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BOTH Regensburg, Prüfeninger Straße 58, 93049 Regensburg, Germany, stefanie.scherzinger@oth-regensburg.de

ABSTRACT

When semantic big data is managed in commercial settings, with time, the need may arise to integrate and interlink
records from various data sources. In this vision paper, we discuss the potential of a new generation of multi-model
database systems as data backends in such settings. Discussing a specific example scenario, we show how this family
of database systems allows for agile and flexible schema management. We also identify open research challenges
in generating sound triple-views from data stored in interlinked models, as a basis for SPARQL querying. We then
conclude with a general overview of multi-model data management systems, to provide a wider scope of the problem
domain.
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1 INTRODUCTION

Ideally, an enterprise information system (EIS) provides
a 360o view on corporate data. However, tapping
new data sources usually involves long-running and
costly data integration projects. One reason is that
the underlying data backend is commonly a relational
database management system: Evolving the relational
database schema in production systems is a real-world
challenge [3, 4].

In this paper, we view the task of building an
enterprise information system as a semantic big data
project, where we want to query a triple view of the
data using SPARQL, and that we can evolve over time.
Ideally, we can flexibly integrate new data sources with
little impedance overhead.

The research communities focusing on semantic
data and on database architecture have been building

powerful triple stores for managing RDF data [43, 1, 29,
33]. However, native triple stores may not be suitable for
big data scenarios, due to the up front costs of converting
data from its original format (most likely, not triples).
Ideally, a new data source can be ingested as is, with
little data integration overhead. Moreover, the raw triple
format is often perceived as unwieldy for certain data
types, such as geospatial data, the integration of which is
becoming ever more important [30].

Non-native triple stores with SPARQL endpoints [9,
35, 32] keep the data in its original format, most
commonly, as relations. Along these lines, manifold
contributions on publishing triple-views over relational,
XML, or JSON data, have been made [26, 17],
even to the point of reaching the status of W3C
recommendations for relational data [6, 11] and CSV
files [39], or being discussed by a W3C working group,
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such as the JSON data format [25].
The popular, industrial-strength and non-native triple

store Virtuoso1 supports relational, XML, and the triple
format. By now, Virtuoso looks back on over 20 years
of development. Built on top of a traditional relational
database management system (RDBMS), like many
databases of its generation, it is schema-full, meaning
that the schema must be declared before a single record
can be stored. The database system then manages the
schema in its internal catalog, and ensures that all read
and write accesses are valid.

Yet in enterprise settings, large volumes of data
accumulate and new data sources are added over time.
As in other application domains, the database schema is
no longer something that we can fix in the early phase of
a project. Instead, we may have to repeatedly integrate
new data sources, and therefore to evolve the database
schema.

We summarize our desiderata for a database system at
the heart of our IT architecture as follows:

1. In handling big data, we cannot afford to pre-process
and translate each record into RDF triples. Ideally,
new data can be ingested as-is, with little or no
impedance overhead.

2. New data sources will be added over time and
structural changes to the data are inevitable. Thus, we
are not able to fix a stable schema in the early phases
of the project.

3. The data is not static; thus, we need a backend where
records may be updated, rather than an append-only
data warehouse.

4. We require built-in support for popular data formats,
e.g., for managing geospatial data.

5. We need to be able to expose a homogenized triple-
view, as a 360o view on the entire data instance,
allowing for SPARQL querying.

In this paper, we put an alternative backend
technology up for discussion, and assess the potential of
a new generation of database systems that can handle
several data models, and where the schema is often
managed flexibly.

Of course, the idea of supporting several data models
is not new, and there are over 20 representatives of
multi-model databases (MM-DBs) [23], including well-
known products such as Oracle DB2 or IBM DB23.
Yet there are new players in this market, such as
1 https://virtuoso.openlinksw.com/
2 https://www.oracle.com/database/
3 http://www.ibm.com/analytics/us/en/

technology/db2/

OrientDB4 or ArangoDB5. Although there is no exact
definition of a multi-model database, the intuitive
understanding of this term assumes the support of
several data models as first-class citizens with efficient
support of respective storing and querying, allowing
both structured data (such as key/value and graph data)
and semi-structured data (XML and JSON). Thus, these
systems can seamlessly integrate document collections,
social network graphs, or ontologies, which may be
interlinked. (This in turn requires sophisticated multi-
model transaction management, query evaluation, query
optimization, etc.). At the same time, they allow for
more flexible schema management, where some are even
schema-free, as we will illustrate.

With this paper, we would like to invite the semantic
big data community to explore these NextGen multi-
model databases [22].

Contributions: This vision paper gives an overview
over a new generation of multi-model databases, in
particular focusing on flexible schema management.
Walking through a running example, we demonstrate
basic capabilities and motivate research questions. Our
overview can be useful for researchers looking for new
research opportunities in the field of semantic big data.

The paper is an extended version of the
SBD@SIGMOD 2019 workshop paper [15]. The
main extensions involve: a new and more complex
running example with a focus on ontology evolution;
further, a general classification and description of
approaches to multi-model data management, and a
more detailed discussion of the challenges related to
semantic web.

Structure: In Section 2 we characterize the family of
NextGen multi-model databases, in particular regarding
different levels of schema support. In Section 3, we
envision an example of a semantic big data project
evolving over time, backed by a NextGen multi-model
database. Section 4 discusses research challenges in this
context. To ensure a broader view of the target problem
domain, in Section 5 we provide a general overview
of approaches to multi-model data management. With
Section 6, we conclude.

2 DATABASE SCHEMAS IN NEXTGEN
MM-DBS

In general, the term multi-model can have different
meanings in the context of database management

4 https://orientdb.com/
5 https://www.arangodb.com/
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systems.6 We give an overview over the landscape
of polyglot persistence and multi-model databases in
Section 5. For now, we refer to NextGen MM-DBs to
denote a particular family of systems.

Since this area is relatively new, there is no rigorous
definition. However, we can characterize these systems
as DBMSs which support more than one data model,
where all these models are first-class citizens and
can be mutually interlinked, and which support cross-
model query evaluation.

We next clarify our core terminology to avoid
confusion when switching between related or even
synonymous terms:

• By a record, we mean a single data entity that is to be
persisted. In the relational model, this is a tuple. In
the document model, this is a single document. In the
graph model, this is a vertex or an edge.

