Ultrasonic irradiation of liquids causes acoustic cavitation: the formation, growth, and implosive collapse of bubbles. Bubble collapse during cavitation generates transient hot spots responsible for high-energy chemistry and emission of light. Determination of the temperatures reached in a cavitating bubble has remained a difficult experimental problem. As a spectroscopic probe of the cavitation event, sonoluminescence provides a solution. Sonoluminescence spectra from silicone oil were reported and analyzed. The observed emission came from excited state C(2) (Swan band transitions, d(3)IIg-a(3)II(micro)), which has been modeled with synthetic spectra as a function of rotational and vibrational temperatures. From comparison of synthetic to observed spectra, the effective cavitation temperature was found to be 5075 +/- 156 K.