More Web Proxy on the site http://driver.im/
The objective of this study was to develop a novel hybrid genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier (NLC) drug delivery platform. An ophthalmic anti-inflammatory drug, baicalin (BN) was chosen as the model drug. BN-NLC was prepared using melt-emulsification combined with ultra-sonication technique. Additionally, a dual pH- and thermo-sensitive hydrogel composed of carboxymethyl chitosan (CMCS) and poloxamer 407 (F127) was fabricated by a cross-linking reaction with a nontoxic crosslinker genipin (GP). GP-CMCS/F127 hydrogel was characterized by FTIR, NMR, XRD and SEM. The swelling studies showed GP-CMCS/F127 hydrogel was both pH- and thermo-sensitive. The results of in vitro release suggested BN-NLC gel can prolong the release of baicalin comparing with BN eye drops and BN-NLC. Ex vivo cornea permeation study was evaluated using Franz diffusion cells. The apparent permeability coefficient (Papp ) of BN-NLC gel was much higher (4.46-fold) than that of BN eye drops. Through the determination of corneal hydration levels, BN-NLC gel was confirmed that had no significant irritation to cornea. Ex vivo precorneal retention experiments were carried out by a flow-through approach. The results indicated that the NLC-based hydrogel can prolong precorneal residence time. In conclusion, the hybrid NLC-based hydrogel has a promising potential for application in ocular drug delivery.
Keywords: Nanostructured lipid carrier; Ocular drug delivery; Semi-IPN hydrogel.
© 2018 Shenyang Pharmaceutical University. Published by Elsevier B.V.