• By a kind, we mean an abstract label that groups
related records. In a relational database, this
corresponds to a table. Some multi-model databases
use the term class (as in OrientDB) or collection (as in
ArangoDB) instead. In the graph model, there are only
two kinds, vertices and edges.

• By a property, we refer to an attribute in a relational
tuple, or in a JSON document. In the graph model,
properties may be assigned to vertices or edges.

We assume that the records of a given kind all reside
in the same model. This assumption holds in virtually all
established multi-model database products today.

While these terms do not sufficiently describe the
various data models in their entirety, they establish a
common ground for the following discussion.

With multi-model databases, we can distinguish
different levels of schema support on the granularity of a
single kind:

• A schema-full kind requires that the properties of
all corresponding records are valid w.r.t. the declared
schema.

• If a kind is declared as schema-less (or schema-free),
the system does not validate the corresponding records
against the schema.7

• If a kind is schema-mixed (also called schema-hybrid),
additional properties (not declared by the schema) are
allowed.

6 Note that there also exists the term multi-modal which does not
mean a combination of multiple data models, but multiple data
modalities, e.g., audio, video, eye gaze data, etc.

7 In theory, no two records of the same kind might even have the same
structure. In practice, however, it is likely that there will be some
form of agreed structure among records [18].

In the following, we name examples to illustrate the
different levels of schema support.

Example 2.1. Relational database systems are
traditionally schema-full. �

Example 2.2. The popular (originally NoSQL
document, now multi-model) database MongoDB8

used to be schema-less. Due to a validation feature
added later, MongoDB now supports schema-mixed
kinds. This provides developers with more type-safety,
while still allowing for a certain degree of flexibility in
modeling their data. �

Next, we consider two prominent multi-model databases
w.r.t. their level of schema support, as well as their
strategy for handling several models.

Example 2.3. ArangoDB is a schema-less multi-model
database9, and supports both a graph and a document
model. Yet for optimized storage, the graph model is
transparently mapped onto an internal document model:
Nodes are stored as documents, and edges are stored
in a special document collection containing pairs of
IDs of the documents corresponding to nodes. Thus
internally, the two supported logical models (graphs
and documents) are mapped onto the same physical
(document) model. �

Example 2.4. OrientDB supports a document, graph,
key/value and a designated object model. Internally, all
models but the graph model are effectively reduced to
the object-model. OrientDB provides all three levels of
schema support. �

3 EXAMPLE SCENARIO

We envision a semantic big data project where we build
an enterprise information system for a pizza delivery
franchise. We consider the multi-model database
OrientDB as our data backend, since it offers all three
levels of schema support. In parts, we contrast this
choice of backend with Virtuoso [13], a popular schema-
full (non-native) triple store.

3.1 Growing a Pizza Empire

In the early stage of our project, we need to manage our
pizza recipes. Over time, we will tap new data sources
and grow our data hub.

8 https://www.mongodb.com/
9 While schema-less, ArangoDB internally tracks the structure of

all records and exploits structural similarities to reduce storage
costs [18].
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(a) (b)

Figure 1: Example pizza ontology, represented as a graph G (a), and a changed version of the pizza ontology,
represented as a graph G′ (b).

Table 1: Example set of tests for the pizza ontology
Test Entities

t1 There are at least 3 veggie pizzas VeggiePizza
t2 Pizza must include mushroom pizza Pizza, MushroomPizza
t3 Mushroom pizza must have mozzarella toppings MushroomPizza hasTopping [some] Mozzarella
t4 There must be at least 1 veggie topping VeggieTopping

So far, we have discussed the main components of an on-
tology. In this paper, we do not discuss other minor com-
ponents, such as sub-properties, datatype properties, and
cardinality restrictions, that our approach can handle but
that would unnecessarily complicate the discussion.

Table 1 shows an intuitive description of four tests that
may be used to test a system based on the pizza ontology,
along with entities in the ontology with which they are as-
sociated. In the table, the first column (Test) lists the test
number and its description, and the second column (Enti-
ties) shows the entities in the pizza ontology that are asso-
ciated with the test. As discussed in Section 1, actual tests
would consist of queries to the database together with ex-
pected query results. Test t1, for instance, would consist of
a query that counts the number of VeggiePizza instances
in the database system, including the instances of the sub-
classes of VeggiePizza, such as the following:

SELECT COUNT(*) AS result FROM orders WHERE type

IN (SELECT term FROM terms WHERE term=’VeggiePizza’

OR ancestor=’VeggiePizza’)

Test t1 would check that the value of result is at least 3.

2.2 Motivating Example
Ontologies change over time, and when changes in an on-

tology occur, an ontology-driven system must be retested.
Consider again the pizza ontology, represented as graph G
in Figure 1(a). Consider also the changed version of this
ontology, represented as graph G′ in Figure 1(b). As the
figure shows, there are two changes from G to G′: (1) Mush-
roomPizza is a subclass of Pizza in G and a subclass of
VeggiePizza in G′; and (2) the MushroomPizza hasTop-

ping[some] Mozzarella restriction does not appear in G′.
For the first change, because MushroomPizza has been

moved, VeggiePizza now has two subclasses in G′. How-
ever, Pizza still has three subclasses: VeggiePizza, Mar-

gherita, and MushroomPizza. Moreover, MushroomPizza

has no subclass in G or G′. Thus, for this change from
G to G′, only tests associated with VeggiePizza (i.e., t1)

may behave differently with the changed ontology because,
although MushroomPizza has been moved, MushroomPizza

and Pizza have the same subclasses in G and G′. There-
fore, any tests associated with MushroomPizza (i.e., t2) will
return the same results if run on a database that uses the
new ontology and on one that uses the original ontology.
Therefore, t2 does not need to be rerun.

For the second change, the deletion of the restriction Mush-

roomPizza hasTopping[some] Mozzarella means that tests
associated with this restriction (i.e., t3) may behave dif-
ferently and must be rerun. Finally, because there are no
changes to VeggieTopping between G and G′, tests associ-
ated with VeggieTopping (i.e., t4) do not need to be rerun.

