More Web Proxy on the site http://driver.im/
As the global aging population increases, the demand for rehabilitation of elderly hand conditions has attracted increased attention in the field of wearable sensors. Owing to their distinctive anti-electromagnetic interference properties, high sensitivity, and excellent biocompatibility, optical fiber sensors exhibit substantial potential for applications in monitoring finger movements, physiological parameters, and tactile responses during rehabilitation. This review provides a brief introduction to the principles and technologies of various fiber sensors, including the Fiber Bragg Grating sensor, self-luminescent stretchable optical fiber sensor, and optic fiber Fabry-Perot sensor. In addition, specific applications are discussed within the rehabilitation field. Furthermore, challenges inherent to current optical fiber sensing technology, such as enhancing the sensitivity and flexibility of the sensors, reducing their cost, and refining system integration, are also addressed. Due to technological developments and greater efforts by researchers, it is likely that wearable optical fiber sensors will become commercially available and extensively utilized for rehabilitation.
Keywords: monitoring; rehabilitation; wearable optical fiber sensor.