More Web Proxy on the site http://driver.im/
During the 2003 Severe Acute Respiratory Syndrome (SARS) outbreak, traditional intervention measures such as quarantine and border control were found to be useful in containing the outbreak. We used laboratory verified SARS case data and the detailed quarantine data in Taiwan, where over 150,000 people were quarantined during the 2003 outbreak, to formulate a mathematical model which incorporates Level A quarantine (of potentially exposed contacts of suspected SARS patients) and Level B quarantine (of travelers arriving at borders from SARS affected areas) implemented in Taiwan during the outbreak. We obtain the average case fatality ratio and the daily quarantine rate for the Taiwan outbreak. Model simulations is utilized to show that Level A quarantine prevented approximately 461 additional SARS cases and 62 additional deaths, while the effect of Level B quarantine was comparatively minor, yielding only around 5% reduction of cases and deaths. The combined impact of the two levels of quarantine had reduced the case number and deaths by almost a half. The results demonstrate how modeling can be useful in qualitative evaluation of the impact of traditional intervention measures for newly emerging infectious diseases outbreak when there is inadequate information on the characteristics and clinical features of the new disease-measures which could become particularly important with the looming threat of global flu pandemic possibly caused by a novel mutating flu strain, including that of avian variety.