In summary, for the changes to the pizza ontology shown
in Figure 1, only t1 and t3 must be rerun.

3. ALGORITHM
In this section, we present our algorithm for selecting tests

to rerun based on a changed ontology.

3.1 Overview
Our algorithm, SelectTests (Algorithm 1), inputs a

graph, G, that represents the original ontology O, and a
graph, G′, that represents the changed ontology O′. An
ontology graph3 is a set of nodes N and a set of directed
edges E. A node n ∈ N represents a class. A subclass edge
represents a subclass relationship, and is indicated as es =
(s, t) ∈ E, where s, t ∈ N are the source and target of the
edge, respectively. A property edge represents either a prop-
erty or a restriction, and is indicated as ep = (s, t, p) ∈ E,
where s, t ∈ N are the source and target nodes, respectively,
and p is the property name along with any restrictions. Se-
lectTests also inputs a matrix, M , that associates tests
in T with entities in O. In general, matrix construction can
be performed automatically by parsing tests and identifying

3Because there is no standard model for representing ontolo-
gies, for our work, we created a graph representation that
supports explicit representation of ontologies.
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Figure 1: Ontology evolution in the pizza example, taken from [19], with permission by the authors.

1 CREATE CLASS Topping;
2 CREATE PROPERTY Topping.name STRING (MANDATORY TRUE, NOTNULL TRUE);
3 CREATE INDEX Topping.name UNIQUE;
4

5 CREATE CLASS VeggieTopping EXTENDS Topping;
6 CREATE CLASS Mushroom EXTENDS VeggieTopping;
7 CREATE CLASS Tomato EXTENDS VeggieTopping;
8

9 CREATE CLASS CheeseTopping EXTENDS Topping;
10 CREATE CLASS Mozzarella EXTENDS CheeseTopping;
11

12 CREATE CLASS Pizza;
13 CREATE PROPERTY Pizza.name STRING (MANDATORY TRUE, NOTNULL TRUE);
14 CREATE INDEX Pizza.name UNIQUE;
15

16 CREATE CLASS VeggiePizza EXTENDS Pizza;
17 CREATE CLASS Margherita EXTENDS VeggiePizza;
18 CREATE CLASS MushroomPizza EXTENDS Pizza;
19

20 CREATE PROPERTY Pizza.hasTopping LINKSET Topping (MANDATORY TRUE);
21

22 CREATE PROPERTY Margherita.hasTTopping LINK Tomato (MANDATORY TRUE, NOTNULL TRUE);
23 CREATE PROPERTY Margherita.hasMozTopping LINK Mozzarella (MANDATORY TRUE, NOTNULL TRUE);
24

25 CREATE PROPERTY MushroomPizza.hasMTopping LINK Mushroom (MANDATORY TRUE, NOTNULL TRUE);
26 CREATE PROPERTY MushroomPizza.hasMozTopping LINK Mozzarella (MANDATORY TRUE, NOTNULL TRUE);

Figure 2: Encoding the pizza ontology in the OrientDB schema.

@rid @class name

#65:0 TOPPING seafood
#66:0 TOPPING ham
#73:0 VEGGIETOPPING tomato sauce
#75:0 VEGGIETOPPING oregano
#76:0 VEGGIETOPPING garlic
#77:0 VEGGIETOPPING basil
#89:0 TOMATO tomato slice
#97:0 MUSHROOM mushroom
#105:0 MOZZARELLA mozzarella
#106:0 MOZZARELLA buffalo mozzarella

(a) Toppings.

@rid @class name hasTopping hasMoz
Topping

hasT
Topping

hasM
Topping

#43:0 VEGGIEPIZZA bufalina [#73:0, #75:0, #106:0]
#44:0 VEGGIEPIZZA caprese [#89:0, #105:0]
#50:0 MUSHROOMPIZZA prosciutto et funghi [#66:0,#73:0,#105:0,#97:0] #105:0 #97:0
#65:0 PIZZA frutti di mare [#65:0, #73:0]
#73:0 VEGGIEPIZZA marinara [#73:0, #76:0, #77:0]
#75:0 MARGHERITA margherita [#73:0, #75:0, #89:0, #105:0] #105:0 #89:0

(b) Pizzas.

Figure 3: Instances of toppings and pizzas from our example scenario.
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3.1.1 Encoding the pizza ontology

Our pizza recipes are at the heart of our business.
Figure 1, on the left, shows the popular pizza ontology,
taken from [19]. We need to represent the classes
Pizza and Topping, with their various subclasses.
The dashed arrow hasTopping denotes a relationship
between classes, so each pizza can have toppings.
There are further constraints, as each pizza margherita
must have (at least) some Tomato and (at least) some
Mozzarella topping.

Figure 2 shows the statements in the data definition
language (DDL) of OrientDB that encode this ontology
as an OrientDB schema. These statements were designed
for OrientDB version 3.0.21 (where 3.0.x is the current
GA version). We first declare classes (akin to kinds) for
toppings and pizzas respectively.

In declaring the class hierarchy, we encounter little to
no impedance overhead, as OrientDB started out as an
object database management system and thus gracefully
handles class hierarchies (even multiple inheritance).

A unique record identifier is assigned and managed
by OrientDB automatically, replacing the concept of
primary keys. Nevertheless, we would like to declare
a property name as a secondary key: Line 2 declares
that the name is mandatory and therefore must exist. In
principle, a property may be mandatory and nullable.
Yet in our case, we rule out this case. Thus, for each
topping, a name must be specified, null is not allowed.
Both toppings and pizzas are actually identified by their
names. Declaring the indices (e.g., in line 3) ensures that
names are unique.

Before we remark on LINK-typed class properties
(c.f. line 20), we consider a specific data instance.10 The
syntax for insertion is familiar from SQL, e.g.,

INSERT INTO Mozzarella (name)
VALUES ("mozzarella"),

("buffalo mozzarella");

To encode the relationship hasTopping, we declare
OrientDB properties to hold a set of links to Toppings.
This property must exist, but its value may be an empty
set or even null.

For margherita and mushroom pizzas, we additionally
link to the required ingredients and specify that these
links must be specified (and thus not null, c.f. the lines 22
and following).

