it easy for future updates without having to wait for a ker-
nel upgrade. Learning the lessons from previous protocol
designs, QUIC addressed TCP’s problems identified in §2.2.
A QUIC connection is a shared state between a client and a
server, which always starts with a handshake process and
during which the two endpoints establish the parameters for
the connection [15].

#Ideally CC should be a network layer function, it landed on TCP because IP
is open-loop and thus has no effective means to control packet transmission.

3.1 Connection ID

QUIC uses the combination of two numbers, one selected
by each end, to form a pair of connection IDs. The connection
ID (CID) acts as a unique identifier for the connection, which
is used to ensure that changes in addressing at lower protocol
layers will not cause packets to be delivered to a wrong
recipient. By using the connection ID, QUIC supports the
demultiplexing ability similar to the functionality provided
by TCP.

Related RFC: QUIC-TRANSPORT][15] §5 Connections.

3.2 QUIC Handshake

QUIC combines transport and cryptographic handshakes
together, acquiring the information necessary for both in
1-RTT. More specifically, this entails doing an authenticated
TLS 1.3 key exchange along with an authenticated transport
parameters exchange at the same time. This minimizes the
latency necessary to set up a secured connection. Whereas
conventional TCP keeps security and transport parameter
exchanges separate, requiring at least 2 RTTs to set up a
secure connection.

QUIC uses the Initial packet to negotiate the connection
IDs for a new connection. Each endpoint will populate the
Source Connection ID field with its chosen value in its Initial
packet and that ID will be used by the other endpoint to set
the Destination Connection ID when sending future packets.
Upon receiving an Initial packet, a server can optionally
choose to verify a client’s address by sending a Retry packet
containing a random token, which should be repeated by
the client in a new Initial packet to continue the handshake
process. TLS 1.3 handshakes messages are also embedded in
these Initial packets, which could establish a shared secret to
protect the confidentiality and authenticity of future packets
in 1-RTT. The chosen connection IDs will be included in
the QUIC transport parameters, which will be authenticated
during the TLS handshake process. With the negotiation of
connection IDs, QUIC supports the reliable setup of a new
connection similar to the functionality provided by TCP.

QUIC allows a client to send 0-RTT encrypted application
data in its first packet to the server by reusing the negoti-
ated parameters from a previous connection and a TLS 1.3
pre-shared key (PSK) identity issued by the server, though
these 0-RTT data are not protected against replay attack. By
supporting sending 0-RTT data, QUIC is also able to handle
use cases where T/TCP is required. More detail about the
cryptographic part of the handshake process is discussed in
§6.1.

Related RFC: QUIC-TRANSPORT][15] §7 Cryptographic
and Transport Handshake and §8 Address Validation, The
Transport Layer Security (TLS) Protocol Version 1.3 [17] §2
Protocol Overview and §4 Handshake Protocol.

3.3 Connection Migration

Unlike TCP where the combination of the two endpoints’
IP addresses and port numbers are used as the connection
identifier, QUIC connection has the ability to survive changes
in underlying protocol addresses with the usage of Connec-
tion ID. After a network change, a migrating endpoint can
send a packet with previously established connection IDs
using its new address to initialize the connection migration
process. After the other endpoint received that packet, it will
perform path validation to verify the peer’s ownership of the
new address by sending a special challenge frame containing
some random data to the peer’s new address and waiting for
an echoed response with the same data, and the two end-
points can continue to exchange data after the verification of
the new address. To prevent a passive observer from corre-
lating the activity of an endpoint between different network
paths, a QUIC endpoint can provide its peer with alternative
connection IDs in advance and a migrating endpoint can use
different connection IDs when sending data from different
addresses.

QUIC also allows a server to accept connections on one IP
address and ask the client to migrate to a new server address
by using the transport parameters to convey its preferred
address during the handshake process. After the handshake
is confirmed, the client will perform a path validation on the
server’s preferred address, and once it succeeds, it will send
all future packets to the new server address.

