More Web Proxy on the site http://driver.im/
Hepatocellular carcinoma (HCC) is a common malignant tumour. An increasing number of studies indicate that microRNAs (miRNAs) are critical regulators in the carcinogenesis and progression of HCC. MiR-627-5p has been identified as a tumour suppressor in colorectal cancer and glioblastoma multiforme. However, the function of miR-627-5p in HCC progression remains unclear yet. In our present study, miR-627-5p was determined to be low-expressed in HCC tissues and cell lines. Furthermore, miR-627-5p was expressed at significantly lower levels in HCC tissues with tumour size >5 cm or advanced tumour stages (III+IV). Additionally, HCC patients with low miR-627-5p level had a significantly poorer overall survival. Functionally, ectopic expression of miR-627-5p obviously inhibited the proliferation, and induced G1 phase arrest and apoptosis of Hep3B and SMMC-7721 cells. Conversely, miR-627-5p silencing facilitated HCC cell proliferation, cell cycle progression and apoptosis resistance. In vivo experiments further confirmed that miR-627-5p overexpression repressed the growth of Hep3B cells in mice. Mechanistically, BCL3 transcription coactivator was predicted as a direct target of miR-627-5p. MiR-627-5p overexpression reduced, whereas miR-627-5p knockdown enhanced the expression of BCL3 protein in HCC cells. Luciferase reporter assay confirmed the direct binding between miR-627-5p and 3'UTR of BCL3. The expression of BCL3 protein was negatively correlated with miR-627-5p level in HCC tissues. More importantly, re-expression of BCL3 partially reversed miR-627-5p induced inhibitory effects on Hep3B cells. In conclusion, these results demonstrated that miR-627-5p functioned as a tumour suppressor in HCC possibly by attenuating BCL3. This finding might offer a new therapeutic target for HCC treatment.
Keywords: BCL3; hepatocellular carcinoma; miR-627-5p; proliferation; tumour growth.
© 2019 John Wiley & Sons Australia, Ltd.