More Web Proxy on the site http://driver.im/
Background and purpose: The clinical use of arsenic trioxide (As2O3) for treating acute promyelocytic leukemia (APL) is limited due to its severe cardiotoxicity. The possible mechanisms of As2O3-induced cardiotoxicity include DNA fragmentation, reactive oxygen species (ROS) generation, cardiac ion channel changes and apoptosis. The present study is designed to investigate the protective effects of imperatorin and sec-O-glucosylhamaudol and to explore their mechanistic involvement in As2O3-induced cytotoxicity.
Experimental methods: Cell viability assay, Lactate dehydrogenase (LDH) release, Acridine orange/ethidium bromide (AO/EB) double staining, Caspase-3 activity assay, ROS generation, cellular calcium levels, mRNA expression levels by qRT-PCR and protein expression levels by Western blotting were measured in H9c2 cells in combination with As2O3 and imperatorin or sec-O-glucosylhamaudol.
Key results: We observed that H9c2 cells treated with imperatorin or sec-O-glucosylhamaudol were more resistant to As2O3-induced cell death. Both imperatorin and sec-O-glucosylhamaudol reduced H9c2 cell apoptosis, but both imperatorin and sec-O-glucosylhamaudol had no effects on Caspase-3 activity and intracellular calcium accumulation. Furthermore, imperatorin was capable of suppressing ROS generation, while sec-O-glucosylhamaudol did not show this effect. Moreover, imperatorin and sec-O-glucosylhamaudol triggered Nrf2 activation, which resulted in upregulation of downstream phase II metabolic enzymes and antioxidant protein/enzyme, probably offering cellular protection to As2O3-induced cardiotoxicity via the Nrf2 signal pathway.
Conclusions and implications: Imperatorin and sec-O-glucosylhamaudol can ameliorate As2O3-induced cytotoxicity and apoptosis in H9c2 cells, the mechanisms probably related to antioxidation. As2O3 in combination with imperatorin or sec-O-glucosylhamaudol could be considered as a novel strategy to expand the clinical application of As2O3.
Keywords: As(2)O(3)-induced cytotoxicity; Imperatorin; Mechanisms; sec-O-glucosylhamaudol.
Copyright © 2016 Elsevier Ltd. All rights reserved.