Related RFC: QUIC-TRANSPORT(15] §8 Address Valida-
tion and §9 Connection Migration.

4 QUIC PACKET

4.1 Packet Format

Unlike TCP where the packet header format is fixed, QUIC
has two types of packet headers. QUIC packets for connec-
tion establishment need to contain several pieces of informa-
tion, it uses the long header format. Once a connection is es-
tablished, only certain header fields are necessary, the subse-
quent packets use the short header format for efficiency [13].
The short header format that is used after the handshake is
completed is demonstrated in Fig. 4. In each packet, one or
more frames can be embedded in it and each frame does not
need to be of the same type as long as it is within the MTU
limit.

Each packet in a QUIC connection is assigned a unique
packet number. This number increases monotonically, indi-
cating the transmission order of packets and is decoupled
from loss recovery °. Therefore, it can be used to tell eas-
ily and accurately about how many packets may be inside
SQUIC uses different packet number space for each encryption level (initial

packets, handshake, application data). Packet numbers are unique within
each packet number space, and packets are acknowledged in their own

| eIl
— - s " .J
[m=_e\]
Client move to a new IP address
—_—]
SYN
ACK

K /
[Data] \

Using TCP

Client move to a new IP address
—_—

~——

all zll mlla

Connection ID

[Data] \

Connection
ID
[Data]

Using QUIC

Figure 3: Comparison of TCP and QUIC after having an IP address change. When using TCP, the old connection
will be discarded and a new three-way handshake taking 1-RTT will be required before application data can be
exchanged. While in QUIC the old connection can be reused and the two peers can directly start sending data
if the server has verified the client’s address in the past (for example, when the client is moving back to an old

address).
B TSNS
| Flags |
S S e o e —— Attt bt
| Destination Connection ID | Framel | | Stream ID
s e e S B
| Packet Number | Frame2 | | [Offset]
e s e Tt T Y R B e S S S
| Protected Payload (*) | [Length]

B B s o0 S Y

| Stream Data (*) ...

.| Framen
[

e

Figure 4: QUIC Short Header Packet Format. Frame 2
is a Stream frame containing application data.

the network, as compared to TCP congestion control which
shares the same flow control window used for reliability.

QUIC receiver ACKs the largest packet number ever re-
ceived, together with selective ACK (ACKing all received
packets below it, coded in continuous packet number ranges)
as shown in Figure 5. The use of purposely defined ACK
frames can support up to 256 ACK blocks in one ACK frame,
as compared to TCP’s 3 SACK ranges due to TCP option field
size limit. This allows QUIC to ACK received packets repeat-
edly in multiple ACK frames, leading to higher resiliency
against packet reordering and losses. When a QUIC packet
is ACKed, it indicates all the frames carried in that packet
have been received.

packet number spaces. This enables cryptographic data separation between
different packet spaces.

i T e e

; Ga .
| Largest Acknowledged I [Gap]
B T S e
e ACK Range
| ACK Delay . ' ! ge]
f e T e e S S S S
i T e G
a .
| ACK Range Count | [Gap]
B o e S e o o o S
B T e e s o S S S
| [ACK Range]

| First ACK Range .
B s T S S SR S S S S A S S S

| ACK Ranges (*)

B S i L e e S
| [ECN Counts] .

B o T o s ot S S S S S

B T e

B e s s o o o
| [Gap]

| [ACK Range]

Figure 5: QUIC ACK Frame Format. The Largest Ac-
knowledged field indicates the largest packet number
the sender is acknowledging. An ACK Range indicates
the number of continuously acknowledged packets
before the largest acknowledged packet number. The
gap indicates the number of continuously unacknowl-
edged packets before each ACK Range

Related RFC: QUIC-TRANSPORT]([15] §12 Packets and
Frames, §13 Packetization and Reliability, and §17 Packet
Formats.

4.2 Stream

QUIC has adopted several features directly from HTTP/2,
and one of them is incorporating stream multiplexing into
the transport layer. In the same way that in HTTP/2, multiple

streams can exist on one TCP connection, each QUIC con-
nection can have multiple simultaneous flows. This idea also
borrows from the structured stream abstraction of SST [11].
Besides, QUIC has also adopted the idea of chopping data into
frames and uses those as the basic unit of communication.

