Vascular endothelial growth factor (VEGF), a potent angiogenic factor and endothelial cell-specific mitogen, is up-regulated by hypoxia. However, the mechanism(s) responsible for hypoxic induction of VEGF has not been clearly delineated. We report that the steady state VEGF mRNA levels are increased 12 +/- 0.6-fold, but the transcriptional rate for VEGF is increased only 3.1 +/- 0.6-fold by hypoxia in PC12 cells. In order to investigate cis-regulatory sequences which mediate this response to hypoxia, we cloned the rat genomic sequences encoding VEGF and identified a 28-base pair element in the 5' promoter that mediates hypoxia-inducible transcription in transient expression assays. This element has sequence and protein binding similarities to the hypoxia-inducible factor 1 binding site within the erythropoietin 3' enhancer. Post-transcriptional mechanisms have also been suggested to play a role in the hypoxic induction of VEGF. Evidence is provided that a frequently used polyadenylation site is 1.9 kilobases downstream from the translation termination codon for rat VEGF. This site is 1.5 kilobases further downstream from the polyadenylation site previously reported for VEGF. This new finding reveals sequence motifs in the 3'-untranslated region that may mediate VEGF mRNA stability.