More Web Proxy on the site http://driver.im/
Cancer metastasis is the foremost cause of cancer-associated deaths. Recent studies have shown that circulating tumor cells (CTCs) are important in cancer metastasis. Indeed, the number of CTCs correlates with tumor size. Here, a detailed description is provided of a methodology for isolation and propagation of CTCs from a syngeneic mouse model of hepatocellular carcinoma (HCC) which allows for downstream analysis of potentially important molecular mechanisms of solid organ tumor metastasis. This method is efficient and reproducible. It is a non-invasive technique and, therefore, has potential to replace the invasive biopsy of tissues from humans which may be associated with complications. Therefore, the method discussed here allows for the isolation and propagation of CTCs from whole blood samples such that they can be examined and characterized. This has potential for future adaptation for clinical applications such as diagnosis, and personalized targeted therapy.