Each QUIC stream is identified by a unique stream ID,
where its two least significant bits are used to identify which
endpoint initiated the stream and whether the stream is bidi-
rectional or unidirectional. Each stream resembles a TCP
connection, providing ordered byte-stream delivery. The
byte stream is cut to data frames, analogous to TCP seg-
ments. Stream frame off'set is equivalent to TCP seq#, used
for data frame delivery ordering and loss detection and re-
transmission for reliable data delivery. Each data frame is
uniquely identified by [stream ID, frame offset]. QUIC uses
the STREAM frames to transmit application data and multi-
ple frames from different streams can be packaged into one
QUIC packet for transmission.

QUIC endpoints can decide how to allocate bandwidth
between different streams, how to prioritize transmission
of different stream frames based on information from the
application. This ensures effective loss recovery, congestion
control, flow control operations, which can significantly im-
pact application performance.

Head-of-Line Blocking: The HTTP/2 protocol used stream

multiplexing to solve the HTTP HOL Blocking problem (A
HTTP client can only open a limited number of concurrent
TCP connections to a server, and when that limit is reached
any subsequent requests need to wait for a previous request
to finish). However, because HTTP/2 is multiplexing over a
single TCP connection it will still suffer from the TCP HOL
Blocking problem.

Since QUIC uses multiple independent streams, it avoids
the Head-of-Line Blocking problem caused by waiting for
recovering lost packets in TCP. When a packet is lost, only
the streams with data frames contained in the packet will
need to wait for the retransmission of the lost frames. It will
not block other streams from moving forward. For instance,
in Fig. 6 there are three QUIC streams denoted in red, green,
and blue for a single connection. In case there is a packet loss
for the red stream, it will not block the delivery of packets
for the green stream and the blue stream.

QUIC stream

Figure 6: QUIC Solving HOL Blocking Problem.

Related RFC: QUIC-TRANSPORT([15] §2 Streams and §3
Stream States.

4.3 Unreliable Datagram Delivery

Some applications, particularly those that need to trans-
mit real-time data, prefer to transmit data without reliable
delivery. Currently one may support these applications by
using UDP as the transport protocol, or the secure coun-
terpart DTLS [RFC6347]. QUIC supports the unreliable but
secured data delivery with the DATAGRAM frames, which
will not be retransmitted upon loss detection[10]. With the
support of the unreliable datagram, QUIC could improve the
above approach with a reliable and authenticated handshake,
followed by secure but unreliable delivery of application data-
grams. QUIC packets containing only DATAGRAM frames
are also ACK-eliciting, so the application can track whether
a DATAGRAM frame is delivered or not.

Related RFC: QUIC-DATAGRAM][10] §3 Transport Param-
eter, §4 Datagram Frame Type, and §5 Behavior and Usage.

5 QUIC RECOVERY

5.1 Estimating the Round-Trip Time

QUIC ACK frames encode the delay between the receipt
of a packet and the transmission of its ACK, which allows
the receiver of the ACK to calculate the actual time used in
transmitting a packet over the network. So when receiving
an ACK frame, a QUIC endpoint can generate an RTT sample
of the network path by calculating the time elapsed since
the largest acknowledged packet was sent.

QUIC uses the following three values to generate a statis-
tical description of a network path’s RTT: the minimum RTT
(min_rtt), an exponentially weighted moving average RTT
(smoothed_rtt), and the mean deviation of the observed
RTT samples (rttvar). With the usage of a monotonically
increasing packet number, QUIC retransmission avoids the
"retransmission ambiguity" problem in TCP, which is caused
by the retransmitted packet carrying the same sequence
number as the lost packet.

Related RFC: QUIC-RECOVERY[14] §5 Estimating the
Round-Trip Time.