Figures 3a and 3b show instances of toppings and
pizzas (in a relational view): Each instance has a
unique record identifier @rid (which is internally
maintained), and belongs to a class (@class). Pizzas
link to their toppings. Margherita-style pizzas need one

10 Our pizza compositions originate from https://www.
forketers.com/italian-pizza-names-list/.

name hasTopping.name

bufalina ["oregano","buffalo mozzarella","tomato sauce"]
frutti di mare ["tomato sauce","seafood"]
marinara ["basil","garlic","tomato sauce"]
margherita ["oregano","tomato sauce","mozzarella",

"tomato slice"]
caprese ["tomato slice","mozzarella"]
prosciutto e funghi ["tomato sauce","mozzarella","ham",

"mushroom"]

Figure 4: Result of query SELECT name,
toppings.name FROM Pizza on the pizza
instances from Figure 3b.

link to a mozzarella- and a tomato-topping (of which
there are different instances, such as plain and buffalo
mozzarella).

Links are automatically resolved during query
evaluation. For instance, the SQL-like query

SELECT name, hasTopping.name
FROM Pizza;

returns the result shown in Figure 4, and thus resolves
the links to Toppings.

3.1.2 Ontology Evolution

We now consider the case that the ontology evolves, re-
playing the scenario proposed in [19]. In the changed
version, shown in Figure 1 to the right, mushroom pizzas
have become veggie pizzas. This schema change can be
directly expressed in the OrientDB DDL as follows:

ALTER CLASS MushroomPizza
SUPERCLASS VeggiePizza;

We assume that accidentally, for some reason, the
restriction that mushroom pizzas must have at least
some mozzarella topping, has been lost, as visualized in
Figure 1 (right).

The authors in [19] also propose regression tests to
detect problems with evolutionary changes:
t1: There are at least 3 veggie pizzas.
t2: Pizza must include mushroom pizza.
t3: Mushroom pizza has mozzarella topping.
t4: There must be at least 1 veggie topping.

These tests can be conveniently expressed in the SQL
dialect of OrientDB. In our example, all tests pass. Let
us consider test t1, which can be addressed by the query

SELECT count(*)
FROM VeggiePizza;

counting the number of veggie pizzas (as suggested
by [19]). Test t1 passes, since there are still more than
three veggie pizzas. However, the count now yields a
different result, since the mushroom pizza “prosciutto
et funghi” is included. This observation might trigger
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the developers to inspect their data instance, hopefully
realizing that this pizza should not have been classified
as vegetarian.

Test t3 yields a false positive, since the schema no
longer enforces that mushroom pizzas come with a
mozzarella topping. Pizza “prosciutto e funghi” just
happens to have a mozzarella topping.

However, these problems are imminent to ontology
evolution, and not specific to the underlying database
management system.

3.1.3 Generating Triple-Views

The state-of-the-art today in (non-native) triple stores
such as Virtuoso is to store data in a relational backend,
to avoid expensive data conversions. On demand, we
can then generate a triple-view, as sketched in Figure 5
for pizza “bufalina”, as a basis for SPARQL querying.11

(Due to constraints in visualizing the views, we recode
the record identifiers, e.g., #43:0 as “rid43”.)

We depict classes as blue ovals, instances as purple
ovals, and literals as orange boxes.

Generating triple-views from relational data is well-
explored, and several W3C recommendations exist, e.g.,
[6, 11]. In contrast, NextGen multi-model databases do
not fully provide this functionality yet. In the current
GA version of OrientDB, yet also in the latest beta-
only version (v3.1.0), OrientDB supports Tinkerpop and
Gremlin12, so SPARQL queries13 may be compiled to the
Gremlin graph traversal language14. However, we can
currently only query data residing in the graph model.
Data in other models (like our pizzas and their toppings)
cannot be queried with Gremlin or SPARQL.

Yet exposing a triple-view is an indispensable feature
from the viewpoint of the semantic big data community,
which is why we propose adding this feature to NextGen
multi-model databases in Section 4. However, this
is more than just a mere engineering problem; as we
will discuss, the triple-views need to be generated from
interlinked data models, which is a nontrivial challenge.

We continue discussing our scenario and tap a new
data source, containing relational data.

3.2 Ingesting Relational Data

We next ingest customer data from a relational
database, as shown in Figure 6a. Each customer is

11 The triple-view visualizations shown here were generated
with the tool https://github.com/usc-isi-i2/
ontology-visualization, in the version from Oct. 2018.

12 http://tinkerpop.apache.org/
13 To be precise, only a subset of SPARQL 1.0.
14 http://tinkerpop.apache.org/docs/current/

reference/#sparql-gremlin

identified by a customer id. We further know the
customer’s name and credit limit.

With Virtuoso as our backend, we would declare
a relational schema for relation Customer. With
OrientDB, we manage customer records within a (flat)
OrientDB class with mandatory properties, as shown in
Figure 7. We specify that the customer ID must not be
null (line 3). Setting the STRICTMODE (line 9) declares
this class to be schema-full, so additional properties
cannot be added to records.

Again, the syntax for adding cusomer records is
straightforward for developers already familiar with
SQL:

INSERT INTO Customer (CID, CName, CLimit)
VALUES (1, 'Mary', 5000),

(2, 'John', 3000),
(3, 'Anne', 2000);

Figure 6b shows a triple-view of our three customers.
Again, we believe that generating triple-views is a
desirable feature for NextGen multi-model databases
like OrientDB.

3.3 Managing Graph Data

Later, we purchase amendatory data from a social
network provider, to find out which of our customers
know each other. Figure 6c shows the social network
graph G, where the vertices are labeled with customer
identifiers, and edges (labeled “knows”) capture when a
customer knows another customer.

When working with a NextGen multi-model database
that supports the graph model, we can import this data
with ease. The DDL statements are shown in Figure 8.
First, we register all customers as vertices in the generic
class of vertices V (by declaring the customer class
a subclass of V ). Then, we create a new edge class
knows (inheriting from the generic edge class E), and
add the two instances declaring that Anne knows Mary,
and Mary knows John.15

A sweet spot here is that we may issue queries across
edges; to identify the names of customers who know
John, we write

SELECT CName
FROM (SELECT EXPAND(IN())

FROM Customer WHERE CName = 'John');

which returns Mary, as John has an incoming edge from
Mary in the social network graph.

