This paper reports a method that simultaneously detects three food-borne pathogenic bacteria, Salmonella typhimurium, Shigella flexneri, and Escherichia coli O157:H7, via an approach that combines magnetic microparticles for the enrichment and antibody-conjugated semiconductor quantum dots (QDs) as fluorescence markers. Using the water-in-oil reverse microemulsions method, the gamma-Fe(2)O(3) magnetic nanoparticles were coated with silica to empower the particles with high dispersibility and broad compatibility to biomacromolecules. The magnetic beads were then modified with amino silane, which could immobilize antibodies by glutaraldehyde treatment. The immunized magnetic beads and pathogenic bacteria formed "bead-cell" complexes in the enrichment procedure. QDs with different emission wavelengths (620, 560, and 520 nm) were immobilized with anti-S. typhimurium antibody, anti-S. flexneri antibody, and anti-E. coli O157:H7 antibody, respectively. Fluorescence microscope images and the fluorescence intensity of QDs labeled "sandwich" complexes (conjungated with antibodies against S. typhimurium, S. flexneri, and E. coli O157:H7, respectively) demonstrated that antibody-conjugated QDs could attach to the surface of bacterial cells selectively and specifically. In our method, we could detect food-borne pathogen bacteria in a food matrix at 10(-3) cfu/mL. We determined that a high concentration of proteins in food matrix would decrease the sensitivity of this method. This method, of which the detection procedures are completed within 2 h, can be applied to the rapid and cost-effective monitoring of bacterial contamination in food samples.