5.2 Congestion Control

Decoupling of congestion control from reliability con-
trol: QUIC uses packet numbers for congestion control, and
stream frame offset for reliability control.

Incorporating existing algorithms: Similar to TCP con-
gestion control, QUIC utilizes a window-based congestion
control scheme that limits the maximum number of bytes
the sender might have in transit at any time. QUIC does
not aim to develop its own new congestion control algo-
rithms, nor use any specific one (e.g., Cubic). QUIC provides

generic signals for congestion control, and the sender is free
to implement its own congestion control mechanisms. A con-
gestion control algorithm documented in the QUIC standard
is described in appendix A.

To avoid unnecessary congestion window reduction, QUIC
does not collapse the congestion window unless it detects
persistent congestion. When two packets requiring acknowl-
edgment are declared to be lost, persistent congestion will
be established if none of the packets sent between them is
acknowledged, an RTT sample existed before they were sent
and the difference between their sent time exceeds the persis-
tent congestion duration calculated based on the average RTT
(smoothed_rtt), the deviation of the RTT samples (rttvar)
and the maximum time the receiver might delay sending the
acknowledgment.

A QUIC sender will pace its sending to reduce the chances
of causing short-term congestion by ensuring its inter-packet
sending interval exceeds a limit calculated based on the aver-
age RTT (smoothed_rtt), the congestion window size, and
the packet size.

Related RFC: QUIC-RECOVERY[14] §7 Congestion Con-
trol.

5.3 Loss Detection and Recovery

ACK-based loss detection: As elaborated above, QUIC
packets each contain several frames, each of which can be
considered analogous to an IP packet. QUIC performs loss
detection based on these packets (which is to say, the equiva-
lent of a collection of IP packets): for each ACK’d packet, all
frames carried in that packet are considered received. The
frames carried in a packet are considered lost if that packet is
unacknowledged when a later sent packet has been acknowl-
edged, and when a certain threshold is met. QUIC uses two
types of thresholds for determining whether an earlier sent
packet is lost, (i) packet number based: the in-flight packet’s
sequence number is smaller than the acknowledged packet
by a certain number. For instance, assuming the largest ac-
knowledged packet number is x and the packet reordering
threshold is ¢, then all in-flight packets with a packet num-
ber smaller than x — ¢ will be declared lost. (ii) time-based:
the in-flight packet was sent at least certain times of the
maximum of the current estimated network RTT and the
latest sampled RTT before the acknowledged packet. For
instance, assuming a packet was acknowledged at time ¢ and
the waiting time threshold is t;, then all in-flight packets
sent before time t — f, will be declared lost. These thresh-
olds provide some grace period for packet reordering and
avoid unnecessary retransmissions. It also aims to avoid per-
formance degradation caused by the congestion controller
when detecting packet loss.

To detect the loss of tail packets , QUIC will initialize
a timer for the Probe Timeout (PTO) period whenever a
packet requiring acknowledgment is sent, which includes
the estimated network RTT smoothed_rtt, the variation in
the RTT samples rttvar, and the maximum time a receiver
might delay sending an acknowledgment. When the PTO
timer expires, the sender will send a new packet requiring
acknowledgment as a probe, which could repeat some in-
flight data to reduce the number of retransmissions.

Loss Recovery: After a loss has been detected, the lost
frames are then put into new outgoing packets (which will be
assigned new packet numbers, unrelated to the lost packets).

With loss detection and recovery, QUIC supports the reli-
able ordered byte-stream delivery similar to the functionality
provided by TCP.

Related RFC: QUIC-RECOVERY[14] §6 Loss Detection.

6 QUIC SECURITY

QUIC makes security a first-class priority in the protocol.
As a result, QUIC encrypts almost everything within the pro-
tocol (outside of fields necessary for the network, e.g., source
and destination addresses), along with tightly integrating
security. Part of this integration is combining the transport
and security handshakes: this allows one to cut 1 RTT off
from the connection setup time. Though this may naively
seem to violate the engineering principle of separating out
components, in the vast majority of cases where TCP is used,
TLS is used on top of it, making this no sacrifice at all.