Naturally, we will want to expose this graph data as
a triple-view as well, as sketched in Figure 6d. For
graph data, OrientDB Studio already provides a generic
graph visualization. Also, OrientDB provides means to
15 Not shown: To add edges, we need to temporarily disable the

STRICTMODE declared on class Customer.
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MozzarellaVeggieTopping

VeggiePizza rid75

a

oregano

name

rid73

a

tomato
sauce 

name

rid106

a

buffalo
mozzarella

name

rid43

a hasTopping hasTopping hasTopping

bufalina

name

Figure 5: Triple-view for pizza “bufalina” with the internal record identifier #43:0 (c.f. “rid43”).

(a) Relation Customer.
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(b) Triple-view of customers Mary, Anne, and John.

(c) Social graph G.

rid114rid113 knowsrid115 knows

(d) Triple-view of the social graph.

key value
1 34e5e759
2 0c6df508

(e) Key/value
ShoppingCart.

{ "OID": "0c6df508",
"Orderlines": [

{ "pizza": "bufalina",
"Price": 9.5 },

{ "pizza": "caprese",
"price": 9,
"QTY": 2} ] }

(f) Document Order.

Order

VeggiePizza

Customer

Orderline

0

a

rid43

pizza

9.5

price

a

rid114

a

rid138

ShoppingCart

1

a

rid44

pizza

9

price

2

QTY

a Orderlines Orderlines

0c6df508

OID

a

(g) Triple-view of John’s shopping cart.

Figure 6: Customer-related data in several linked data models and their triple-views.
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1 CREATE CLASS Customer;
2

3 CREATE PROPERTY Customer.CID INTEGER (MANDATORY TRUE, NOTNULL TRUE);
4 CREATE INDEX Customer.CID UNIQUE;
5

6 CREATE PROPERTY Customer.CName STRING (MANDATORY TRUE);
7 CREATE PROPERTY Customer.CLimit INTEGER (MANDATORY TRUE);
8

9 ALTER CLASS Customer STRICTMODE TRUE;

Figure 7: Encoding relational customer data in the OrientDB schema.

1 ALTER CLASS Customer SUPERCLASS V;
2 CREATE CLASS knows EXTENDS E;
3

4 CREATE EDGE knows
5 FROM (SELECT FROM Customer WHERE CID = 3) TO (SELECT FROM Customer WHERE CID = 1);
6 CREATE EDGE knows
7 FROM (SELECT FROM Customer WHERE CID = 1) TO (SELECT FROM Customer WHERE CID = 2);

Figure 8: Encoding a social network graph in the OrientDB schema.

query graphs (but not records from other data models)
via Gremlin and SPARQL.

3.4 Managing Document Data

From our web shop, we next integrate data on the
customers’ shopping carts and orders. Figure 6f shows a
JSON document with John’s order.

Each order is identified by its order ID, and consists
of an array of orderlines. An orderline, in turn, specifies
the pizza ordered, and the price for this item. Note that
the first orderline does not state the quantity explicitly,
rather, we assume by default that a single pizza bufalina
has been ordered. The second orderline explicitly states a
quantity. The key/value mappings in Figure 6e associate
the customers with their shopping cart.

In OrientDB, the schema for order documents can
be declared as nested OrientDB classes, as shown in
Figure 9.

Since these classes are not declared as strict, order
documents need at least the specified properties, but
additional properties are allowed (such as the quantity
of products in the second orderline). Thus, orders are
schema-mixed, and we can insert our JSON document
from Figure 6f, as shown below. This can be done near-
verbatim, with only a minor adaption, specifying the
class and type in lines 4, 5 and 8, 9.

1 INSERT INTO Order SET
2 OID = "0c6df508",
3 Orderlines = [
4 { "@type":"d",
5 "@class":"Orderline",
6 "pizza": #43:0,
7 "price": 9.5 },
8 { "@type":"d",
9 "@class":"Orderline",

10 "pizza": #44:0,
11 "price": 9,
12 "QTY": 2} ];

Note that in lines 6 and 10, we hard-coded the record
identifiers of pizza bufalina and caprese.

Again, OrientDB can resolve links during query
evaluation. So even though Order documents only store
links to pizzas, we can nevertheless access the pizza
names. The following query produces the names of all
pizzas ever ordered.

SELECT DISTINCT Orderlines.pizza.name
FROM Order;

In Figure 10, we implement the key/value mappings
from the shopping cart. Now, John can place his order:

INSERT INTO ShoppingCart SET
key = (SELECT @rid FROM Customer

WHERE CName = "John"),
value = (SELECT @rid FROM Order

WHERE OID = "0c6df508");

When OrientDB resolves links, this is a powerful
alternative to joins and allows for compact queries:

SELECT value.OID
FROM ShoppingCart
WHERE key.CName = 'John';

Note that John’s name is not a property of the
shopping cart, but of the linked customer record.

Again, we want to be able to generate a triple-view
across all data models, upon the push of a button.
Figure 6g shows how we envision this for customer
John’s shopping cart and order. Several algorithms for
publishing triple data from NoSQL data models (such
as XML and JSON documents) [26, 17] have been
published, yet they are not integrated in NextGen multi-
model databases, where we have the particular challenge
of considering links: Ideally, we’d like the key-value
encoding of the shopping cart to be realized as an OWL
object property (rather than an instance), linking one
instance to another (as depicted in the triple-view).

8
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1 CREATE CLASS Orderline;
2 CREATE PROPERTY Orderline.pizza LINK Pizza (MANDATORY TRUE);
3 CREATE PROPERTY Orderline.price DOUBLE (MANDATORY TRUE);
4

5 CREATE CLASS Order;
6 CREATE PROPERTY Order.OID STRING;
7 CREATE PROPERTY Order.Orderlines EMBEDDEDLIST Orderline;

Figure 9: Encoding order documents in the OrientDB schema.

1 CREATE CLASS ShoppingCart;
2

3 CREATE PROPERTY ShoppingCart.key LINK Customer (MANDATORY TRUE, NOTNULL TRUE);
4 CREATE PROPERTY ShoppingCart.value LINK Order (MANDATORY TRUE, NOTNULL TRUE);

Figure 10: Encoding the shopping cart mappings in the OrientDB schema.

