100. # reduce the learning rate after 8 epochs (4000 iters) by a factor of 10
# The train/test net protocol buffer definition
net: "examples/handson/handson_quick_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 100
# Carry out testing every 500 training iterations.
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.001
momentum: 0.9
weight_decay: 0.004
# The learning rate policy
lr_policy: "fixed"
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 4000
# snapshot intermediate results
snapshot: 4000
snapshot_prefix: "examples/handson/handson_quick"
# solver mode: CPU or GPU
100
• cifar10_quick_solver.prototxt
③パラメータ設定
$ cp -p cifar10_quick_solver.prototxt handson_quick_solver.prototxt
$ vi handson_quick_solver.prototxt
パスの変更
:%s/cifar10/handson/g でもいいかも
データセット
準備
データの格納
パラメータ
設定
学習モデル
利用
学習実行