More Web Proxy on the site http://driver.im/
Despite advances in treatment modalities, 5-year survival among glioma patients remains poor. Glioma cancer stem cells (CSCs) exhibit high tumorigenic activity and are associated with resistance to treatment and tumor recurrence. Because overexpression of toll-like receptor 4 (TLR4) correlated with cancer development, we investigated LPS-induced TLR4 signaling in glioma CD133-positive (CD133+) CSCs. The proliferation of CD133+ CSCs isolated from CSCs derived from the U251 and SF295 glioma cell lines and from human glioma samples was upregulated on a time- and concentration-dependent basis by LPS stimulation, with increases in CD133, NANOG, and NESTIN mRNA and protein levels. Also elevated was cytokine expression, which was coupled to phosphorylation of mitogen-activated protein kinase, and activation of cyclins and cyclin-dependent kinase complexes. TLR4 knockdown reduced LPS-induced CD133+ CSC proliferation, whereas Adriamycin-induced CD133+ CSC apoptosis was moderately inhibited by treatment with LPS, implying a protective effect of LPS. The capacity of glioma CD133+ CSC-reactive cytotoxic T lymphocyte to selectively kill CD133+ CSCs was reduced by LPS, and this effect was not apparent after TLR4 knockdown in CD133+ CSCs. These data suggest TLR4 signaling is a factor in CD133+ CSC immune evasion, and thus disruption of TLR4 signaling is a potential therapeutic strategy in glioma.
Keywords: CD133-positive; cytotoxic T lymphocyte; glioma cancer stem cells; immune evasion; toll-like receptor 4.