3.5 Managing Geospatial Data

The amount of linked open data with an inherent spatial
context is increasing. However, using SPARQL to query
specific geospatial relationships (e.g., finding objects
within a particular distance from a given point) is not
generally perceived as elegant or easy. In consequence,
a number of related vocabularies have been proposed,
as well as query languages strengthened by the OGC
standard GeoSPARQL [30].

Let us imagine that we further integrate the parking
opportunities for bicycles from the New York City open
data collection16. This information will help us in
planning our pizza deliveries. Figure 11 shows an
excerpt of this data, derived from a CSV file. Each
parking site has a unique site id, and is located in a
borough. Its location is described by a house number and
street name, as well as by latitude and longitude. There
are different asset types (commonly, bike racks).

With its GeoSpatial Module, OrientDB has dedicated
support for geospatial points, lines, or polygons. In
Figure 12, we declare the OrientDB schema for the
bicycle parking data. In line 11, we aggregate the values
for latitude and longitude as a geospatial point, which is
natively supported in OrientDB. To insert the first record
from the CSV file in OrientDB, we write:

INSERT INTO Parking SET
SITE_ID = 18941,
Borough = "Brooklyn",
House = 15,
Street_Nam = "LAFAYETTE AV",
Asset_Type = "Bike Rack",
Location = {"@class": "OPoint",

"coordinates": [-73.97851,
40.68679]};

As OrientDB supports geospatial queries, we may
identify suitable delivery routes, given our customers’
delivery addresses.

16 https://data.cityofnewyork.us/
Transportation/Bicycle-Parking/yh4a-g3fj

3.6 Evolving the Schema

As user requirements change, we may need to add a new,
optional property to one of the models (e.g., a delivery
address to the orders). Such an intra-model schema
change is restricted to a single model:

CREATE PROPERTY Orderline.Address STRING;

Naturally, this change will have to be reflected in the
triple-view, producing new nodes and edges (i.e., a
monotonic evolution).

Now, let us perform an inter-model schema change
to merge the ShoppingCart key/value mappings
with Customers. The DDL statements are shown in
Figure 1317.

While this change affects two data models, it should
(ideally) not affect the triple-views shown in Figure 6g.
After all, while the schema of the data has changed, its
semantics has not. Thus, we aim at a new level of logical
data independence, where semantics-preserving schema
changes at the level of the logical database schema
should not affect the generated triple-view.

3.7 Summary

Throughout this chapter, we have grown our pizza
empire over time, adapting the OrientDB schema along
the way. In the final version, we can now ask new
queries, thanks to integrating data from different sources,
and inter-linking records. For instance, we can identify
customers who have only ordered vegetarian pizzas
in the past, or identify groups of friends who are
vegetarians. This can help us target our advertising
campaigns.

Already today, these queries may be formulated in
the SQL-dialect of OrientDB. Along our vision of
generating triple-views, we hope to be able to formulate
these queries in SPARQL in the future. This is
particularly appealing, as we would have a uniform view

17 Note that the UPDATE command should also be applied to all other
key/value records.
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SITE ID Borough House Street Nam Asset Type Latitude Longitude

18941 Brooklyn 15 LAFAYETTE AV Bike Rack 40.68679 -73.97851
18658 Brooklyn 24 4 AV Bike Rack 40.684012 -73.978633
18995 Brooklyn 65 LAFAYETTE AV Bike Rack 40.687072 -73.975805
19421 Brooklyn 104 BEDFORD AV Bike Rack 40.720247 -73.955151

Figure 11: Excerpt of NYC bicycle parking data, in tabular view.

1 CREATE CLASS Parking;
2

3 CREATE PROPERTY Parking.SITE_ID INTEGER (MANDATORY TRUE);
4 CREATE INDEX Parking.SITE_ID UNIQUE;
5

6 CREATE PROPERTY Parking.Borough STRING;
7 CREATE PROPERTY Parking.House INTEGER;
8 CREATE PROPERTY Parking.Street_Nam STRING;
9 CREATE PROPERTY Parking.Asset_Type STRING;

10

11 CREATE PROPERTY Parking.Location EMBEDDED OPoint;
12

13 ALTER CLASS Parking STRICTMODE TRUE;

Figure 12: Encoding bicycle parking data in the OrientDB schema.

of the data, even though each record actually resides in
the data model that is closest to its raw and original form.

In the Introduction, we listed five desiderata.
Summarizing our observations from our example
scenario, already today, NextGen multi-model databases
can meet desiderata (1) through (4). However, their
support for triple-views is limited. Again, we consider
this our biggest open research challenge in the next
section.

4 RESEARCH CHALLENGES

In this paper, we argue that NextGen multi-model
databases are an interesting architectural choice for
building scalable non-native triple stores. We next
describe key challenges that we believe must be mastered
for these systems to be successful in semantic big data
scenarios.

4.1 Triple-Views on Multi-Model Data

For the semantic big data community, being able to
expose a triple-view of the data stored, and to evaluate
SPARQL queries, is a must.

In OrientDB (currently GA version 3.0.x), SPARQL
queries are compiled first to the Gremlin graph API,
and then executed. However, this is restricted to data
that resides in the graph model. Rather, we require
algorithms to compute triple-views on linked multi-
model data. While there are various approaches for
generating triple-views from single-model data (either
relational [34] or JSON [12] or XML [17], ...), we are
not aware of solutions that work for several data models
with interlinked records.

When handling big data, things will not be as easy as
merely blending the existing algorithms. We will need
to deliver highly scalable solutions. For instance, when
generating triple-views, we may build upon existing
work on summarizing ontologies, or digests, c.f. [40].
These summaries capture the essence of the knowledge
graph and allow for high-level browsing. Likewise,
a tool which will help users in the whole process of
publishing their multi-model data as Linked Data (such
as the ETL tool LinkedPipes [20]) might be an important
contribution to the problem domain.

Also, compiling SPARQL queries directly to the
native, database-supported query languages is likely to
boost performance. For instance, OrientDB resorts
to MapReduce processing when in distributed mode,
a functionality that we might leverage for SPARQL
evaluation.