6.1 QUIC Cryptographic Handshake

QUIC uses keys derived from a TLS 1.3 handshake to pro-
tect the confidentiality and integrity of its packets [19] and
the TLS handshake messages are carried in the CRYPTO
frames in the Initial and Handshake packets which are cou-
pled with the transport handshake process. The relationship
between QUIC and TLS can be described as QUIC taking in-
formation from TLS (handshake messages, keys, etc), and in
turn providing a reliable stream to TLS. The overall process
for a 1-RTT certificate-based cryptographic handshake with-
out client authentication is illustrated in Fig. 7 and proceeds
as follows:

o The client initializes the cryptographic handshake pro-
cess by sending the TLS ClientHello message in its
Initial packet, which included the client’s supported
cipher suites, the public share of its ephemeral Diffie-
Helman key, and its QUIC transport parameters. Other
TLS extensions like server name indication can also
be included in this ClientHello message.

o After the server received the client’s Initial packet, it
will reply with an Initial packet containing the TLS

ServerHello message, which includes the server’s cho-
sen cipher suite for the connection, the public share
of the server’s ephemeral Diffie-Helman key, and pos-
sibly other TLS extensions necessary to establish the
cryptographic context. At this point, the server can
derive the Master Secret with its private key and the
client’s public key and will use keys derived from the
secret to protect all future packets.

The server will then send a Handshake packet con-
taining the following TLS messages: the EncryptedEx-
tensions message containing the server’s QUIC trans-
port parameters and other TLS extensions that are not
required to establish the cryptographic context, the
Certificate message containing the server’s certificate
chain, the Certificate Verify message proving the own-
ership of the certificate’s private key, and the Finished
message providing authentication of the handshake
and the computed keys. [17]

The server can start sending application data with 1-
RTT packets at this point though the liveness of the
client has not been verified.

o After the client receives the server’s Initial packet and
Handshake packet, it can also derive the Master Secret
of the connection and calculate the keys to protect all
future packets. It will send the TLS Finished message
in a Handshake packet to confirm the handshake. It
can also start sending application data to the server
with 1-RTT packets.

o After the receipt of the Finished message from the
client, the server will send a HANDSHAKE_DONE
frame in a 1-RTT packet to confirm the handshake
being finished.

Because multiple QUIC packets can be encapsulated into a
single UDP datagram, the above handshake process can be
finished with only four UDP datagrams.

Sending 0-RTT data QUIC allows a client to send en-
crypted application data before the handshake is completed
by reusing the negotiated parameters from a previous con-
nection. [19] After a connection is established, a QUIC server
can issue a pre-shared key (PSK) identity associated with
the connection’s resumption secret through a TLS NewSes-
sionTicket message with a special maximum early data size
to indicate that it will accept 0-RTT data. A QUIC client can
remember that PSK identity and its associated secret along
with other critical connection parameters so that it can go
through the simplified 0-RTT handshake process when con-
necting to the server next time. The overall process of a
0-RTT handshake is illustrated in Fig. 8 and proceeds as
follows:

o The client initializes the handshake process by sending
an Initial packet similar to that in the 1-RTT handshake

process with a few extra TLS extensions. The client will
use the pre_shared_key extension to tell the server the
PSK identity it has and use the early_data extension to
signal that it has 0-RTT data to send. The application
data is included in an 0-RTT packet protected with the
resumption secret, which can be encapsulated into a
single UDP datagram along with the Initial packet.

e The Server then uses the TLS stack to check validity
(e.g. if the correct cipher-suite was used). If the packet
passes this check, the server uses both the QUIC stack
and the application protocol to check the packet’s va-
lidity. Part of the QUIC stack check is ensuring that
some additional transport state is associated with the
session ticket, above and beyond the TLS 1.3 require-
ments.

