Organisms experience a wide range of environmental factors such as temperature, salinity and hydrostatic pressure, which pose challenges to biochemical processes. Studies on adaptations to such factors have largely focused on macromolecules, especially intrinsic adaptations in protein structure and function. However, micromolecular cosolutes can act as cytoprotectants in the cellular milieu to affect biochemical function and they are now recognized as important extrinsic adaptations. These solutes, both inorganic and organic, have been best characterized as osmolytes, which accumulate to reduce osmotic water loss. Singly, and in combination, many cosolutes have properties beyond simple osmotic effects, e.g. altering the stability and function of proteins in the face of numerous stressors. A key example is the marine osmolyte trimethylamine oxide (TMAO), which appears to enhance water structure and is excluded from peptide backbones, favoring protein folding and stability and counteracting destabilizers like urea and temperature. Co-evolution of intrinsic and extrinsic adaptations is illustrated with high hydrostatic pressure in deep-living organisms. Cytosolic and membrane proteins and G-protein-coupled signal transduction in fishes under pressure show inhibited function and stability, while revealing a number of intrinsic adaptations in deep species. Yet, intrinsic adaptations are often incomplete, and those fishes accumulate TMAO linearly with depth, suggesting a role for TMAO as an extrinsic 'piezolyte' or pressure cosolute. Indeed, TMAO is able to counteract the inhibitory effects of pressure on the stability and function of many proteins. Other cosolutes are cytoprotective in other ways, such as via antioxidation. Such observations highlight the importance of considering the cellular milieu in biochemical and cellular adaptation.
Keywords: Cytoprotection; Deep sea; Hydrostatic pressure; Osmolytes; Trimethylamine N-oxide.
© 2015. Published by The Company of Biologists Ltd.