Last but not least, the correctness of triple-views
must be ensured under conflicting requirements that are
model-specific. For example, while the relational model
in traditional relational databases is closely associated
with strong consistency, NoSQL data stores, such as
document or key/value, often only implement eventual
consistency. Moreover, in the relational model we try
to avoid redundancy in data and therefore normalize
the schema. On the other hand, typical optimization
strategies of distributed NoSQL systems are to introduce
redundancy or materialized views, to name two.

4.2 Linked Multi-Model Data and Ontologies

In Section 3, we sketched how the pizza ontology might
be implemented as an OrientDB schema. However,
in this simplistic example we ignored more advanced
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1 ALTER CLASS Customer STRICTMODE FALSE;
2

3 CREATE PROPERTY Customer.ShoppingCart LINK Order;
4

5 UPDATE Customer SET
6 ShoppingCart = (SELECT @rid FROM Order WHERE OID = "0c6df508")
7 WHERE CName = "John";
8

9 DROP CLASS ShoppingCart;

Figure 13: An inter-model schema change.

features of ontologies, such as sub-properties or
further cardinality restrictions. As with relational
databases, most MM-DBs have only limited support
for expressing complex schema constraints. Inevitably,
some constraints imposed by the ontology will have to
be enforced by the application logic instead. In general,
the mapping between multi-model schemas and OWL2
profiles [27] needs to be defined. However, it first
requires a formal definition of multi-model schema or
constraints, which remains an important challenge of
multi-model data, as discussed next.

At the same time, apart from the complex and
challenging idea of combining distinct models, the
key aspect of multi-model databases are links between
distinct models. In single-model systems, the links
can have different representations, such as key/foreign
key relationships in the relational model, references
(pointers) in the object model, embedding/references of
the document model or edges in the graph model. If
we mix models and their specific notions of links, we
get a number of combinations which have so far not
been investigated or standardized. Assigning proper
semantics to inter-model links is another important
challenge that has not yet been addressed. We assume
that like in single-model systems, linking will probably
be carried out semi-automatically, assisted by suitable
tools, such as [5].

4.3 Supporting Ontology Evolution

A database schema declares more than record properties,
it also enforces integrity constraints. This is of particular
interest when ontologies evolve (near-inevitable in long-
running projects), as they need to remain consistent
under updates. When it comes to big data, consistency
checks need to scale to large volumes of data. It is
generally acknowledged that an efficient way to enforce
ontology consistence is via schema-declared integrity
constraints [42]. For instance, in OrientDB, we may
work with indices to enforce the uniqueness of values.

As the need for such constraints may only materialize
over time, ontology evolution is related to database
schema evolution. At the same time, schema evolution
in NextGen multi-model databases has not yet been
systematically explored, as discussed next.

Even in schema-less DBMSs (which is the case of,
e.g., most of the originally NoSQL systems listed in
Table 1), there is typically an “intrinsic” schema, i.e.,
a kind of agreed structure of data that is expected by the
application. When user requirements change, this affects
not only the structure of the data, but also all related
parts of the system (data instances, integrity constraints,
queries, storage strategies etc.). Consequently, the
mappings of data in an evolving schema to RDF triples
have to account for this. On the other hand, if the schema
change does not change the semantics of the data, the
triple-views should not be affected either (yet the query
plans for evaluating SPARQL queries on the multi-model
data will).

A number of papers deals with schema evolution
in single-model systems (e.g., relational or XML [28],
or aggregate-oriented NoSQL [36]). But apart from
a first academic prototype [41] and a recent position
paper [14], there are no principled tools supporting
schema evolution in multi-model databases in its full
complexity. However, the community is presently
devising benchmarks for multi-model databases that
take schema evolution into account, right from the
start [21]. The availability of such benchmarks is vital
for evaluating competing solutions w.r.t. the research
challenges discussed here.

In addition, carrying out schema changes in a
transactionally safe manner in a distributed system is
both a research and an engineering challenge. E.g., the
Google-internal database F1 [31] scalably implements
this for the relational model.

4.4 General Challenges

In discussing our sample scenario, we have carefully
avoided certain problems in data integration that are
known to be difficult. For instance, in integrating data
from different sources, we face the entity resolution
problem. This active research area involves techniques
for record linkage and deduplication. We refer to a
recent survey on entity resolution in big data processing,
where we generally face data variety in terms of different
data models [10]. We have also glossed over the
challenge of mapping and matching existing schemas
that use homonymous and synonymous terms (c.f. [8]
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Data Stores
Heterogeneous Homogeneous

Single QI
Multistore
Systems

Federated
Systems

Multiple QIs
Polystore
Systems

Polyglot
Systems

Figure 14: Multi-DBMS distinguished by (1) number
of query interfaces (QIs) and (2) the underlying
specialized data stores.

for a holistic overview).
Apart from challenges common to data integration

tasks, or directly related to building non-native triple
stores, there are also general challenges with NextGen
multi-model databases. These challenges concern
system maturity. On the one hand, multi-model systems
involve both traditional relational DBMSs with a long
history, as well as newer, but already well established
NoSQL systems [22]. On the other hand, the level
of support for multiple data models in these systems
strongly differs and does not correspond to their general
robustness. In addition, there are currently no recognized
best practices, or even standards, for modeling, querying,
updating, etc. of multi-model data [24]. Similarly, the
process of building a strong theoretical foundation for
multi-model data management is in its early stages.
From the user point of view, we have encountered a
number of cases where the documentation does not
clearly describe the expected behaviour of the system,
or any of the more advanced features. Thus, certain
NextGen multi-model database products have not yet
reached an appropriate level of applied as well as
theoretical maturity.

5 MULTI-MODEL DATA MANAGEMENT

To provide a broader scope of the problem domain,
we outline existing strategies for multi-model data
management. In general, there are two existing
approaches to manipulate and query multi-model
data [22], namely multi-DBMSs systems and single-
DBMSs systems, both discussed next.

5.1 Multi-DBMSs Systems

The main idea of polyglot persistence is to combine
different specialized DBMSs, each with a distinct

(native) data model, query language and other
capabilities using a middle-ware layer. As defined
in [38], the data stores can be either homogeneous or
heterogeneous, whereas heterogeneity can be specified
at the level of data stores (having different modeling
techniques and physical architectures), processing
engines (having different processing capabilities when
built around arrays, graphs, dictionaries etc.), and/or
query interfaces (having various formal algebras and
expressive powers). The same paper also classifies
existing solutions as listed below, and as visualized in
Figure 14.

