[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Inactivation of thrombin by antithrombin is accompanied by inactivation of regulatory exosite I

J Biol Chem. 1997 Aug 8;272(32):19837-45. doi: 10.1074/jbc.272.32.19837.

Abstract

Exosite I of the blood clotting proteinase, thrombin, mediates interactions of the enzyme with certain inhibitors, physiological substrates and regulatory proteins. Specific binding of a fluorescein-labeled derivative of the COOH-terminal dodecapeptide of hirudin ([5F] Hir54-65) to exosite I was used to probe changes in the function of the regulatory site accompanying inactivation of thrombin by its physiological serpin inhibitor, antithrombin. Fluorescence-monitored equilibrium binding studies showed that [5F]Hir54-65 and Hir54-65 bound to human alpha-thrombin with dissociation constants of 26 +/- 2 nM and 38 +/- 5 nM, respectively, while the affinity of the peptides for the stable thrombin-antithrombin complex was undetectable (>/=200-fold weaker). Kinetic studies showed that the loss of binding sites for [5F]Hir54-65 occurred with the same time-course as the loss of thrombin catalytic activity. Binding of [5F] Hir54-65 and Hir54-65 to thrombin was correlated quantitatively with partial inhibition of the rate of the thrombin-antithrombin reaction, maximally decreasing the bimolecular rate constants 1.7- and 2.1-fold, respectively. These results support a mechanism in which thrombin and the thrombin-Hir54-65 complex can associate with antithrombin and undergo formation of the covalent thrombin-antithrombin complex at modestly different rates, with inactivation of exosite I leading to dissociation of the peptide occurring subsequent to the rate-limiting inactivation of thrombin. This mechanism may function physiologically in localizing the activity of thrombin by allowing inactivation of thrombin that is bound in exosite I-mediated complexes with regulatory proteins, such as thrombomodulin and fibrin, without prior dissociation of these complexes. Concomitant with inactivation of thrombin, the thrombin-antithrombin complex may be irreversibly released due to exosite I inactivation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Antithrombin III / metabolism*
  • Binding Sites
  • Binding, Competitive
  • Catalysis
  • Hirudins / metabolism
  • Humans
  • Kinetics
  • Macromolecular Substances
  • Spectrometry, Fluorescence
  • Thrombin / metabolism*

Substances

  • Hirudins
  • Macromolecular Substances
  • Antithrombin III
  • Thrombin