More Web Proxy on the site http://driver.im/
Phytochemicals are priceless sources of bioactive compounds with multiple health benefices. The main objective of the current investigation was to develop nanostructured herbal formulations conditioned as appropriate hydrogel (HG) conferring an enhanced transdermal absorption of bioactive compounds from selective extracts and vegetable oils. The direct impact of research is represented by the identification of prototype products which manifest an improved therapeutic response, by means of cumulative antioxidant, anti-inflammatory and anti-acne actions, without causing any side health effects. The combinatorial effect of Carrot Extract (CE) and Marigold Extract (ME) - Nanostructured Lipid Carriers (NLC) based on rosehip oil or black cumin oils was accompanied by a high biocompatibility and a significant ability to capture both short- and long-life free radicals. HG-NLC-ME-CE has been shown to be an efficient carrier with a differentiated potential for in vitro release of the two active principles, e.g. it delayed the release of carotenoids while the hydrophilic active (azelaic acid, AA) was faster released. The HG-NLC efficacy in skin inflammation treatment (demonstrated by in vitro and in vivo tests) revealed a reduced expression of inflammatory cytokines (IL-1β and TNF-α), more pronounced in the case of TNF-α. Moreover, a superior in vivo anti-inflammatory effect of HG-based NLC-CE/ME-AA as compared to that obtained for a commercial product was detected, i.e. after 3 h of HG-NLC treatment, a significant reduction of rat paw edema was quantified. In pre-clinical studies, the quantification of the hydration and elasticity effects in the viable epidermis provided the evidence of the high potential of developed prototypes, suitable for implementation in the market area. The degree of skin hydration and skin elasticity were remarkable enhanced after topical application of developed prototypes, a hydration effect up to 74% being determined and a skin elasticity reaching 90%. The knowledge acquired from this investigation could be utilized by the cosmetic industry to design novel topical products with improved quality and health benefices, endowed with antioxidant, anti-inflammatory and anti-acne actions and with desired hydration and elasticity profiles, in order to achieve better therapeutic efficacy and no drug toxicity.
Keywords: Advanced topical products; Anti-inflammatory action; Hydration and elasticity profiles; Nanostructured herbal prototypes; Phytochemicals.
Copyright © 2019 Elsevier B.V. All rights reserved.