If the server chooses not to accept the 0-RTT data, it
will fall back to the 1-RTT handshake process and no
special actions will be needed.

o The server will send an Initial packet and a Handshake

packet similar to the 1-RTT handshake with a few

changes. In the ServerHello message, the server will
include the pre_shared_key extension to indicate that
the PSK identity is accepted. In the Handshake packet,
the TLS extensions early_data will be added to the En-
cryptedExtensions message to signal that the 0-RTT
data is accepted, and the server does not need to send
the Certificate and Certificate Verify message because
its identity has already been verified. To provide for-
ward secrecy for the new connection, the server will
migrate to a new Master Secret combining both the
old resumption secret and the shared secret derived
from the new DH key exchange. The server will also
send an ACK frame to acknowledge the 0-RTT packet.

The client will migrate to the new Master Secret after

receiving the public share of the server’s ephemeral

Diffie-Helman key. The remaining process is the same

as the 1-RTT handshake.

There are, however, some additional best practices that
should be followed. For instance, when using the 0-RTT
mode, best practice dictates that the 0-RTT keys should only
be used to protect data that is idempotent because 0-RTT
packets are not protected against replay attacks. Additionally,
in order to reduce security vulnerabilities, when a Client’s
cached information expires, the Server should reject the 0-
RTT connection and send its authorization info as in the first
time connection setup. This is built into the QUIC protocol,
and the Client should have no trouble moving directly into
a ’first time’ connection setup.

Related RFC: The Transport Layer Security (TLS) Protocol
Version 1.3 [17] §2 Protocol Overview and §4 Handshake

Initial[0]:
CRYPTO[ClientHello{key_share
, quic_transport_parameters}]

Initial[0]: CRYPTO[ServerHello{key_share}], ACK[0]
Handshake[0]:

CRYPTO[EncryptedExtensions{quic_transport_para
meters}, Certificate, Certificate Verify, Finished]
1-RTT[0]: STREAMI[Z, "..."]

Initial[1]: ACK[0]

Handshake[0]: CRYPTO[Finished], ACK[0]

1-RTT[0]: STREAMIO, "..."], ACK[O]

Handshake[1]: ACK[O]
1-RTT[1]: HANDSHAKE_DONE, STREAM[3,
"..."], ACK[O]

Figure 7: A diagram illustrating the QUIC-TLS 1.3 1-RTT handshake [15].

i

Initial[0]: CRYPTO[ClientHello{key_share,
pre_shared_key, early_data,
quic_transport_parameters}]

0-RTT[0]: STREAMIO, "..."]

Initial[0]: CRYPTO[ServerHello{key_share,
pre_shared_key}] ACK[0]

\ Handshake[0]:
CRYPTO[EncryptedExtensions{quic_transport_para
meters, early_data}, Finished]
1-RTT[0]: STREAMI1, "..."] ACK[O]

Initial[1]: ACK[O]
Handshake[0]: CRYPTO[Finished], ACK[0]

1-RTT[1]: STREAMIO, "..."], ACK[0]

Handshake[1]: ACK[O]
1-RTT[1]: HANDSHAKE_DONE, STREAM[3,
"..", ACK[1]

Figure 8: A diagram illustrating the QUIC-TLS 1.3 0-RTT handshake [15].

Protocol, QUIC-TLS [19] §4 Carrying TLS Messages and §8 6.2 Authenticated and Encrypted Header
QUIC-Specific Adjustments to the TLS Handshake. and Payload

The QUIC protocol has made an intentional choice to en-
crypt all practical portions of the packet. Though this is a
tradeoff — to give a specific example, hiding information

10

from the ISP has both benefits and costs - it enables new
protections for end users. To be more specific, QUIC au-
thenticates all of its headers and payload (except version
negotiation packets), as well as encrypting most of the data
exchanged. Figure 4 shows the QUIC packet format, packet
header fields are unencrypted as they are used for routing or
performing decryption of the payload. The packet body con-
taining frames is encrypted. Everything in the unencrypted
header must remain in plaintext for proper operation. The
header contains flags that are needed to specify which fields
are included in the header and the length of certain fields.
The Connection ID is used for routing the packet to its des-
tination server and simultaneously serves as an identifier
for the connection state. The packet number is needed for
authentication and decryption, and thus can’t be encrypted.

