We recently described the cloning of murine triggering receptor expressed by myeloid cells (TREM) 2, a single Ig domain DNAX adaptor protein 12-associated receptor expressed by cells of the myeloid lineage. In this study, we describe the identification of ligands for TREM-2 on both bacteria and mammalian cells. First, by using a TREM-2A/IgG1-Fc fusion protein, we demonstrate specific binding to a number of Gram-negative and Gram-positive bacteria and to yeast. Furthermore, we show that fluorescently labeled Escherichia coli and Staphylococcus aureus bind specifically to TREM-2-transfected cells. The binding of TREM-2A/Ig fusion protein to E. coli can be inhibited by the bacterial products LPS, lipoteichoic acid, and peptidoglycan. Additionally, binding can be inhibited by a number of other anionic carbohydrate molecules, including dextran sulfate, suggesting that ligand recognition is based partly on charge. Using a sensitive reporter assay, we demonstrate activation of a TREM-2A/CD3zeta chimeric receptor by both bacteria and dextran sulfate. Finally, we demonstrate binding of TREM-2A/Ig fusion to a series of human astrocytoma lines but not to a variety of other cell lines. The binding to astrocytomas, like binding to bacteria, is inhibited by anionic bacterial products, suggesting either a similar charge-based ligand recognition method or overlapping binding sites for recognition of self- and pathogen-expressed ligands.