Aim: To examine the dislocation resistance of three root canal sealers from radicular dentine with and without immersion in a simulated body fluid (SBF), using a modified push-out test design that produced simulated canal spaces of uniform dimensions under identical cleaning and shaping conditions.
Methodology: Sixty single-rooted caries-free human canine teeth were used. Standardized simulated canal spaces were created using 0.04 taper ProFile instruments along the coronal, middle and apical thirds of longitudinal tooth slabs. Following NaOCl/ethylenediamine tetra-acetic acid cleaning, the cavities were filled with ProRoot Endo Sealer, AH Plus Jet or Pulp Canal Sealer. After setting, half of the cavities were tested with a fibre-optic light-illuminated push-out testing device. The rest were immersed in SBF for 4 weeks before push-out evaluation. Failure modes were examined with stereomicroscopy and field emission (FE)-scanning electron microscopy.
Results: Location of the sealer-filled cavities did not affect push-out strengths. ProRoot Endo Sealer exhibited higher push-out strengths than the other two sealers particularly after SBF storage (P < 0.001). Failure modes were predominantly adhesive and mixed for Pulp Canal Sealer and AH Plus Jet, and predominantly cohesive for ProRoot Endo Sealer. Spherical amorphous calcium phosphate-like phases that spontaneously transformed into apatite-like phases were seen in the fractured specimens of ProRoot Endo Sealer after SBF storage.
Conclusions: When tested in bulk without a main core, both 'sealer type' and 'SBF storage' were significant in affecting push-out results. The ProRoot Endo Sealer demonstrated the presence of spherical amorphous calcium phosphate-like phases and apatite-like phases (i.e. ex vivo bioactivity) after SBF storage.