[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Poisson-Gaussian Noise Reduction Using the Hidden Markov Model in Contourlet Domain for Fluorescence Microscopy Images

PLoS One. 2015 Sep 9;10(9):e0136964. doi: 10.1371/journal.pone.0136964. eCollection 2015.

Abstract

In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only a limited number of photons can be collected due to various physical constraints. The resulting images suffer from signal dependent noise, which can be modeled as a Poisson distribution, and a low signal-to-noise ratio. However, the majority of research on noise reduction algorithms focuses on signal independent Gaussian noise. In this paper, we model noise as a combination of Poisson and Gaussian probability distributions to construct a more accurate model and adopt the contourlet transform which provides a sparse representation of the directional components in images. We also apply hidden Markov models with a framework that neatly describes the spatial and interscale dependencies which are the properties of transformation coefficients of natural images. In this paper, an effective denoising algorithm for Poisson-Gaussian noise is proposed using the contourlet transform, hidden Markov models and noise estimation in the transform domain. We supplement the algorithm by cycle spinning and Wiener filtering for further improvements. We finally show experimental results with simulations and fluorescence microscopy images which demonstrate the improved performance of the proposed approach.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Image Processing, Computer-Assisted / methods*
  • Markov Chains
  • Microscopy, Fluorescence / methods*
  • Normal Distribution
  • Signal-To-Noise Ratio

Grants and funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012R1A1A3013525, 2012M3A9B6055379, and 2013R1A2A2A04015894). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.