More Web Proxy on the site http://driver.im/
Structural health monitoring (SHM) is a challenging task, especially in the context of ground and geotechnical structures. They are characterized by a set of random mechanical parameters, depending on the location but also changing with external conditions (such as humidity or temperature) over time. Theoretical predictions and results of numerical simulations are, therefore, considerably uncertain. On the other hand, measurements aimed at improving construction and operation of such structures are very often performed only in selected points, which significantly increases the risk of data misinterpretation. Reliable measurement data related to structural condition are of the great importance because they allow for improvement of work quality but also reduce construction time and, thereby, save money. That is why scientists and engineers are still searching for new measurement solutions to overcome existing limitations. The purpose of the study is to present the design and practical application of a new hydraulic sensor dedicated to vertical displacement sensing. The novelty of the presented solution lies in several features, including the possibility of performing automatic measurements and compensating the results due to temperature effects. The article describes the sensor's design, including the concept of a thermal compensation system and example results from laboratory tests, where the sensor's performance was investigated in a dual-zone thermal chamber. Finally, the sensor was installed within the field conditions under an embankment constructed above the improved substrate. Example results verified by reference distributed fiber optic technique are presented and discussed hereafter, raising high prospects in the context of possible structural health monitoring applications of the new solution.
Keywords: DFOS; displacements; distributed sensing; embankment; hydraulic sensor; laboratory; measurements; settlements; temperature; thermal compensation.