This encryption also has the benefit of ensuring QUIC
can remain relatively easy to update. protocol ossification
is a well-known problem — middleboxes cannot be easily
upgraded to meet protocol changes, which limits the flexi-
bility of network protocol design. QUIC packets are mostly
encrypted, which prevents modification by middleboxes, and
limits protocol ossification.

Related RFC: QUIC-TLS [19] §5 Packet Protection.

7 APPLICATIONS OVER QUIC: HTTP/3
AS AN EXAMPLE

As an application protocol, HTTP encodes application
contents with rich semantics, and the most relevant feature to
transport delivery is its request-response message exchange
model: a browser client can issue multiple requests in parallel,
whose responses often desire different delivery priorities to
maximize the viewer experience. However, when HTTP runs
over a TCP connection, which supports reliable delivery of
a single byte steam only, the order of response contents can
only be delivered according to the order in which the server
receives the requests.

The QUIC design provides multiple stream support to ad-
dress the above limitation of TCP being unable to prioritize
between different requests. More specifically, HTTP/3, the
latest version of HTTP which is designed to run over QUIC,
utilizes QUIC’s stream semantics to enable each HT TP re-
sponse being delivered independently and with different
priorities."

e As the underlying transport for HTTP/3, QUIC pro-
vides reliable in-order delivery at the stream level and
congestion control at the connection level. Each HTTP
request-response pair is mapped into an independent
stream, thus different request-response pairs will not
block each other in case of loss. QUIC also provides
security matching TLS + TCP, and lower connection
setup latency.

e Stream management is handled at the transport layer,
QUILC takes care of the reliable delivery and the order-
ing of the frames then passes the received data to the
application.

Related RFC: QUIC-HTTP[2] §4 HTTP Request Lifecycle,
§6 Stream Mapping and Usage, and §7 HT TP Framing Layer.

8 CONCLUSION AND FUTURE WORK

QUIC represents the best transport protocol design the
community has come out with so far. The basic ideas in
the QUIC design did not drop out of the sky one day, but
rather, QUIC represents an accumulation of lessons learned
from networking experimentation and previous protocol
designs over the last few decades. For instance, learning
from T/TCP, QUIC keeps and reuses connection states to
achieve 0-RTT communication. Adopting the ideas from
RTP, QUIC runs over UDP to stay outside of the kernel and
utilizes the ALF/ADU idea documented in [7]. Similar to
SCTP and HTTP/2, QUIC also uses multiple substreams to
mitigate head-of-line blocking and typed frames to support
a variety of control exchanges. Adopting these ideas and
synthesizing them into a single protocol allow the QUIC
protocol to minimize latency and minimize other problems
(such as those identified in §2.2).

e transport protocols to support reliable delivery to mul-
tiple parties.
e transport protocols to support delay tolerance.

REFERENCES

[1] Transmission Control Protocol. RFC 793, September 1981.

[2] Mike Bishop. Hypertext transfer protocol version 3 (http/3). Rfc,
February 2021.

[3] Ethan Blanton, Dr. Vern Paxson, and Mark Allman. TCP Congestion
Control. RFC 5681, September 2009.

[4] Robert Braden. T/tcp - tcp extensions for transactions functional
specification. RFC 1644, July 1994.

[5] Michelle Cotton, Lars Eggert, Dr. Joseph D. Touch, Magnus Westerlund,
and Stuart Cheshire. Internet Assigned Numbers Authority (IANA)
Procedures for the Management of the Service Name and Transport
Protocol Port Number Registry. RFC 6335, August 2011.

[6] Adam Langley et. al. The quic transport protocol: Design and internet-
scale deployment. In Proc. of SIGCOMM, 2017.

[7] David Clark et. al. Architectural considerations for a new generation
of protocols. In Proc. of SIGCOMM, 1990.

[8] Eric Rescorla et. al. Datagram transport layer security version 1.2. RFC
6347, January 2012.