Federated systems were thoroughly researched during
the 1980s and 1990s. They consist of multiple
homogeneous data stores and a single query interface.
The main strategy is to develop a middleware
(called mediator) to integrate together multiple, usually
relational databases (e.g., Multibase [16] defines a
global schema, a mapping language, and a local-to-host
translator, whereas users pose the queries against the
global schema).

Polyglot systems usually address the need to manage
complex data flows in distributed file systems, where
data processing can be specified as declarative queries,
but also as procedural algorithms. In general, they
consist of multiple homogeneous data stores and
multiple query interfaces (e.g., Spark SQL [7] provides
an API with both relational and procedural access mode).

Multistore systems consist of multiple heterogeneous
data stores, including HDFS, RDBMS and NoSQL
databases, and one query interface (e.g., HadoopDB [2]
integrates a distributed file system with a relational
database).

Last but not least, polystore systems are built on top of
multiple heterogeneous data storage engines, involving
relational, array, stream, and key/value stores, generally
represented as islands of information. Users can choose
from a number of query interfaces to process data stored
in a variety of data stores.

5.2 Single-DBMSs Systems

Single-DBMSs systems, i.e., the key target of this paper,
are usually rather denoted as multi-model databases.
They manage different data models within a single, fully
integrated backend, to handle the system demands for
performance, scalability, and fault tolerance [24]. The
idea can be traced back to object-relational database
management systems, which extend towards the object-
oriented programming model for relational databases,
and which can thus store and process various formats,
such as relational, text, XML, spatial and object,
leveraging domain-specific functions.

Currently, there exist more than 20 representatives of

12
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Table 1: Summary of key features of multi-model databases.

Type DBMS Ext. Models Query languages
Relational PostgreSQLa I R-KJX--O extended SQL

Microsoft SQL Serverb I R--JXG-O extended SQL
IBM DB2c I R---XGDO extended SQL/XML
Oracle DBd I R--JX-DO SQL/XML or JSON extension of SQL
MySQLe II R-K----O SQL, memcached API
Sinew [37] III R-K----- SQL

Column Cassandraf I -C---G-O SQL-like CQL (Cassandra Query Language)
CrateDBg I RC-J-G-- SQL
DynamoDBh I -CKJ-G-O simple API (get/put/update) + simple queries over indices
Verticai II -C-J-G-- SQL-like

Key/value Riak KVj I --KJXG-- Solr
c-treeACEk III R-K--G-- SQL
Oracle NoSQL DBl III R-K--GD- SQL

Document Cosmos DBm I -CKJ---- SQL-like
ArangoDBn II --KJ-G-- SQL-like AQL (ArangoDB Query Language)
MongoDBo II --KJ---O JSON-based query language
Couchbasep III --KJ---- SQL-based N1QL (Couchbase query language “nickel”)
MarkLogicq III ---JX-DO XPath, XQuery, SQL-like

Graph OrientDBr II --KJ-G-- Gremlin, extended SQL, SPARQL

Object InterSystems Cachés III R--JX--O SQL with object extensions

a https://www.postgresql.org/
b http://www.microsoft.com/en-us/server-cloud/products/sql-server/
c http://www.ibm.com/analytics/us/en/technology/db2/
d https://www.oracle.com/database/index.html
e https://www.oracle.com/mysql/index.html
f http://cassandra.apache.org/
g https://crate.io/
h https://aws.amazon.com/dynamodb/
i https://www.vertica.com/
j https://riak.com/products/riak-kv/
k https://www.faircom.com/products/c-treeace
l https://www.oracle.com/database/technologies/related/nosql.html
m http://www.cosmosdb.com
n https://www.arangodb.com/
o https://www.mongodb.com/
p http://www.couchbase.com/
q https://www.marklogic.com/
r https://orientdb.com/
s https://www.intersystems.com/cz/products/cache/

Legend: I = adoption of a new storage strategy, II = extension of the original storage strategy, III = creation of a new interface,
IV = no change; R = relational, C = column, K = key/value, J = JSON, X = XML, G = graph, D = RDF, O = object.

multi-model databases, involving well-known tools from
both the traditional relational and novel NoSQL systems.
As portrayed in a recent extensive survey [22], they
have distinct features and can be classified according
to various criteria. The core difference is the strategy
used to extend the original model to other models or
to combine multiple models. The new models can be
supported via (I) adoption of an entirely new storage
strategy, (II) extension of the original storage strategy,
(III) creation of a new interface, or even (IV) no change
in the original storage strategy (which is used for trivial
cases).

In Table 1, partially borrowed from [22], we capture
prominent systems by their key features, classified

according to the original or core model (i.e., relational,
column, etc.). It includes a reference to a web page or a
core paper devoted to the system, the strategy for multi-
model extension, as well as supported models and query
languages.

For example, even though currently both ArangoDB
and OrientDB support the same set of models (i.e.,
key/value, document, namely JSON, and graph), they
belong to different groups with regards to the original
model: ArangoDB started with the document model
which was extended towards graphs using a special edge
collection. OrientDB was originally a graph database
which was soon extended to support documents,
thanks to its object-oriented features allowing to define
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hierarchies. So in both cases we can say that the original
storage strategy was only extended towards the new
models. Like most systems, both support an SQL-like
query language, usually with proprietary extensions.

6 CONCLUSION

With this paper, we hope to entice the semantic big data
community to consider NextGen multi-model databases
as backends for non-native triple stores that can scale
to big data. We believe that this new technology is a
major stepping point towards unlocking enterprise data,
building 360o views on data otherwise locked away in
data silos.
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[15] I. Holubová and S. Scherzinger, “Unlocking the
Potential of NextGen Multi-model Databases for
Semantic Big Data Projects,” in Proceedings of the
International Workshop on Semantic Big Data, ser.
SBD ’19, 2019, pp. 6:1–6:6.

[16] J. Huang, “MultiBase: a Heterogeneous
Multidatabase Management System,” in

14

http://arxiv.org/abs/1905.06397
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