Iron resulting from hemoglobin degradation is linked to delayed neuronal injury after intracerebral hemorrhage. Extensive preclinical investigations indicate that the iron chelator, deferoxamine mesylate, is effective in limiting hemoglobin- and iron-mediated neurotoxicity. However, clinical studies evaluating the use of deferoxamine in intracerebral hemorrhage are shortcoming. This article reviews the potential role of deferoxamine as a promising neuroprotective agent to target the secondary effects of intracerebral hemorrhage to limit brain injury and improve outcome, and ongoing efforts to translate the preclinical findings into clinical investigations.