[9] Henning Schulzrinne et. al. Rtp: A transport protocol for real-time
applications. RFC 3550, July 2003.

[10] Tommy Pault et. al. An unreliable datagram extension to quic. Rfc,
March 2021.

[11] Bryan Ford. Structured streams: a new transport abstraction. In
Proceedings of the 2007 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, pages 361-372,
2007.

New Path or LEEE LR +

persistent congestion | Slow |
(0)-==mmmmmm e >| Start |
D R +

|

Loss or |

ECN-CE increase |

v
Fommmmmm oo + Loss or R b +
| Congestion | ECN-CE increase | Recovery |
| Avoidance |------------------ >| Period |
Fommmmmm e + D R +

" |

| |

o m e +

Acknowledgment of packet
sent during recovery

Figure 9: State Machine of the New Reno Algorithm.
[14]

[12] IANA. Service Name and Transport Protocol Port Number
Registry. https://www.iana.org/assignments/service-names-port-
numbers/service-names-port-numbers.xhtml, 2021 (Last Updated
2021-10-04).

[13] Jana Iyengar. The maturing of quic, fastly, industry insights.
https://www.fastly.com/blog/maturing-of-quic, November 2019.

[14] Jana Iyengar and Ian Swett. QUIC Loss Detection and Congestion
Control. RFC 9002, May 2021.

[15] Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed
and Secure Transport. RFC 9000, May 2021.

[16] Jon Postel. User datagram protocol. RFC 768, August 1980.

[17] Eric Rescorla. The transport layer security (tls) protocol version 1.3.
RFC 8446, August 2018.

[18] Randall Stewart. Stream control transmission protocol. RFC 4960,
September 2007.

[19] Martin Thomson and Sean Turner. Using TLS to Secure QUIC. RFC
9001, May 2021.

A THE NEWRENO ALGORITHM

The state machine of the NewReno algorithm documented
in the QUIC standard [14] is shown in Figure 9. In addi-
tion to the congestion window, the NewReno algorithm will
also maintain another variable named Slow Start Threshold,
which will be initialized to infinity. The NewReno algorithm
has the following three states:

Slow Start: A QUIC sender will start at the Slow Start
state and will reenter it when persistent congestion is de-
clared. During this state, the congestion window will grow
exponentially and is increased by the number of newly ac-
knowledged bytes. The sender will enter the Recovery state
when a packet is declared lost or when the ECN-CE counter
has been increased.

Recovery: Each time the sender enters the Recovery state,
the congestion window will be reduced by half and the Slow

12

Start Threshold will be set to the new congestion window
size. The sender will enter the Congestion Avoidance state
when a packet sent during the Recovery state is acknowl-
edged by its peer.

Congestion Avoidance: During this state, the Additive
Increase Multiplicative Decrease (AIMD) approach will be
used, and for each congestion window acknowledgment, the
increase of the window size will be limited to the maximum
size of one datagram. The sender will enter the Recovery
state when a packet is declared lost or when the ECN-CE
counter has been increased.

Handling Persistent Congestion: When persistent con-
gestion is declared, the congestion window will be reduced
to the minimum congestion window size and the sender will
reenter the Slow Start state.

Related RFC: QUIC-RECOVERY[14] §7 Congestion Con-
trol.

B VERSION NEGOTIATION

Unlike traditional transport protocols, QUIC supports the
co-existence of different protocol versions. In order to carry
out this feature, the client and server can negotiate a mutually
supported protocol version before establishing a connection.
This is useful for the protocol to continuously evolve while
allowing endpoints to negotiate which version to use. For
clients that support multiple QUIC versions, QUIC should
choose the largest of the minimum packet sizes across all
the supported versions as the size of its first packet. If the
server does not accept the version selected by the client, it
will send an additional Version Negotiation packet to the
client listing its accepted versions. This will introduce an
additional 1-RTT latency to the QUIC handshake process.

Related RFC: QUIC-TRANSPORT(15] §6 Version Negotia-
tion.

