[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Tree mortality from drought, insects, and their interactions in a changing climate

New Phytol. 2015 Nov;208(3):674-83. doi: 10.1111/nph.13477. Epub 2015 Jun 9.

Abstract

Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects - bark beetles and defoliators - which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree-insect interactions will better inform projections of forest ecosystem responses to climate change.

Keywords: biosphere-atmosphere feedbacks; carbon cycle; disturbance; dynamic global vegetation model; trophic interactions.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Climate Change*
  • Droughts*
  • Herbivory*
  • Insecta / physiology*
  • Trees / physiology*